
Solving Goal Recognition Design using ASP∗

Tran Cao Son† and Orkunt Sabuncu‡ and Christian Schulz-Hanke‡
and Torsten Schaub‡� and William Yeoh†
†New Mexico State University, Las Cruces, NM, USA

‡University of Potsdam, Germany �INRIA, Rennes, France

Abstract

Goal Recognition Design involves identifying the best ways
to modify an underlying environment that agents operate in,
typically by making a subset of feasible actions infeasible, so
that agents are forced to reveal their goals as early as pos-
sible. Thus far, existing work has focused exclusively on
imperative classical planning. In this paper, we address the
same problem with a different paradigm, namely, declarative
approaches based on Answer Set Programming (ASP). Our
experimental results show that one of our ASP encodings is
more scalable and is significantly faster by up to three orders
of magnitude than the current state of the art.

Introduction
Goal recognition, a special form of plan recognition, deals
with online problems aiming at identifying the goal of an
agent as quickly as possible given its behavior (Geffner and
Bonet 2013; Ramı́rez and Geffner 2011). Goal recognition
is relevant in many applications including security (Jarvis,
Lunt, and Myers 2005), computer games (Kabanza et al.
2010), and natural language processing (Geib and Steedman
2007). For example, Fig. 1(a) shows an example gridworld
application, where the agent starts at cell E3 and can move
in any of the four cardinal directions. Its goal is one of three
possible ones G1, G2, and G3. The traditional approach has
been to find efficient algorithms that observe the trajectory
of the agent and predict its actual goal (Geffner and Bonet
2013; Ramı́rez and Geffner 2011).

Keren, Gal, and Karpas (2014) took an orthogonal ap-
proach by proposing to modify the underlying environment
in which the agents operate, typically by making a subset of
feasible actions infeasible, so that agents are forced to re-
veal their goals as early as possible. For example, under the
assumption that agents follow optimal plans to reach their
goal, by making the action that moves the agent from cells
E3 toD3 infeasible, the agent is forced to either move left to
E2, which would immediately reveal that its goal is G1, or
move right to E4, revealing that it is either G2 or G3. They
call this the Goal Recognition Design (GRD) problem. It is
relevant in many of the same applications that goal recogni-

∗Partially funded by DFG (550/9) and by NSF grant 1345232.
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

E

D

C

B

A

1 2 3 4 5

G1

(a)

E

D

C

B

A

1 2 3 4 5

G1

G2

G3

(b)

Figure 1: Example Problem
tion problems are relevant because, typically, the underlying
environment can be easily modified.

In Keren, Gal, and Karpas (2014)’s seminal paper, they in-
troduced the notion of worst-case distinctiveness (wcd), as a
goodness measure that assesses the ease of performing goal
recognition within an environment. The wcd of a problem
is the longest sequence of actions an agent can take without
revealing its goal. The objective in GRD is then to find a
subset of feasible actions to make infeasible such that the
resulting wcd is minimized.

Existing algorithms have been designed and devel-
oped exclusively using imperative programming techniques,
where the algorithms define a control flow, that is, a se-
quence of commands to be executed. The focus has been
on using state-of-the-art planners and pruning techniques
in computing and reducing the wcd. In this paper, we are
interested in investigating the benefits of using declarative
programming techniques to solve GRD problems. Specif-
ically, we propose to use Answer Set Programming (ASP)
(Niemelä 1999; Marek and Truszczyński 1999) as the gen-
eral framework for solving GRD problems.

This paper contributes to both areas of GRD and ASP.
Regarding GRD, we demonstrate that using ASP as the
general framework provides a number of benefits includ-
ing the ability to capitalize on (i) ASP’s manifold problem
solving techniques (e.g., formulating GRD as a minimiza-
tion/maximization problem that can be solved by saturation
techniques) and (ii) the highly optimized and effective ASP
solvers, which results in improved scalability. As regards
ASP, the paper shows—by solving GRD—that an appro-
priate use of the saturation-based encoding coupled with a
phase separation can be extremely effective in solving QBF
problems. Specifically, it demonstrates that many problem
solving techniques developed in ASP can be used directly to
outperform specialized imperative method in problems-of-

interest in other communities. Therefore, in this paper, we
make a first step of bridging the two areas of GRD and ASP.

Background
Classical Planning. A classical planning problem
(Geffner and Bonet 2013), often formulated in STRIPS
(Fikes and Nilsson 1971), is a tuple 〈F, s0,A,C,G〉, where
F is a set of fluents; s0 is the start state of the agent; A
is the set of actions; C : A → R defines the cost for
each action; and G is a set of goal states. Each action
a ∈ A = 〈pre(a), add(a), del(a)〉 is a triplet consisting
of the precondition, add, and delete lists, respectively, and
all are subsets of F. An action a is applicable in state s
if pre(a) ⊆ s. If action a is applied in state s, then it re-
sults in a new state s′ = (s \ del(a)) ∪ add(a). A plan
π = 〈a1, . . . , an〉 is a sequence of actions that brings an
agent from the starting state s0 to a goal state g ∈ G. The
cost of a plan C(π) =

∑
iC(ai) is the sum of the cost of

each individual action in the plan. The goal is typically to
find a cost-minimal plan π∗ = argminπC(π).

