
On Exploiting Hitting Sets for Model Reconciliation

Stylianos Loukas Vasileiou,1 Alessandro Previti, 2 William Yeoh 1

1 Washington University in St. Louis
2 Ericsson Research

{v.stylianos, wyeoh}@wustl.edu, alessandro.previti@ericsson.com

Abstract

In human-aware planning, a planning agent may need to pro-
vide an explanation to a human user on why its plan is opti-
mal. A popular approach to do this is called model reconcili-
ation, where the agent tries to reconcile the differences in its
model and the human’s model such that the plan is also opti-
mal in the human’s model. In this paper, we present a logic-
based framework for model reconciliation that extends be-
yond the realm of planning. More specifically, given a knowl-
edge base KB1 entailing a formula ϕ and a second knowl-
edge base KB2 not entailing it, model reconciliation seeks
an explanation, in the form of a cardinality-minimal subset of
KB1, whose integration into KB2 makes the entailment pos-
sible. Our approach, based on ideas originating in the context
of analysis of inconsistencies, exploits the existing hitting set
duality between minimal correction sets (MCSes) and mini-
mal unsatisfiable sets (MUSes) in order to identify an appro-
priate explanation. However, differently from those works tar-
geting inconsistent formulas, which assume a single knowl-
edge base, MCSes and MUSes are computed over two distinct
knowledge bases. We conclude our paper with an empirical
evaluation of the newly introduced approach on planning in-
stances, where we show how it outperforms an existing state-
of-the-art solver, and generic non-planning instances from re-
cent SAT competitions, for which no other solver exists.

Introduction
With increasing proliferation and integration of AI systems
in our daily life, there is a surge of interest in explainable
AI, which includes the development of AI systems whose
actions can be easily understood by humans. Driven by
this goal, machine learning (ML) researchers have begun
to classify commonly used ML algorithms according to dif-
ferent dimensions of explainability (Guidotti et al. 2018);
improved the explainability of existing ML algorithms (Al-
varez Melis and Jaakkola 2018; Petkovic et al. 2018); as
well as proposed new ML algorithms that trade off accuracy
for increasing explainability (Dong et al. 2017; Gilpin et al.
2018).

In contrast, researchers in the automated planning com-
munity have mostly taken a complementary approach. While
there is some work on adapting planning algorithms to find

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

easily explainable plans1 (i.e., plans that are easily under-
stood and accepted by a human user) (Zhang et al. 2017),
most work has focused on the explanation generation prob-
lem (i.e., the problem of identifying explanations of plans
found by planning agents that when presented to users,
will allow them to understand and accept the proposed
plan) (Kambhampati 1990; Langley 2016). Within this con-
text, there is a popular theme that has recently emerged
called model reconciliation (Chakraborti et al. 2017). Re-
searchers in this area have looked at how an agent can ex-
plain its decisions to a human user who might have a dif-
ferent understanding of the same planning problem. These
explanations bring the human’s model closer to the agent’s
model by transferring the minimum number of updates from
the agent’s model to the human’s model. However, a com-
mon thread across most of these works is that they, not sur-
prisingly, employ mostly automated planning approaches.

In this paper, we approach the model reconciliation prob-
lem from a different perspective – one based on knowledge
representation and reasoning (KR). We propose a novel gen-
eral logic-based framework for model reconciliation, where
given a knowledge base KBa (of an agent) that entails a
formula ϕ and a knowledge base KBh (of a human user)
that does not entail ϕ, the goal is to identify a subset of
KBa such that when it used to update KBh, then KBh
entails ϕ. More specifically, we present a novel algorithm
that exploits the hitting set duality of minimal correction sets
(MCSes) and minimal unsatisfiable sets (MUSes) for com-
puting minimum explanations with respect to two knowl-
edge bases. MUSes and MCSes have also been studied by
Reiter (1987) under the name of conflicts and diagnoses,
respectively. de Kleer, Mackworth, and Reiter (1992) have
related MUSes (conflicts) and MCSes (diagnoses) to prime
implicates and prime implicants. Further, we implement the
proposed algorithm in propositional logic and evaluate its
performance against the current state-of-the-art (Chakraborti
et al. 2017) on classical planning problems as well as present
results on some general instances from recent SAT compe-
titions. Although presented in the context of propositional
logic, the algorithm can be applied to any type of constraint
system for which the satisfiability of subsets can be decided.
Our empirical results demonstrate that our approach signif-

1Also called explicable plans in the planning literature.

icantly outperforms the current state of the art when the
explanations are long or when the difference between the
agent’s and human’s models is large, and that it is efficient
and feasible for problems beyond planning.

Preliminaries
Classical Planning
A classical planning problem is a tuple Π := 〈D, I,G〉,
which consists of the domain D = 〈F,A〉 – where F is a
finite set of fluents representing the world states (s ∈ F) and
A a set of actions – and the initial and goal states I,G ⊆
F . An action a is a tuple 〈prea, eff±a 〉, where prea are the
preconditions of a – conditions that must hold for the action
to be applied; and eff±a are the addition (+) and deletion
(−) effects of a – conditions that must hold after the action
is applied. The solution to a planning problem Π is a plan
π = 〈a1, . . . , an〉 such that δΠ(I, π) = G, where δΠ(·) is
the transition function of problem Π. The cost of a plan π is
given by C(π,Π) = |π|. Finally, a cost-minimal plan π∗ =
argminπ∈{π′|δΠ(I,π′)=G} C(π,Π) is called the optimal plan.