Goal Recognition Design (GRD). A GRD problem
(Keren, Gal, and Karpas 2014) is represented as a tuple
P=〈D,G〉, where D=〈F, s0,A,C〉 captures the domain
information and G is a set of possible goal states of the
agent. The elements in D are as in classical planning ex-
cept that every action’s cost is 1.

Definition 1 Given a GRD problem P . The worst case dis-
tinctiveness (wcd) of a problem P is the length of a longest
sequence of actions π = 〈a1, . . . , ak〉 that is the prefix in
cost-minimal plans π∗g1 and π∗g2 to distinct goals g1, g2 ∈ G.

Using our example problem of Figure 1(a), a longest se-
quence of actions that can lead to two distinct goals is
〈(E3, up), (D3, up), (C3, right), (C4, right)〉, where we
use pairs (s, a) to denote that action a is taken at cell s. This
sequence of actions can lead to either goals G2 or G3 and is
of length 4. Thus, the wcd of the problem is 4.

For a GRD problem P and a set of actions X ⊂ A,
let P 	 X be the problem P̂ = 〈D̂,G〉 where D̂ =
〈F, s0,A \ X,C〉. The objective in GRD problems is to
find a subset of actions Â∗ ⊂ A such that if they are re-
moved from the set of actions A, then the wcd of the re-
sulting problem P̂ is minimal. This optimization problem
is subject to the requirement that the cost of cost-minimal
plans to achieve each goal g ∈ G is the same before and
after removing the subset of actions.

In this paper, we investigate a variant of GRD problems,
where we limit the maximum number of actions to remove to
a user-defined parameter k. Thus, this variant is equivalent
to the original problem when k =∞.
Definition 2 Given a GRD problemP and an integer k. The
k-reduced GRD problem over P is to find a set of actions
Â∗, called a solution to P w.r.t. k, such that

Â∗ = argmin
Â⊂A

wcd(P 	 Â) subject to

C(π∗
g) = C(π̂∗

g) ∀g ∈ G

|Â∗| ≤ k

where π∗g is a cost-minimal plan to achieve goal g in the
original problem P , and π̂∗g is a cost-minimal plan to
achieve goal g in problem P 	 Â∗.

In our example problem, if k=3 then blocking the actions
(E3, up), (C4, right), (C5, up), where (s, a) denotes that
action a is blocked at cell s, reduces the wcd of the problem
to 2. Fig. 1(b) shows the actions blocked. Given that, there
are the following cases: (a) if the agent executes the action
(E3, left), we know that the agent’s goal is G1; (b) if the
agent executes the action (E3, right), then the goal is G2 or
G3; (c) if the agent continues with the action (E4, right),
its goal must be G3; (d) after the agent executes the se-
quence 〈(E3, right), (E4, up)〉, it must reveal its goal by
either (D4, right) or (D4, up). This implies that the longest
sequence of actions that can be executed by the agent before
it must reveal its goal is 〈(E3, right), (E4, up)〉, i.e., the
wcd of the resulting problem is 2.

To the best of our knowledge, the only algorithms to com-
pute or reduce the wcd of a problem are the ones introduced
by Keren, Gal, and Karpas (2014). They introduced two
algorithms, WCD-BFS and LATEST-SPLIT, to compute the
wcd of a problem. WCD-BFS uses breadth-first search (BFS)
to explore all combinations of paths and prunes subsets of
paths that are provably distinctive. LATEST-SPLIT compiles
the problem into a set of classical planning problems and
solves them using any classical planner.

They also introduced two algorithms, EXHAUSTIVE-
REDUCE and PRUNED-REDUCE, to reduce the wcd of a
problem. EXHAUSTIVE-REDUCE uses a variation of BFS
to exhaustively search the whole search space in the worst
case. PRUNED-REDUCE optimizes EXHAUSTIVE-REDUCE
by pruning some portions of the search space.

ASP and Multi-shot ASP. A logic program Π (Gelfond
and Lifschitz 1990) is a set of rules of the form

c1 | . . . | ck ← a1, . . . , am, not am+1, . . . , not an (1)

where 0≤m≤n, 0≤k, each ai or cj is a literal of a proposi-
tional language and not a represents a default negated literal
(or naf-literal) where a is a literal. When k = 0 (n = 0), (1)
is called a constraint (fact). Semantically, a program Π in-
duces a collection of so-called answer sets, which are distin-
guished models of Π determined by answer sets semantics;
see (Gelfond and Lifschitz 1990) for details.

To facilitate the use of ASP in practice, several exten-
sions have been developed. First of all, rules with vari-
ables are viewed as shorthands for the set of their ground
instances. Further language constructs include conditional
literals and cardinality constraints (Simons, Niemelä, and
Soininen 2002). The former are of form a : b1, . . . , bm,
the latter can be written as s {c1, . . . , cn} t where a and bi
are possibly default negated literals, and each cj is a condi-
tional literal; s and t provide a lower and upper bound on
the number of satisfied literals within the cardinality con-
straints. The practical value of both constructs becomes
more apparent when used in conjunction with variables. For
instance, a conditional literal of form a(X) : b(X) in a rule
body expands to the conjunction of all instances of a(X) for
which the corresponding instance of b(X) holds. Similarly,

2 {a(X) : b(X)} 4 is true, whenever more than one and less
than five instances of a(X) (subject to b(X)) are true. Simi-
larly, objective functions minimizing the sum of weights wj
of conditional literals are expressed as #minimize {w1 :
c1, . . . , wn : cn}.

Traditional ASP rests upon a single-shot approach to
problem solving, i.e., an ASP solver takes a logic program,
computes its answer sets, and exits. Unlike this, recently
developed multi-shot ASP solvers provide operative solving
processes for dealing with continuously changing logic pro-
grams. Such changes can be brought about by unfolding a
transition function, sensor data, or more elaborate external
data. For controlling such solving processes, the declara-
tive approach of ASP is combined with imperative means.
In clingo (Gebser et al. 2014), this is done by augment-
ing an ASP encoding with Python procedures controlling
ASP solving processes along with the corresponding evolv-
ing logic programs. The instrumentation includes methods
for adding/grounding rules, setting truth values of (external)
atoms, computing the answer sets of current program, etc.

Solution Approaches
We investigate alternative encodings of the GRD problem
in ASP. The first encoding utilizes meta-programming and
saturation techniques and the second one employs a hybrid
implementation made possible by multi-shot ASP. In what
follows, let P=〈D,G〉 where D=〈F, s0,A,C〉 be a GRD
problem and k be a positive integer.

A Saturation-based Meta Encoding. We employ the
method of encoding a planning problem by a set of facts
to encode D and G. Specifically, (i) F is encoded by a
set of atoms of the form fluent(f) for f ∈ F; (ii) A by
action(a) for a ∈ A; (iii) s0 by init(l) for l ∈ s0; (iv) each
g ∈ G by goal(g, l) for l as a conjunct in g; (v) pre(a) by a
set of atoms of the form exec(a, l); (vi) add(a) (del(a)) by
effect(a, f, id) (effect(a,¬f, id)) where id is a unique iden-
tifier associated with an effect of a; (vii) each condition of a
conditional effect by cond(a, l, id) for l as a conjunct in con-
dition for the effect of action a associated with id. We note
that our proposed encoding can deal with planning problems
in extended STRIPS syntax or action languages.

The saturation technique is an advanced guess and check
methodology used in disjunctive ASP to check whether all
possible guesses in a problem domain satisfy a certain prop-
erty (Eiter, Ianni, and Krennwallner 2009). It can be used
to encode ΣP2 -complete problems. A typical problem in
this class is the satisfiability problem for ∃∀-QBF. For in-
stance, in a typical encoding for satisfiability of a ∃∀-QBF
the guess part uses disjunction to generate all possible truth
values for the propositional atoms that are quantified by ∀
(∀-atoms) and the check part checks the satisfiability of the
formula for all valuations of the ∀-atoms (i.e., it checks
whether the resulting formula after applying choices made
for ∃-atoms is a tautology or not). To achieve this, the
fact that answer sets are minimal w.r.t. the atoms defined
by disjunctive rules is utilized. To this end, the saturation
part of the program derives (saturates) all atoms defined
in the guess part for generating the search space. How-

ever, the saturation technique puts syntactical restrictions
on the program parts by forbidding the use of saturated
atoms as naf-literals in a rule or as positive literals in an
integrity constraint (Eiter, Ianni, and Krennwallner 2009;
Leone, Rosati, and Scarcello 2001).

Let vl(x, y, c) denote that c is the common prefix of min-
imal cost plans of π∗x and π∗y . It is easy to see that the fol-
lowing ∃∀-QBF encodes the wcd definition

∃x, y, c[vl(x, y, c)∧[∀x′, y′, c′[vl(x′, y′, c′)→|c|≥|c′|]] (2)

where, for the sake of simplicity, we omit some details such
as x, y, x′, y′ ∈ G, and that c and c′ correspond to sequences
of actions that are the common prefix of cost-optimal plans
π∗x and π∗y , π∗x′ and π∗y′ , respectively.

To compute the wcd, we only need to encode the sat-
isfiability of formula (2). As in any ASP based encod-
ing for planning, we assume a finite horizon len and use
st(t) to represent time steps from 1 to len. For each fluent
f ∈ F, comp(f, f,¬f) encodes its complementary literals.
For convenience all fluent literals are encoded by lit(f) and
lit(¬f) for f ∈ F. The rules for the guess and check of
formula (2) are described next. In these rules, o(A,P, T)
denotes that action A occurs at step T in order to achieve
goal P .
Guess. The group of rules (6)–(14) choose valid values
for ∃-atoms in (2) while the rules in (3)–(5) block at most
k actions and specify actions (via pacts/1) that could be
used in creating plans. (6)–(8) correspond to the choice
of x 6= y in formula (2). (9) chooses among only un-
blocked actions (via pacts(A)) to create action occurrences.
(10)–(11) guarantee that the chosen actions satisfy the con-
ditions of goals x and y. h(P, F, T) denotes that fluent F
holds at step T while trying to achieve goal P . Thus, the
conditional literals in rule (10) state that all fluents occur-
ring as a positive literal in a corresponding goal must hold
(h(P, F, T) : goal(G,Pos), comp(F, Pos,Neg)) and sim-
ilarly all fluents occurring as a negative literal must not hold
(not h(P, F, T) : goal(G,Neg), comp(F, Pos,Neg)).
(12)–(14) compute the common prefix c using the same/1
and follow/1 predicates. same(T) states the same action
occurs at step T concerning the goals x and y and instances
of follow(1) . . . follow(n) in an answer set s.t. n ≤ len, rep-
resent the path followed by the agent from start to step n is
a non-distinctive path.