Explainable AI Planning
Explainable AI Planning (XAIP), as introduced by
Chakraborti, Sreedharan, and Kambhampati (2019), couples
the model of the human user and the planning agent’s own
model into its deliberative process. Therefore, when there
exist differences between those two models such that the
agent’s optimal plan diverges from the user’s expectations,
the agent attempts a model reconciliation process. In this
process, the agent provides an explanation that can be used
to update the user’s model such that the agent’s plan is also
optimal in the updated user’s model.

More formally, a Model Reconciliation Problem
(MRP) (Chakraborti et al. 2017) is defined by the tuple
Ψ = 〈ϕ, π〉, where ϕ = 〈Ma,Ma

h 〉 is a tuple of the agent’s
model Ma = 〈Da, Ia, Ga〉 and the agent’s approximation
of the user’s model Ma

h = 〈Da
h, I

a
h , G

a
h〉, and π is the

optimal plan in Ma. A solution to an MRP is an explanation
ε such that when it is used to update the user’s model Ma

h to
M̂a,ε
h , the plan π is optimal in both the agent’s model Ma

and the updated user’s model M̂a,ε
h . The goal is to find a

shortest explanation.

Propositional Logic
In this section, we provide the basic definitions used
throughout the paper. Additional standard definitions are as-
sumed (Biere et al. 2009). Although the new algorithm can
be applied to any constraint system for which the satisfia-
bility of constraint subsets can be checked, the focus of this
paper is on propositional logic.

A formula in conjunctive normal form (CNF) is a con-
junction of clauses, where each clause is a disjunction of
literals. A literal is either a Boolean variable or its negation.
For convenience, and when it is clear from the context, we
might refer to formulas as sets of clauses and clauses as sets
for literals. An interpretation I : V → {0, 1} is a mapping
from the set of variables V to {0, 1}. A formula is satisfiable

if there exists an interpretation that satisfies it. A satisfying
interpretation is referred to as a model. A formula is unsatis-
fiable or inconsistent when no model exists. In what follows,
we assume the knowledge base KB and all the formulas are
always expressed in CNF. This is not a restrictive require-
ment, since any propositional formula can be transformed
into a CNF. Moreover, unless stated otherwise, KB will be
assumed to be consistent.
Definition 1 (Entailment). A formula ϕ is logically entailed
by KB, denoted by KB � ϕ, if every model of KB is also
a model of ϕ. KB � ϕ iff KB ∧ ¬ϕ is unsatisfiable.
Definition 2 (Minimal Unsatisfiable Set (MUS)). Given an
inconsistent KB, a subset M ⊆ KB is an MUS if M is
unsatisfiable and ∀M′ ⊂M,M′ is satisfiable.

By definition, every unsatisfiable KB contains at least
one MUS.
Definition 3 (Minimal Correction Set (MCS)). Given an in-
consistent KB, a subset C of KB is an MCS if KB \ C is
satisfiable and ∀C′ ⊂ C we have that KB \ C′ is unsatisfi-
able.
Definition 4. A set of clauses P is a partial MUS of an in-
consistent KB if it exists at least one MUS M ⊆ KB such
that P ⊆M .

Partial MUSes appear when in a inconsistent KB a subset
of clauses is set as hard. MUSes and MCSes are related by
the concept of minimal hitting set.
Definition 5 (Hitting Set). Given a collection Γ of sets from
a universe U , a hitting set for Γ is a set H ⊆ U such that
∀S ∈ Γ, H ∩ S 6= ∅.

A hitting set is minimal if none of its subsets is a hitting
set. The relationship between MUSes and MCSes is dis-
cussed by Liffiton and Sakallah (2008) and Liffiton et al.
(2016) and it was firstly presented by Reiter (1987), where
MUSes and MCSes are referred to as (minimal) conflicts
and diagnoses, respectively.
Proposition 1. A subsetM (C) of an inconsistent KB is an
MUS (MCS) iff it is a minimal hitting set of the collection of
all MCSes (MUSes) of KB.

It follows from the above proposition that a cardinality
minimal MUS (MCS) is a minimal hitting set. Cardinal-
ity minimal MUS are referred to as SMUS, whereas a car-
dinality minimal MCS corresponds to the complement of a
MaxSAT solution (Li and Manya 2009). We also refer to a
cardinality minimal set as a minimum or smallest set.
Lemma 1. Given a subset H of all the MCSes of KB, a
hitting set is an SMUS if:

1. It is a minimum hitting set h ofH, and
2. The subformula induced by h is inconsistent.
See the work by Ignatiev et al. (2015) for a proof. Proposi-
tion 1 and Lemma 1 naturally extend to the case of partial
MUS. Note that when some clauses are set as hard in an in-
consistent knowledge base, the set of all MCSes is a subset
of the one where all the clauses in the knowledge base are
set as soft. In this case, every minimal hitting set on the set
of all MCSes is a partial MUS.

Definition 6 (Support). Given aKB s.t.KB � ϕ, a support
for ϕ is a subset ε ⊆ KB such that ε � ϕ and ∀ε′ ⊂ ε we
have ε′ 2 ϕ.

In what follows, given a formula F , we will write F ∗ with
∗ ∈ {s, h} to denote a set of clauses that will be treated as
soft and hard, respectively. Intuitively, the hard clauses are
those clauses that will not be removed by the minimization
procedure.

MUSes and supports are related by the following:

Proposition 2. A consistent set of clauses ε is a support of
ϕ (ε � ϕ) iff ε is a partial MUS of ε ∧ ¬ϕ.