{blocked(A)} ← action(A). (3)
← k + 1{blocked(A)}. (4)
pacts(A)← action(A), not blocked(A). (5)
1{s(1, G) : goal(G,)}1← . (6)
1{s(2, G) : goal(G,)}1← . (7)
← s(1, G), s(2, G). (8)
{o(A,P, T) : pacts(A)}1← s(P,G), st(T). (9)
goalat(P, T)← s(P,G), st(T), (10)

not h(P, F, T) : goal(G,Neg), comp(F, Pos,Neg);

h(P, F, T) : goal(G,Pos), comp(F, Pos,Neg).

← s(P,), not goalat(P, len). (11)
same(T)← o(A, 1, T), o(A, 2, T). (12)
follow(1)← same(1). (13)
follow(T+1)← follow(T), same(T+1), len>T. (14)

In the guess part, we generate a search space for the ∀-
atoms. (15) guesses goals x′ and y′ using disjunction
as mentioned in the saturation technique. The usage of
as(P,G) is similar to that of s(P,G) (1p and 2p as values
of P refer to x′ and y′, respectively, and defined by facts
pos(1p) and pos(2p)). nas(P,G) represents that G is not
selected for P (x′ or y′). (16) guesses ao/3 to be used for
the computation of c′ as in the case of o/3.

as(P,G)|nas(P,G)←pos(P), goal(G,). (15)
ao(A,P, T)|nao(A,P, T)←pos(P), pacts(A), st(T). (16)

Check. The conditional in formula (2) states that either the
guessed values of x′, y′, and c′ are invalid or the length of
the common prefix c is greater than or equal to that of c′.
The predicates invalid and goal in the following check part
of the program represent the former and the latter condition,
respectively. For instance, the guess is invalid if for each x′
and y′ more than one goal is selected (rule (17)), no goal is
selected (18), or they refer to the same goal (19). Note that
we are constrained in the use of naf-literals for atoms defined
in the guess part or ones dependant on them. Rule (18), for
instance, uses a conditional literal instead of not as(P,) to
represent that it is invalid to select no goal for position P .
Regarding c′, (20) states that it is invalid if more than one
action occurs at any step and for any goal. Rules (21)–(22)
represent that if some goal condition of x′ and y′ does not
hold at the horizon (len), then the selected actions for c′ do
not achieve the related goal and the guess is invalid.

invalid← 2{as(P,G)}, pos(P). (17)
invalid← pos(P), nas(P,G) : goal(G,). (18)
invalid← as(1p,G), as(2p,G). (19)
invalid← 2{ao(A,P, T)}, pos(P), st(T). (20)
invalid← as(P,G), goal(G,Pos), (21)

comp(F, Pos,Neg), nh(P, F, len).

invalid← as(P,G), goal(G,Neg), (22)
comp(F, Pos,Neg), h(P, F, len).

Using meta-programming techniques, similar to (Gebser,
Kaminski, and Schaub 2011), we encode the action do-
main, in which we obey syntactive restrictions of saturation.
Rules (23)–(26) represent the initial state for the planning
problem. Related to the guesses x′, y′, and c′, the rules
(25)–(26) explicitly define conditions when a fluent does
not hold (by nh/3) since we cannot use naf-literals such as
not h(P, F, T) in this context.

h(P, F, 0)← s(P,), init(Pos), comp(F, Pos,Neg). (23)
h(P, F, 0)← pos(P), init(Pos), comp(F, Pos,Neg). (24)
nh(P, F, 0)← pos(P), init(Neg), comp(F, Pos,Neg). (25)
nh(P, F, 0)← pos(P), not init(Pos), not init(Neg), (26)

comp(F, Pos,Neg).

Next we represent the action preconditions by rules (27)–
(31). While representing the constraint that no action with
an unsatisfied precondition can occur in c (rules (27)–(28)),
we can use integrity constraint and naf-literal (since only ∃-
variables play a role). However, we have to use nh/3 to
represent non-executability of an action in c′ (rules (29) and
(30)) and generate invalid to eliminate such situations in
(31). The action effects are represented by rules (32)–(35).
In these rules, c(P,L, T) denotes that literal L is caused at

step T for achieving a goal depending on the value of P (x
and y are handled by rule (32), x′ and y′ by rule (33)). Sim-
ilar to the use of conditional literals in rule (10), the ones in
rules (32) and (33) check whether all conditions of an effect
hold in case it is a conditional effect when deriving a c/3
atom. Rules (34) and (35) define the positive and negative
effects.
← o(A,P, T), exec(A,Pos), comp(F, Pos,Neg), (27)

not h(P, F, T).