In what follows, we provide a definition of a logic-based
model reconciliation problem (Vasileiou, Yeoh, and Son
2019):

Definition 7 (Model Reconciliation). Given two knowledge
bases KBa and KBh of the agent providing an explanation
and the human receiving the explanation, respectively, such
that KBa � ϕ and KBh 2 ϕ, the goal of model recon-
ciliation is to find a support2 ε ⊆ KBa ∧ KBh such that
KBh ∧ ε � ϕ.

We refer to the set of clauses ε\KBh as the update of the
knowledge base KBh. In this paper, we focus on the more
specific task of computing a support ε such that ε \KBh is
an update of minimum size.

Definition 8 (Partial Support). A subset εp is a partial sup-
port if there exists at least one support ε such that εp ⊆ ε.
Given a formula ε ∧ ¬ϕ, εp is thus a subset of the partial
MUS ε. An update is a partial support.

Encoding Classical Planning Problems as SAT: A clas-
sical planning problem can be encoded as a SAT prob-
lem (Kautz and Selman 1992; Kautz, McAllester, and Sel-
man 1996). The basic idea is the following: Given a planning
problem P , find a solution for P of length n by creating a
propositional formula that represents the initial state, goal
state, and the action dynamics for n time steps. This is re-
ferred to as the bounded planning problem (P, n), and we
define the formula for (P, n) such that: Any model of the
formula represents a solution to (P, n) and if (P, n) has a
solution, then the formula is satisfiable.

We encode (P, n) as a formula ϕ involving one variable
for each action a ∈ A at each timestep 0 ≤ i < n and one
variable for each fluent f ∈ F at each timestep 0 ≤ i ≤ n.
We denote the variable representing action a in timestep i
using subscript ai, and similarly for facts. The formula ϕ
is constructed such that 〈a0, a1, . . . , an−1〉 is a solution for
(P, n) if and only if ϕ can be satisfied in a way that makes
the fluents a0, a1, . . . , an−1 true. Finally, we can extract a
plan by finding a model that satisfies ϕ (i.e., for all time steps
0 ≤ i < n, there will be exactly one action a such that ai =
True). This could be easily done by using a satisfiability al-
gorithm, such as the well-known DPLL algorithm (Davis
et al. 1962).

2Note that we use the term “support” to mean “explanation” in
the traditional sense in this context.

Algorithm 1: Basic algorithm for computing the
smallest support (one KB)

Input: KB,ϕ
Result: A minimum size support ε

1 H ← ∅
2 while true do

// Compute a minimum hitting set
3 seed← minHS(H)
4 ε← {ci | i ∈ seed}
5 if not SAT (ε ∧ ¬ϕ) then

// minimum size support
6 return ε
7 else
8 C ← getMCS(seed,KBs ∧ ¬ϕh)

9 H ← H∪ {C}

Computing Explanations
Ignatiev et al. (2015) introduced an algorithm for comput-
ing a smallest MUS of an inconsistent knowledge base KB.
Building on that approach, we introduce a new algorithm
that computes a smallest support ε for a formula ϕ that needs
to be explained. The idea is to reduce the problem of com-
puting a support of minimum size to the one of computing
an SMUS over an inconsistent formula. Notice that by defi-
nition, we have that KB � ϕ iff KB ∧ ¬ϕ is unsatisfiable.
Moreover, in Proposition 2, we have already stated the rela-
tion between a support and an MUS. This suggests that, in
order to extract a support, we just need to run an MUS solver
over the formula KBsh ∧ ¬ϕh,3 and then remove ¬ϕ from
the returned MUS. The duality relating MUSes and MCSes
is a key aspect for the computation of an SMUS. In the next
section, we will show how this duality can be exploited for
the task of model reconciliation. We first start by reporting
the algorithm for computing a smallest support for the case
of a single knowledge base, and then we will illustrate how
this approach can be revised for the case of two knowledge
bases. Algorithm 1 is based on the algorithm for comput-
ing a smallest MUS originally presented by Ignatiev et al.
(2015).H is a collection of sets, where each set corresponds
to an MCS on KB. At the beginning, it is initialized with
the empty set (line 1). Each MCS in H is represented as the
set of the indexes of the clauses in it. H stores the MCSes
computed so far. At each step, a minimum hitting set on H
is computed (line 3). On line 4, the formula induced by the
computed minimum hitting set is stored in ε. Then, the for-
mula ε ∧ ¬ϕ is tested for satisfiability (line 5). If ε ∧ ¬ϕ is
unsatisfiable, then ε is a support of minimum size. The algo-
rithm return ε and the procedure ends. If instead ε ∧ ¬ϕ is
satisfiable, then it means that ε 2 ϕ and the algorithm con-
tinues at line 8. The computation of an MCS of this kind can
be performed via standard MCS procedures (Marques-Silva

3Recall that KBs
h denote that the clauses in the human’s KBh

are treated as soft while ϕh denote that the clauses in the formula
ϕ that needs to be explained are treated as hard. Soft clauses may
be removed by the MUS solver while hard clauses will not.

Algorithm 2: Model Reconciliation Algorithm
Input: KBa,KBh, ϕ
Result: An explanation ε such that ε \KBh is of minimum size

1 R ← ∅
2 KBha ← KBa ∩KBh // hard clauses
3 KBsa ← KBa \KBha // soft clauses
4 if not SAT (KBh ∧KBa) then
5 C ← getMCS((KBh \KBa)s ∧KBha)
6 KBh = KBh \ C
7 while true do
8 seed← minHS(R)
9 εp ← {ci | i ∈ seed} // A partial support εp induced by the seed

10 if not SAT (KBh ∧ εp ∧ ¬ϕ) then
11 ε← getMUS(KBsh ∧ εhp ∧ ¬ϕh) \ ¬ϕ
12 return ε
13 else
14 C ← getMCS(seed,KBhh ∧KBsa ∧ ¬ϕh)
15 R ← R∪ {C}

et al. 2013), using the set of clauses indexed by the seed as
the starting formula to extend. Since the clauses in ϕ are set
to hard (line 8), the returned MCS C is guaranteed to be con-
tained in KB. Due to the hitting set duality relation, we will
also have ε ⊆ KB. Notice that the procedure getMCS al-
ways reports a new MCS because, by construction, we have
seed ⊆ KB\C. In fact, the seed contains at least one clause
for each previously computed MCS and thus seed ∩ C = ∅
(i.e., at least one clause for each previously computed MCS
is not in C).

Model Reconciliation
In the previous section, we presented an approach for the
computation of the smallest support for the case of a sin-
gle knowledge base. Here, we show how this method can
be further extended for the case of two knowledge bases, a
task that we defined as model reconciliation. In what fol-
lows, we assume that one is the knowledge base of an agent
KBa and the other is the one of a human KBh. The task
we are targeting is to find a support ε ⊆ KBa ∧KBh such
that KBh ∧ ε � ϕ and ε \ KBh is of minimum size. R
is the formula we use to store the MCSes, which acts as a
mediator between KBa and KBh. Intuitively, the idea is to
compute MCSes over KBa, add them to R, and then test
the minimum hitting sets over KBh.

Algorithm 2 summarizes the main steps of this new ap-
proach. At the beginning of the algorithm, R is empty
(line 1). Lines 2 and 3 are used to specify which clauses
of KBa will be treated as hard and soft, respectively. We
then check if KBh ∧ KBa is inconsistent (line 4). This is
important in order to avoid the possibility of finding subsets
ε that explains why KBh ∧KBa is inconsistent instead of
the target support. In case KBh ∧KBa is inconsistent, we
preprocess KBh by removing from KBh \KBa a minimal
set of clauses causing the conflict (i.e., an MCS) (lines 5-6).
The reconciliation procedure starts on line 7. The algorithm

proceeds iteratively by computing a minimum hitting set on
R and then testing for satisfiability the induced subformula
εp. εp is an under approximation of the final partial support.
The test checks whether updating KBh with εp is sufficient
for entailing ϕ. If the formula KBh ∧ εp ∧ ¬ϕ is unsatis-
fiable, then an MUS containing a subset of KBh, εp, and
¬ϕ is returned, and the set of clauses ¬ϕ is removed from
it. The result, from Proposition 2, is an ε = M ∧ εp, with
M ⊆ KBh, such that ε � ϕ. Otherwise, the algorithm con-
tinues on line 14, where a new MCS is computed and added
to R. The algorithm is complete in the sense that eventu-
ally a support ε such that ε \KBh is of minimum size will
be returned. This can be easily verified by observing that
every timeKBh∧εp∧¬ϕ is satisfiable, a new MCS is com-
puted. Eventually, all the MCSes will be computed and, from
Propositions 1 and 2, it follows that a minimum hitting set
on the collection of all MCSes corresponds to the smallest
update. Deciding whether there exists a support of size less
or equal to k is Σp2-complete and extracting a smallest sup-
port is in FPΣp

2 . This follows directly from the complexity
of deciding and computing an SMUS on which Algorithm 2
is based (Ignatiev et al. 2015).

Finally, notice that in some settings (e.g., planning), de-
sired supports are required to be a subset of KBa. In this
case, KBh is replaced with KBha on line 10, KBsh is re-
placed with KBha on line 11, and KBhh is replaced with
KBha on line 14. Notice that, in this setting, the updated
KBh ∧ ε might be inconsistent. However, in our approach,
this case is naturally resolved by the preprocessing step at
line 6. In some settings, the update ε \ KBh is expected to
be a subset of a support ε′ � ϕ s.t. ε′ ⊆ KBa. In this case
the MCS returned at line 14 should be further shrinked in
order to be an MCS of the sole KBsa ∧ ¬ϕh. Table 1 shows
an example trace of Algorithm 2.

KBa =
C1

(a ∨ b) ∧
C2

(¬b ∨ c) ∧¬ C3
c ∧

C4

(¬b ∨ d) ∧¬
C5

d
}

We have that KBa � a and KBh 2 a
KBh =

D1¬c ∧
D2

f

1 R ← ∅
2 KBha ← KBa ∩KBh = {C3}
3 KBsa ← KBa \KBha = {C1, C2, C4, C5}
4 seed← ∅ # minHS(R)
5 ¬c ∧ f ∧ ∅ 2 a # SAT (KBh ∧ εp ∧ ¬ϕ)
6 C ← {C2, C4} # MCS computed on KBh ∧KBsa ∧ ¬a starting with the seed seed
7 R ← {{C2, C4}}
8 seed← {C2} # minHS(R)
9 ¬c ∧ f ∧ (¬b ∨ c) 2 a # SAT (KBh ∧ εp ∧ ¬ϕ)
10 C ← {C1} # MCS computed on KBh ∧KBsa ∧ ¬a starting with the seed seed
11 R ← {{C2, C4}, {C1}}
12 seed← {C1, C2} # minHS(R)
13 ¬c ∧ f ∧ (¬b ∨ c) ∧ (a ∨ b) � a # SAT (KBh ∧ εp ∧ ¬ϕ)
14 Return {C1, C2, D1} # MUS computed on D1 ∧D2 ∧ C1 ∧ C2 ∧ ¬a \ ¬a