← o(A,P, T), exec(A,Neg), comp(F, Pos,Neg), (28)
h(P, F, T).

nposs(P,A, T)← pos(P), st(T), exec(A,Pos), (29)
comp(F, Pos,Neg), nh(P, F, T − 1).

nposs(P,A, T)← pos(P), st(T), exec(A,Neg), (30)
comp(F, Pos,Neg), h(P, F, T − 1).

invalid← ao(A,P, T), nposs(P,A, T). (31)
c(P,L, T)← o(A,P, T), effect(A,L, I), (32)
h(P, F, T − 1) : cond(A,Pos, I), comp(F, Pos,Neg);

not h(P, F, T − 1) : cond(A,Neg, I), comp(F, Pos,Neg).

c(P,L, T)← ao(A,P, T), effect(A,L, I), (33)
h(P, F, T − 1) : cond(A,Pos, I), comp(F, Pos,Neg);

nh(P, F, T − 1) : cond(A,Neg, I), comp(F, Pos,Neg).

h(P, F, T)← c(P, Pos, T), comp(F, Pos,Neg). (34)
nh(P, F, T)← pos(P), c(P,Ne, T), comp(F, Po,Ne). (35)

The law of inertia can be neatly represented in ASP by the
use of negation-as-failure. Rule (40) represents it for the flu-
ents related to the ∃-part of the problem. It basically states
that a fluent keeps holding unless its complement is caused
(not c(P,Neg, T)). Inertia for fluents related to the ∀-part
of the problem, however, needs a more labourious represen-
tation due to restrictions of the saturation technique. Rules
(41) and (42) represent it for positive and negative cases (a
fluent holds h/3 and does not hold nh/3) using the nc/3
predicate, which is the dual of c/3 and states that a fluent
literal is not caused at a time point. There are two cases to
derive a nc atom w.r.t. a fluent literal and a time point. One
case is that at this time point there are no occurrances of
actions having this fluent literal as an effect (rule (36)). The
other case is that an action having this literal as a conditional
effect occurs at this time point but a condition of the effect
fails to hold. (cf. (37)–(39)).
nc(P,L, T)← pos(P), st(T), lit(L), (36)

nao(A,P, T) : effect(A,L, I), pacts(A).

fail(P,A,L, I, T)← ao(A,P, T), effect(A,L, I), (37)
cond(A,Pos, I), comp(F, Pos,Neg), nh(P, F, T − 1).

fail(P,A,L, I, T)← ao(A,P, T), effect(A,L, I), (38)
cond(A,Neg, I), comp(F, Pos,Neg), h(P, F, T − 1).

nc(P,L, T)← ao(A,P, T), lit(L), (39)
fail(P,A,L, I, T) : effect(A,L, I).

h(P, F, T)← h(P, F, T − 1), not c(P,Neg, T), st(T), (40)
comp(F, Pos,Neg), s(P,).

h(P, F, T)← h(P, F, T − 1), nc(P,Neg, T), st(T), (41)
comp(F, Pos,Neg), pos(P).

nh(P, F, T)← nh(P, F, T − 1), nc(P, Pos, T), st(T), (42)
comp(F, Pos,Neg), pos(P).

We have already encoded conditions for the predicate
invalid. Now, we define the condition |c| ≥ |c′| with the
goal predicate. Rule (43) defines nafollow(T) that rep-
resents the occurrence of different actions at step T con-
cerning the goals x′ and y′. Rule (44) propagates nafollow
till the horizon len once the path becomes distinctive. The
predicate geq(T) states that |cT | ≥ |c′T | holds where cT
or c′T denotes the common prefixes considering only the
paths formed by selected actions from start to step T for se-
lected goals x, y and x′, y′, respectively. This is achieved by
propagating geq(T − 1) to the next step whenever the path
concerning x′ and y′ is already distinctive (nafollow(T)
holds, rule (46)) or the path concerning x and y is still non-
distinctive (follow(T) holds, rule (47)). Hence, |c| ≥ |c′|
holds when geq(len) holds (rule (48)).

nafollow(T)← ao(A,P, T), nao(A,P1, T), P 6= P1. (43)
nafollow(T + 1)← nafollow(T), len > T. (44)
geq(0)← . (45)
geq(T)← geq(T − 1),nafollow(T). (46)
geq(T)← geq(T − 1), follow(T). (47)
goal← geq(len). (48)

The satisfiability of the QBF in (2) is represented by rules
(49) and (50). With constraint (51), we force sat to be in ev-
ery answer set, i.e., the QBF should be satisfied. Addition-
ally, the saturation part (52)–(55) forces all atoms defined
in the guess part to be true in the case sat is true.

sat← invalid. (49)
sat← goal. (50)
← not sat. (51)
as(P,G)← sat, pos(P), goal(G,). (52)
nas(P,G)← sat, pos(P), goal(G,). (53)
ao(A,P, T)← sat, pos(P), pacts(A), st(T). (54)
nao(A,P, T)← sat, pos(P), pacts(A), st(T). (55)

In an answer set, instances of follow give us the wcd value
of the problem for the selected blocked actions using the
saturation technique. We can use optimization statements of
clingo to minimize the wcd to solve the GRD problem (56).