Table 1: Example of Algorithm 2

Experimental Evaluations
We now present our experimental evaluation of Algorithm 2
for computing explanations on classical planning problems
from the International Planning Competition as well as on
some general problems from the SAT competition.4

Setup and Prototype Implementation: We ran our exper-
iments on a MacBook Pro machine comprising of an In-
tel Core i7 2.6GHz processor with 16GB of memory. The
time limit was set to 1500s. Our implementation of Algo-
rithm 2 is written in Python and integrates calls to SAT, MC-
S/MUS, and minimal hitting set oracles through the PySAT
toolkit (Ignatiev, Morgado, and Marques-Silva 2018).

Classical Planning Instances
Explanations in Planning: Following the MRP literature
(Chakraborti et al. 2017), we focus on the problem of ex-
plaining the optimality of a plan to a human user. Recall that,
in classical planning problems with uniform action costs, a
plan π∗ is optimal if no shorter plan exists. Couched in terms
of propositional logic, we say that a plan π∗ of length n is
optimal if, given a knowledge base KB encoding the spe-
cific planning problem, no shorter plan exists in all models
of KB. Particularly, π∗ is optimal with respect to a knowl-
edge baseKB, ifKB �

∧n−1
t=0 ¬gt, where gt is the fact cor-

responding to the goal of the planning problem at time step
t. However, in order to show that a plan π∗ is optimal, we
would first need to show that π∗ is a feasible plan (i.e., the
plan is sound and can be executed to achieve the goal). More
specifically, we say that a plan π∗ is feasible with respect to
a knowledge base KB if π∗ and gn are true in at least one
model ofKB, where gn is the fact corresponding to the goal
of the planning problem at the final time step n. Therefore,
when combined with the fact that no plan of lengths 1 to
n− 1 exists, then that plan π∗ must be an optimal plan.

Note that Algorithm 2 proposed in the previous section is
agnostic to the underlying planning domain. However, it can

4The code repository is: https://github.com/vstylianos/aaai21.

be used to find explanations for MRP in explainable plan-
ning as follows: For checking if a plan is feasible, we im-
pose the literals in π∗ and gn as assumptions in the SAT
solver, and check if a model that satisfies them exists. If
not, we add the missing actions as part of the explanation
to KBh. Finally, to find an explanation for the optimality of
the plan, we use ϕ =

∧n−1
t=0 ¬gt as the query and run Algo-

rithm 2 with the changes to lines 10, 11, and 14 as described
in the last paragraph in the “Model Reconciliation” subsec-
tion. Then, the algorithm will return the smallest explanation
that explains that the plan π∗ is both feasible and optimal.
Experimental Scenarios: We used the actual IPC instances
as the model of the agent (i.e.,KBa) and tweaked that model
by randomly removing parts (preconditions and effects) of
the action model, and assigned it to be the model of the hu-
man user (i.e., KBh). We used our own implementation of
the encoding by Kautz, McAllester, and Selman (1996) as
the SAT encoding of the knowledge bases. We further make
two important assumptions: (1) First, we assume that KBa
has the correct and complete encoding of the planning prob-
lem and only KBh can contain errors or omissions. (2) We
assume that π∗ is a feasible plan with respect to KBa and
that KBa �

∧n−1
t=0 ¬gt. These assumptions are reasonable,

especially when viewed from the perspective of the explain-
ing agent, where explanations are based on the view (or
model) of the specific problem (Miller 2018).

We empirically evaluated Algorithm 2, referred to as
ALG2, to find minimum explanations against the current
planning-based state-of-the-art algorithm by Chakraborti
et al. (2017), referred to as CSZK, which runs an A* search
algorithm over the explanation search space and prioritizes
actions that are in the plan being explained before others.5
We consider eight different ways to tweak the user’s model,
resulting in the following eight scenarios:
• Scenario 1: We removed one random precondition from

5We used the implementation of the authors, which is publicly
available at: https://github.com/TathagataChakraborti/mmp.

Prob. Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8
|ε| CSZK ALG2 |ε| CSZK ALG2 |ε| CSZK ALG2 |ε| CSZK ALG2 |ε| CSZK ALG2 |ε| ALG2 |ε| ALG2 |ε| ALG2

B
L

O
C

K
S
-

W
O

R
L

D
1 2 0.6 0.05s 1 0.2s 0.05s 4 12.0s 0.1s 8 t/o 0.2s 5 129.5s 0.2s 2 0.05s 6 0.3s 10 0.5s
2 1 0.4s 0.2s 1 0.2s 0.2s 4 4.5s 1.2s 6 t/o 14.5s 5 158.0s 108.0s 4 0.2s 4 10.0s 11 118.0
3 3 1.5s 0.5s 3 0.5s 0.3s 6 11.0s 1.0s 7 t/o 4.5s 8 256.0s 5.0s 1 0.1s 9 5.0s 12 10.5s
4 2 1.0s 4.0s 2 0.2s 1.0s 5 9.5s 125.0s 6 t/o 136.5s 7 273.5s 145.0s 12 0.5s 8 150.0s – t/o

L
O

G
-

IS
T

IC
S 1 2 1.0s 0.3s 1 0.2s 0.5s 4 47.0s 0.5s 6 t/o 0.5s 5 255.0s 0.2s 3 0.1s 7 0.5s 8 1.0s

2 2 1.0s 1.0s 2 0.2s 0.8s 2 1.0s 0.6s 5 t/o 1.0s 6 276.0s 0.3s 4 0.1s 6 0.4s 7 1.0s
3 2 2.5s 0.5s 3 1.0s 0.5s 3 5.5s 1.0s 6 t/o 1.5s 6 271.0s 0.2s 6 0.2s 6 0.2s 6 1.0s
4 4 18.0s 1.0s 2 0.5s 0.5s 6 117.0s 2.0s 7 t/o 2.5s 7 283.0s 0.5s 7 0.5s 7 0.5s 7 1.0s

R
O

V
E

R 1 1 1.0s 0.2s 2 0.5s 0.5s 4 125.0s 0.8s 7 t/o 1.0s 7 300.0s 2.0s 3 0.5s 8 2.5s 8 3.0s
2 3 1.0s 0.5s 1 0.5s 0.5s 2 1.0s 0.5s 7 t/o 2.0s 6 311.0s 3.0s 5 0.5s 8 4.0s 9 4.0s
3 1 0.5s 0.5s 2 1.0s 0.5s 3 55.0s 1.0s 6 t/o 3.0s 6 330.0s 5.5s 6 0.5s 7 6.0s 8 6.0s
4 1 0.5s 0.5s 3 3.0s 1.0s 6 141.0s 3.5s 8 t/o 4.0s 7 356.0s 5.0s 8 0.5s 8 5.0s 8 5.0s

Table 2: PDDL Problem Instances

Prob. Scenario 9 Scenario 10 Scenario 11 Scenario 12
|ε| ALG2 |ε| ALG2 |ε| ALG2 |ε| ALG2

S
A

T
G

R
ID

1 76 3.0s 152 5.0s 231 7.0s 298 8.5s
2 15 0.2s 17 0.2s 19 0.3s 20 0.4s
3 177 28.0s 354 35.0s 531 56.0s 708 92.0s

B
N

R
A

T
IO 1 14 0.2s 17 0.2s 19 0.3s 22 0.5s

2 55 1.0s 58 2.0s 59 2.0s 75 6.0s
3 13 6.0s 26 18.0s 42 47.0s 51 83.0s

A
C

E 1 13 2.5s 20 12.0s 34 46.0s 45 130.0s
2 3 1.5s 6 9.0s 14 55.0s 16 118.0s
3 6 8.5s 6 37.0s 6 131.0s 8 356.0s

B
M

C 1 18 2.0s 46 12.0s 69 57.0s 95 193.0s
2 6 8.0s 12 43.0s 22 398.0s – t/o
3 9 15.0s 9 45.0s 20 192.0s – t/o

Table 3: SAT Competition Problem Instances

every action in the user’s model.
• Scenario 2: We removed one random effect from every

action in the user’s model.
• Scenario 3: We removed one random precondition and

one random effect from every action in the user’s model.
• Scenario 4: We removed multiple random preconditions

and effects from every action in the user’s model.
• Scenario 5: We removed all preconditions from every ac-

tion in the user’s model.
• Scenario 6: We removed multiple random predicates

from the initial state in the user’s model.
• Scenario 7: We removed all effects from every action in

the user’s model.
• Scenario 8: We removed all actions in the user’s model.

Table 2 tabulates the cardinality of the explanations |ε| as
well as the runtimes of CSZK and ALG2. We did not report
runtimes of CSZK for Scenario 6 as the available implemen-
tation was not designed to handle that scenario. We also omit
the runtimes of CSZK for Scenarios 7 and 8 as the imple-
mentation contained errors on those instances that we were
not able to repair, even though it theoretically could handle
such scenarios. In general, ALG2 is faster than CSZK in the
majority of scenarios and domains; their runtimes for most
problems in Scenarios 1 and 2 are similar, but ALG2 is faster
than CSZK in Scenarios 3 to 5 by up to two orders of mag-
nitude. In general, the runtime of both algorithms increases
as the difference between the models of the agent and user
increases since both algorithms search over the explanation

search space, which increases as the number of differences
between the two models increases. However, ALG2 is faster
because it is able to use highly-optimized solvers to find
MCSes, MUSes, and hitting sets.

General Instances
In order to test the generality and robustness of our pro-
posed approach, we conducted experiments on a number
of problem instances taken from recent SAT competitions.
Similarly to the planning experiments, we used the actual
instances as the model of the agent (i.e, KBa), and tweaked
that model and assigned it to be the model of the user
(i.e., KBh). The query that we used for each instance was
a conjunction of backbone literals,6 which we computed us-
ing the minibones algorithm proposed by Janota, Lynce, and
Marques-Silva (2015).

We consider four different ways to tweak the user’s
model, resulting in the following four scenarios:
• Scenario 9: We randomly removed 10% of the clauses

and removed 20% of literals from 10% of the total clauses
in the user’s model.

• Scenario 10: We randomly removed 20% of the clauses
and removed 20% of literals from 20% of the total clauses
in the user’s model.

• Scenario 11: We randomly removed 30% of the clauses
and removed 20% of literals from 30% of the total clauses
in the user’s model.

• Scenario 12: We randomly removed 40% of the clauses
and removed 20% of literals from 40% of the total clauses
in the user’s model.
Table 3 presents the results, where we report the explana-

tion cardinality |ε| and runtimes of ALG2. We did not com-
pare with any other system since, to the best of our knowl-
edge, no such system exists. In general, ALG2, given the set
time limit, managed to compute an explanation for all in-
stances. In general, the runtimes of ALG2 increase as the
size of the knowledge bases and |ε| increase.