#minimize{1@2, T : follow(T)}. (56)

Note that by canceling out rule (4) and adding a sec-
ond level optimization statement #minimize{1@1, A :
blocked(A)} to minimize the number of blocked actions, we
can solve a more general version of the problem that does
not consider the fixed parameter k.

Up to now, we have not mentioned how we represent the
common prefixes c and c′ consider only cost-optimal plans
of the selected goals and the condition C(π∗g) = C(π̂∗g) for
each goal g ∈ G, i.e., preserving optimal costs of achieving
goals. This can also be encoded using the saturation tech-
nique in the same way we calculate the wcd (we omitted this
part from the encoding due to space constraints). First, we
choose a plan π using only unblocked actions for each goal
as an abstract ∃-atom. In the guess part, we guess another
plan π′ considering all actions as an abstract ∀-atom. The
check part checks the condition |π| ≤ |π′| for valid guesses
to guarantee that π is an optimal plan. Additionally, since
π′ considers all actions (blocked or unblocked), we can be

sure that optimal costs of achieving goals do not change af-
ter blocking. Moreover, the computation in this part can be
independently solved as an initial phase for improving the
runtime performance. The 2-phase encoding used in the ex-
periments actually does this by first running a basic planning
encoding to find actions used in all cost-optimal plans for
each goal using the capacity of clingo for computing brave
consequences of a logic program efficiently by linear num-
ber of calls to the solver (Gebser et al. 2007).

Let ΠE be the whole saturation based meta encoding in-
cluding rules (3)–(56).

Proposition 1 Given a GRD problem P and an integer k
where ΠP is the instance file for P . Assuming len limits
the maximal length of plans to all the goals in P . P has
a solution of the set Â⊂A of blocked actions s.t. |Â|≤k
and w = wcd(P 	 Â) is minimized iff Π = ΠE ∪ ΠP has
an asnwer set M s.t. Â = {a | blocked(a) ∈ M} and
w = |{follow(i) | 1 ≤ i ≤ t, follow(i) ∈M}|.
It is worthwhile to note that the saturation based encoding
of the GRD problem actually follows a general methodol-
ogy of solving minmax/maxmin optimization problems us-
ing disjunctive ASP. The GRD problem is a minmax op-
timization problem since the wcd represents the maximum
non-distinctive path and the outer optimization minimizes it
by blocking actions. As a methodology, we solved the inner
optimization using saturation technique and let the branch-
and-bound style optimization of the solver clingo handle the
outer optimization. To the best of our knowledge, this is the
first comprehensive ASP encoding solving minmax/maxmin
optimization problems, which appear in interesting applica-
tion areas. The elaborated research on this methodology and
applying it to other areas are among our future work.

A Multi-Shot ASP Encoding. Let P = 〈D,G〉 be a
GRD problem, where D = 〈F, s0,A,C〉, and k be a pos-
itive integer denoting the maximal number of actions that
can be blocked for reducing the wcd of P . Furthermore,
let max be an integer that denotes the maximal length of
plans in P . We present a multi-shot ASP program Π(P)
for computing (i) wcd(P); and (ii) a solution of P wrt. k.
Specifically, Π(P) implements Alg. 1 in multi-shot ASP
and consists of a logic program π(P) and a Python program
GRD(〈D,G〉, k,max) (or GRD(.)).

Lines 3–6 of Alg. 1 compute the optimal cost plan for
each g ∈ G. If some goal has no plan of length at most
max then GRD(.) returns unsolvable. Otherwise, the op-
timal cost is used as the bound for π(P) (Line 8). wcd(P)
is computed by computing an answer set of π(P) with len
equal to the maximal cost of all goals with the optimization
module (Lines 7–11). Line 12 identifies the set of actions
that can potentially change the wcd of the problem. Lines
14–17 implement a simple exhaustive search to identify a
set of at most k actions that reduce wcd(P). GRD(.) con-
trols the computation of wcd(P) and a solution of P wrt.
a given k assuming that the maximal length of plans to all
goals in G is at most max by (i) setting the bound of plan
cost (max, Line 3–6), (ii) setting the parameter len of π(P)
(Line 8), and (iii) adding the optimization or blocking action

(a) k = 1 (b) k = 2

Domain wcd Runtime (s) wcd Runtime (s)
Instances reduction PR SAT-1 SAT-2 MS reduction PR SAT-1 SAT-2 MS

G
R

ID
-

N
A

V
IG

A
T

IO
N 5-14 9→ 9 12 26 1 1 9→ 8 50 811 2 12

19-10 17→ 17 12 18 1 1 17→ 17 12 488 1 18
20-9 39→ 39 23 406 3 3 39→ 39 23 2,980 3 74

16-11 4→ 4 11 12 1 1 4→ 3 24 147 1 8
16-11 4→ 4 12 10 1 1 4→ 3 24 63 1 5

IP
C

–
G

R
ID

+

5-5-5 4→ 3 14 9 1 1 4→ 3 33 62 1 5
5-10-10 11→ 11 194 475 14 11 11→ 11 194 10,092 14 362
10-5-5 12→ 10 46 36 2 1 12→ 10 92 1,022 2 36