Moreover, similar to classical planning, we observe that
the runtimes of ALG2 increase as the difference between the
two models increase (i.e., from Scenario 9 to Scenario 12).

6The backbone literals of a propositional KB are the set of
literals entailed by the KB.

Related Work and Discussions
Our work sits in the intersection of knowledge representa-
tion and planning – our techniques are inspired by findings
from the knowledge representation community, especially
on MCS, MUS, and their duality; and our application prob-
lem of model reconciliation was introduced by the planning
community in the context of explainable planning. There-
fore, we will situate our work in the context of these two
communities and relate to existing work in those two areas.

Related Work from Knowledge Representation: The def-
inition of the logic-based MRP we are tackling in this pa-
per (see Definition 7) has been introduced in a previous
work (Vasileiou, Yeoh, and Son 2019). Building on those
theoretical foundations, in this paper, we consider the de-
velopment of an efficient algorithm for computing minimal
explanations, which further extends the logic-based MRP to
account for knowledge bases that may become inconsistent
after receiving an explanation.

The algorithm presented in this paper is inspired by a pro-
cedure for computing an SMUS of an inconsistent formula,
originally presented by Ignatiev et al. (2015). The method
is also related to other similar approaches for enumerat-
ing MUSes and MCSes. Moreover, our approach is simi-
lar in spirit to the HS-tree presented by Reiter (1987). Al-
though the original purpose was to enumerate diagnoses, Re-
iter’s procedure can be easily adapted to enumerate MUSes
(called conflicts in that paper) as already noted by Previti
and Marques-Silva (2013). However, the computation of an
SMUS might require more substantial modifications. Proce-
dures like the one presented by Reiter, which target MCSes
(diagnoses) instead of MUSes (conflicts), can be seen as the
dual version of our algorithm. In particular, the algorithm
MaxHS (Davies and Bacchus 2011) applies the same idea
of iteratively computing and testing a minimum hitting set
for the computation of a MaxSAT solution (the complement
of the smallest MCSes).

On a different note, the notion of supports or explana-
tions proposed in this paper and how they are used to up-
date the knowledge base of the human might appear simi-
lar to the notion of belief revision (Gärdenfors et al. 1995).
However, there are some subtle differences. Belief revision
usually refers to a single agent revising its belief after re-
ceiving a new piece of information that is in conflict with
its current beliefs. As such, there is a temporal dimension
in belief revision and a requirement that it should maintain
as much as possible the belief of the agent, per AGM pos-
tulates (Alchourrón and Makinson 1985; Gärdenfors 1986).
On the other hand, our notion of explanation is done with
respect to two knowledge bases and there is no such require-
ment on maintaining as much as possible the belief of the
human. Instead, our requirement is on minimizing the size
of the explanation. Additionally, our notion of explanation
might appear similar to the notion of a diagnosis (e.g., (Re-
iter 1987)). Diagnosis focuses on identifying the reason for
the inconsistency of a theory (i.e.,KB) whereas an explana-
tion aims at identifying the support for a formula. The dif-
ference lies in that a diagnosis is made with respect to the
same theory (i.e., KBa) while explanation is sought for the

second theory (i.e., KBh). For a further exposition on the
relationship between our approach and previous works we
refer the reader to (Vasileiou, Yeoh, and Son 2020).

Related Work from Planning: Our work was motivated by
the work of Chakraborti et al. (2017), who introduced the
model reconciliation problem that we are tackling in this pa-
per. Hence, both approached share similarities, such as the
types of explanations that can be found. For instance, the
cardinality-minimal support in Definition 5 is equivalent to
minimally complete explanations (MCEs) (the shortest ex-
planation). Our objective of finding a minimal explanation
(actually, support) can be viewed as similar to the minimally
monotonic explanations (MMEs) (the shortest explanation
such that no further model updates invalidate it). Similarly,
model patch explanations (MPEs) (includes all the model
updates) are trivial explanations and are equivalent to our
definition thatKBa itself serves as an explanation forKBh.
Nonetheless, we would like to point out a fundamental dif-
ference between the two approaches: Our approach is based
on KR (i.e., propositional logic in this paper), while theirs
is based on automated planning and heuristic search tech-
niques. Additionally, the explanation space search in our ap-
proach is done in the grounded representation of the plan-
ning domain, whereas theirs in the lifted representation. As
a consequence, our approach can structurally isolate the rea-
sons for a particular behavior. For example, an explanation
from our approach could explain why a state (frame axioms)
or an action (action dynamics) was true (or not) at a particu-
lar time step during the execution of the plan.

Conclusions and Future Work
In this paper, we presented a new logic-based approach that
exploits the notion of hitting sets for model reconciliation
problems. The approach builds on top of previous tech-
niques for computing SMUSes and it shares with them the
advantage of being constraint agnostic. Experiments showed
that our algorithm outperforms state-of-the-art alternatives
in the context of planning and it is able to solve represen-
tative SAT instances. Due to its logic-based nature, the ap-
proach has the additional advantage of being able to deal
with problems coming from different settings, as far as the
problem can be encoded into a constraint system. Here, we
showed a propositional encoding for the planning case.