10-10-10 19→ 19 2,661 1,257 33 30 19→ 19 2,665 timeout 33 2,208

B
L

O
C

K
-

W
O

R
D

S

8-20 10→ 10 946 timeout 64 48 10→ 10 3,927 timeout 178 938
8-20 14→ 14 809 timeout 121 71 14→ 14 3,482 timeout 218 1,015

L
O

G
IS

T
IC

S 1-2-6-2-2-6 18→ 18 3,506 timeout 151 228 18→ 18 3,527 timeout 155 639
1-2-6-2-2-6 18→ 18 2,499 timeout 135 140 18→ 18 2,496 timeout 137 483
2-2-6-2-2-6 17→ 17 3,173 timeout 352 756 17→ 17 timeout timeout 594 1,943
2-2-6-2-4-6 17→ 17 timeout timeout 5,377 1,943 17→ 7 timeout timeout 6,752 6,065
2-2-6-2-6-6 16→ 16 timeout timeout 5,166 timeout 16→ 16 timeout timeout 5,215 timeout

Table 1: Experimental Results

Algorithm 1 GRD(〈D,G〉, k,max)

1: Input: a GRD problem P=〈D,G〉 & integers k,max.
2: Output: wcd(P), and a solution R of P w.r.t. k and

wcd(P	R) or unsolvable if some goal is not achievable.
3: for each goal g in G do
4: compute the minimal length of plan for g
5: if plan of length i ≤ max exists then set mg = i
6: else return unsolvable
7: let π1=π∗(P)∪{min goal(g,mg), activate(g)|g∈G}
8: set len = max{mg | g ∈ G} in π1
9: add the optimization module of π(P) to π1

10: compute an answer set Y of π1
11: let wcd(P) = d where wcd(d) ∈ Y
12: compute a set S of actions that can potentially change

wcd(P) when they are removed
13: set w = wcd(P) and R = ∅
14: for each set X of at most k actions in S do
15: let π2 = π1 ∪ {blocked(a) | a ∈ X}∪ the blocking

module of π(P)
16: compute an answer set Z of π2
17: if wcd(d′) ∈ Z & d′ < w then set w=d′ and R=X
18: return 〈wcd(P), w,R〉
module to the ASP object whose answer sets are computed
using clingo. (π∗(P) is the planning module of π(P), see
below).
π(P) encodes the computation of plans for goals in G,

the computation of the longest prefix among plans for the
goals, and the removal of actions. Each g ∈ G is associated
with a trajectory t, an integer between 1 and |G|. π(P) also
uses max as GRD(.). For communication between π(P)
and GRD(.), π(P) declares the following external atoms:

#external activate(T) : traj(T). (57)
#external min goal(T,L) : traj(T), step(L). (58)
#external blocked(A) : action(A). (59)

activate(t) (resp. min goal(t, l)) denotes the active goal
(resp. the optimal cost for reaching the tth goal) and
blocked(a) denotes that the action a is blocked.
π(P) consists of the following modules:

• Planning: A program encoding the domain information
D of P and the rules for generating optimal plan for each
g ∈ G. This module is similar to the standard encoding
in ASP planning (Lifschitz 2002) with an extension to al-
low for the generation of multiple plans for multiple goals
(i.e., o(a, t, s) is used to denote that action a occurs at step
s on trajectory t). To save space, we do not include the set
of rules for this module here.

• Optimization: A set of rules for determining the longest
prefix between two plans of two goals gI and gJ on trajec-
tories I 6= J given a set of plans for the goals in G. It also
contains the optimization statement for selecting answer
sets containing wcd(P).

p wcd(0). (60)
prefix (A, I, J, 1)← I 6= J, o(A, I, 1), o(A, J, 1).

prefix (A, I, J, S+1)← I 6= J, prefix (A, I, J, S), (61)
o(A, I, S + 1), o(A, J, S + 1).

p wcd(D)← prefix (, , , D). (62)
wcd(D)← D = #max {D : p wcd(D)}. (63)

#maximize {D : wcd(D)}. (64)

• Blocking: A set of rules that interact with the Python pro-
gram to block actions from the original problem.

← occ(A, T, S), blocked(A). (65)

Properties of the Multi-Shot Encoding. The correct-
ness of GRD(.) follows from the fact that π(.) is correct
and that the rules (60)-(64) guarantee that only answer sets
containing an atom of the form wcd(d) with d being the wcd
of the problem are considered. Let P be a GRD problem
and Π(P) be its multi-shot ASP encoding. We can show:

Proposition 2 If GRD(P, k,max) returns (i) unsolvable
then some goal in P is not achievable; (ii) 〈d,w,R〉 then
d=wcd(P), R is a solution of P wrt. k, and w=wcd(P	R).

The next property of π(P) is used in Lines 16 &18 of Alg. 1.

Proposition 3 Let S be an answer set of π1 with len =
max{mg | g ∈ G} and X ⊆ A such that |X| ≤ k. If
X∩{a | ∃ o(a, t, s) ∈ S} = ∅ then wcd(P 	X) = wcd(P).