The algorithm we presented returns a smallest explanation
ε such that when it is used to update the model of the user
to KBh, the updated model KBh ∧ ε entails a formula ϕ
that needs to be explained. However, other kind of preferred
explanations could be considered by defining a cost func-
tion over them. Future research will investigate alternative
preferred explanations. This should be possible by simply
applying weights to the elements in R and return a hitting
set that minimizes the cost. Another line of research is to in-
clude all the optimization techniques that have already been
successfully applied for the extraction of an SMUS and con-
sider the possibility of approximate solutions. Finally, we
also plan to evaluate our approach with other encodings for
other problems (e.g., SMT encodings for hybrid planning
problems (Cashmore et al. 2016)).

Acknowledgments
This research is partially supported by NSF grant 1812619.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the sponsoring organizations, agencies, or the U.S. govern-
ment.

References
Alchourrón, C. E.; and Makinson, D. 1985. On the logic of
theory change: Safe contraction. Studia logica 44(4): 405–
422.
Alvarez Melis, D.; and Jaakkola, T. 2018. Towards ro-
bust interpretability with self-explaining neural networks. In
NeurIPS, 7775–7784.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2009. Handbook of Satisfiability.
Cashmore, M.; Fox, M.; Long, D.; and Magazzeni, D. 2016.
A Compilation of the Full PDDL+ Language into SMT. In
ICAPS, 79–87.
Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2019.
Balancing Explicability and Explanations in Human-Aware
Planning. In IJCAI, 1335–1343.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan Explanations as Model Reconciliation:
Moving Beyond Explanation as Soliloquy. In IJCAI, 156–
163.
Davies, J.; and Bacchus, F. 2011. Solving MAXSAT by
Solving a Sequence of Simpler SAT Instances. In CP, 225–
239.
Davis, M.; Logemann, G.; Donald; and Loveland. 1962. A
Machine Program for Theorem Proving. Communications
of the ACM 5(7): 394–397.
de Kleer, J.; Mackworth, A. K.; and Reiter, R. 1992. Charac-
terizing Diagnoses and Systems. Artificial Intelligence 56(2-
3): 197–222.
Dong, Y.; Su, H.; Zhu, J.; and Zhang, B. 2017. Improving
interpretability of deep neural networks with semantic infor-
mation. In CVPR, 4306–4314.
Gärdenfors, P. 1986. Belief revisions and the Ramsey test
for conditionals. The Philosophical Review 95(1): 81–93.
Gärdenfors, P.; Rott, H.; Gabbay, D.; Hogger, C.; and Robin-
son, J. 1995. Belief Revision. Computational Complexity
63(6).
Gilpin, L. H.; Bau, D.; Yuan, B. Z.; Bajwa, A.; Specter, M.;
and Kagal, L. 2018. Explaining Explanations: An Overview
of Interpretability of Machine Learning. In DSAA, 80–89.
Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Gian-
notti, F.; and Pedreschi, D. 2018. A Survey of Methods
for Explaining Black Box Models. ACM Computing Survey
51(5): 1–42.
Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2018.
PySAT: A Python Toolkit for Prototyping with SAT Oracles.
In SAT, 428–437.

Ignatiev, A.; Previti, A.; Liffiton, M. H.; and Marques-Silva,
J. 2015. Smallest MUS Extraction with Minimal Hitting Set
Dualization. In CP, 173–182.
Janota, M.; Lynce, I.; and Marques-Silva, J. 2015. Algo-
rithms for computing backbones of propositional formulae.
AI Communications 28(2): 161–177.
Kambhampati, S. 1990. A classification of plan modification
strategies based on coverage and information requirements.
AAAI Spring Symposium Series .
Kautz, H.; McAllester, D.; and Selman, B. 1996. Encoding
plans in propositional logic. In KR, 374–384.
Kautz, H.; and Selman, B. 1992. Planning as Satisfiability.
In ECAI, 359–363.
Langley, P. 2016. Explainable agency in human-robot inter-
action. AAAI Fall Symposium Series .
Li, C. M.; and Manya, F. 2009. MaxSAT, Hard and Soft
Constraints. Handbook of Satisfiability 185: 613–631.
Liffiton, M. H.; Previti, A.; Malik, A.; and Marques-Silva, J.
2016. Fast, flexible MUS enumeration. Constraints 21(2):
223–250.
Liffiton, M. H.; and Sakallah, K. A. 2008. Algorithms
for computing minimal unsatisfiable subsets of constraints.
Journal of Automated Reasoning 40(1): 1–33.
Marques-Silva, J.; Heras, F.; Janota, M.; Previti, A.; and
Belov, A. 2013. On Computing Minimal Correction Sub-
sets. In IJCAI, 615–622.
Miller, T. 2018. Explanation in artificial intelligence: In-
sights from the social sciences. Artificial Intelligence 267:
1–38.
Petkovic, D.; Altman, R.; Wong, M.; and Vigil, A. 2018.
Improving the explainability of random forest classifier–user
centered approach. Pacific Symposium on Biocomputing 23:
204–215.
Previti, A.; and Marques-Silva, J. 2013. Partial MUS Enu-
meration. In AAAI, 818–825.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artificial Intelligence 32(1): 57–95.
Vasileiou, S. L.; Yeoh, W.; and Son, T. C. 2019. A Prelimi-
nary Logic-based Approach for Explanation Generation. In
ICAPS Workshop on XAIP, 132–140.
Vasileiou, S. L.; Yeoh, W.; and Son, T. C. 2020. On the Rela-
tionship Between KR Approaches for Explainable Planning.
In ICAPS Workshop on XAIP.
Zhang, Y.; Sreedharan, S.; Kulkarni, A.; Chakraborti, T.;
Zhuo, H. H.; and Kambhampati, S. 2017. Plan explicability
and predictability for robot task planning. In ICRA, 1313–
1320.