Proposition 3 implies that (a) every blocked action (Line 12,
Alg. 1) should belong to some answer set of π1; and (b) if π1
has an answer set Y s.t. X (Line 14) does not contain some
action that occurs in Y then X should not be considered.

Experimental Results
We evaluated our ASP-based algorithms (labeled SAT-1 and
SAT-2 for our 1- and 2-phase saturation-based encoding,
respectively, and MS for our multi-shot encoding) against
an implementation of the existing PRUNE-REDUCE (labeled
PR) algorithm provided by the authors. We also used the
same four benchmark domains that they have made publicly
available:1 (1) GRID-NAVIGATION, where each instance is
defined by the x- and y-dimensions; (2) IPC-GRID+, where
each instance is defined by the x- and y-dimensions and the
number of locks/keys; (3) BLOCKWORDS, where each in-
stance is defined by the number of blocks and words/goals;
and (4) LOGISTICS, where each instance is defined by the
number of airplanes, airports, locations, cities, trucks, and
packages. We set k={1, 2} as suggested in the benchmarks,
conducted our experiments on a 3.60GHz CPU machine
with 8GB of RAM, and set a timeout of 5 hours.

Table 1 tabulates the results. In general, SAT-2 performs
best in terms of efficiency and scalability, followed by MS,
PR, and SAT-1. The reason SAT-1 performs poorly is that it
computes optimal plan lengths for each goal (and uses these
in the wcd calculations) in one solver call. All these indepen-
dent subproblems hinder the performance of the solver when
combined with the main wcd computation. In contrast, SAT-
2 separates and solves the independent subproblems, which
explains its better performance.

MS and PR compute the wcd of the initial problem and
then systematically search for a set of actions to block in or-
der to minimize the wcd. Their systematic nature means that
the number of calls to the ASP solver (for MS) or the clas-
sical planner (for PR) is proportional to the size of possible
combinations of blocked actions. In large instances, such as
logistics instances, this number can be in the millions. Thus,
SAT-2 is better than MS and PR. MS is slightly better than
PR because it is able to reduce the number of possible com-
binations that needs to be considered in the second phase.

Conclusions
In this paper, we investigate declarative approaches, specifi-
cally ASP-based algorithms, to solve GRD problems. Our
ASP-based algorithms outperform PRUNE-REDUCE, the
current state-of-the-art imperative GRD solver, on common
GRD benchmarks, thereby contributing to both the GRD

1
http://technion.ac.il/˜sarahn/final-benchmarks-icaps-2014/.

community, by extending the state-of-the-art GRD solver,
as well as the ASP community, by increasing the applicabil-
ity of ASP to other areas. This paper thus makes the first
step of bridging the two areas of GRD and ASP in an effort
towards better cross-fertilization of both areas.

References
Eiter, T.; Ianni, G.; and Krennwallner, T. 2009. Answer
set programming: A primer. In Reasoning Web. Semantic
Technologies for Inf. Systems, LNCS 5689, 40–110.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artif. Intell. 2(3/4):189–208.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub,
T. 2007. Conflict-driven answer set enumeration. In LP-
NMR’07 , LNAI 4483, 136–148.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2014. Clingo = ASP + control: Preliminary report. In
ICLP’14. http://arxiv.org/abs/1405.3694v1.
Gebser, M.; Kaminski, R.; and Schaub, T. 2011. Com-
plex optimization in answer set programming. TPLP 11(4-
5):821–839.
Geffner, H., and Bonet, B. 2013. A Concise Introduction
to Models and Methods for Automated Planning. Morgan &
Claypool Publishers.
Geib, C. W., and Steedman, M. 2007. On natural language
processing and plan recognition. In IJCAI, 1612–1617.
Gelfond, M., and Lifschitz, V. 1990. Logic programs with
classical negation. In ICLP, 579–597.
Jarvis, P.; Lunt, T. F.; and Myers, K. L. 2005. Identifying
terrorist activity with AI plan recognition technology. AI
Magazine 26(3):73–81.
Kabanza, F.; Bellefeuille, P.; Bisson, F.; Benaskeur, A. R.;
and Irandoust, H. 2010. Opponent behaviour recognition
for real-time strategy games. In AAAI Workshop PAIR.
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal recognition
design. In ICAPS.
Leone, N.; Rosati, R.; and Scarcello, F. 2001. Enhancing
answer set planning. In IJCAI Workshop PUII.
Lifschitz, V. 2002. Answer set programming and plan gen-
eration. Artificial Intelligence 138(1–2):39–54.
Marek, V., and Truszczyński, M. 1999. Stable models and
an alternative logic programming paradigm. In The Logic
Programming Paradigm: a 25-year Perspective, 375–398.
Niemelä, I. 1999. Logic programming with stable model
semantics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence 25(3,4):241–273.
Ramı́rez, M., and Geffner, H. 2011. Goal recognition over
pomdps: Inferring the intention of a POMDP agent. In IJ-
CAI , 2009–2014.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extend-
ing and implementing the stable model semantics. Artificial
Intelligence 138(1-2):181–234.

