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ABSTRACT
Current approaches that model dynamism in DCOPs solve a se-
quence of static problems, reacting to changes in the environment
as the agents observe them. Such approaches thus ignore possi-
ble predictions on future changes. To overcome this limitation, we
introduce Proactive Dynamic DCOPs (PD-DCOPs), a novel for-
malism to model dynamic DCOPs in the presence of exogenous
uncertainty. In contrast to reactive approaches, PD-DCOPs are able
to explicitly model the possible changes to the problem, and take
such information into account proactively, when solving the dy-
namically changing problem. The additional expressivity of this
formalism allows it to model a wider variety of distributed opti-
mization problems. Our work presents both theoretical and prac-
tical contributions that advance current dynamic DCOP models:
(i) we introduce the PD-DCOP model, which explicitly captures
dynamic changes of the DCOP over time; (ii) we discuss the com-
plexity of this new class of DCOPs; and (iii) we develop both exact
and approximation algorithms with quality guarantees to solve PD-
DCOPs proactively.
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1. INTRODUCTION
Distributed Constraint Optimization Problems (DCOPs) are prob-
lems where agents need to coordinate their value assignments to
maximize the sum of the resulting constraint utilities [17, 34].
DCOPs have emerged as one of the prominent multi-agent archi-
tectures to govern the agents’ autonomous behavior in distributed
optimization problems. The model represents a powerful approach
to the description and solution of many practical problems, serving
several applications such as distributed scheduling, coordination of
unmanned air vehicles, smart grid electricity networks, and sensor
networks [15, 11, 28, 32, 13, 16, 3, 7, 36]. In many distributed
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problems of interest, agents interact in complex, uncertain, and dy-
namic environments. For example, in distributed meeting schedul-
ing, participants could change their preferences and priorities over
time. In disaster management, new information (e.g., weather fore-
casts, priorities on buildings to evacuate) typically becomes avail-
able in an incremental manner. Thus, the information flow modi-
fies the environment over time. Unfortunately, the classical DCOP
paradigm is unable to model problems that change over time.

Consequently, researchers have introduced Dynamic DCOPs (D-
DCOPs) [23, 24, 12, 33], where utility functions can change dur-
ing the problem solving process. These models make the common
assumption that information on how the problem might change is
unavailable. As such, existing approaches react to the changes in
the problem and solve the current problem at hand. However, in
several applications, the information on how the problem might
change is indeed available, or predictable, within some degree of
uncertainty. We provide one such example, a distributed meeting
scheduling problem, as our motivating example in Section 3.

Therefore, in this paper, (i) we introduce Proactive Dynamic
DCOPs (PD-DCOPs), which explicitly model how the DCOP will
change over time; (ii) we discuss the complexity of this new class of
DCOPs; and (iii) we develop exact and approximation algorithms
with quality guarantees to solve PD-DCOPs proactively.

2. BACKGROUND
We now provide background on the regular and dynamic DCOPs
as well as the regular and super-stabilizing DPOP algorithms.

2.1 DCOPs
A Distributed Constraint Optimization Problem (DCOP) is a tuple
〈A,X,D,F, α〉, where A = {ai}pi=1 is a set of agents; X =
{xi}ni=1 is a set of decision variables; D = {Dx}x∈X is a set of
finite domains and each variable x ∈ X takes values from the set
Dx ∈ D; F = {fi}mi=1 is a set of utility functions, each defined
over a set of decision variables: fi :

∏
x∈xfi Dx → R+ ∪ {⊥},

where xfi ⊆ X is scope of fi and ⊥ is a special element used to
denote that a given combination of values for the variables in xfi

is not allowed; and α : X → A is a function that associates each
decision variable to one agent.

A solution σ is a value assignment for a set xσ ⊆ X of vari-
ables that is consistent with their respective domains. The util-
ity F(σ) =

∑
f∈F,xf⊆xσ

f(σ) is the sum of the utilities across
all the applicable utility functions in σ. A solution σ is complete
if xσ = X. The goal is to find an optimal complete solution
x∗ = argmaxx F(x).

Given a DCOP P , G = (X, E) is the constraint graph of P ,
where {x, y} ∈ E iff ∃fi ∈ F such that {x, y} = xfi . A DFS



pseudo-tree arrangement for G is a spanning tree T = 〈X, ET 〉 of
G such that if fi ∈F and {x, y}⊆xfi , then x and y appear in the
same branch of T . We use N(ai) = {aj ∈ A | {xi, xj} ∈ E} to
denote the neighbors of agent ai.

2.2 Dynamic DCOP
A Dynamic DCOP (D-DCOP) is defined as a sequence of DCOPs
with changes between them, without an explicit model for how the
DCOP will change over time. Solving a D-DCOP optimally means
finding a utility-maximal solution for each DCOP in the sequence.
Therefore, this approach is reactive since it does not consider fu-
ture changes. Its advantage is that solving a D-DCOP is no harder
than solving h DCOPs, where h is the horizon of the problem. Re-
searchers have used this approach to solve D-DCOPs, where they
introduce search- and inference-based approaches that are able to
reuse information from previous DCOPs to speed up the search
for the solution for the current DCOP [23, 33]. Alternatively, a
proactive approach predicts future changes in the D-DCOP and
finds robust solutions that require little or no changes despite fu-
ture changes.

Researchers have also proposed other models for D-DCOPs in-
cluding a model where agents have deadlines to choose their val-
ues [24], a model where agents can have imperfect knowledge
about their environment [12], and a model where changes in the
constraint graph depends on the value assignments of agents [36].

2.3 DPOP and S-DPOP
The Distributed Pseudo-tree Optimization Procedure (DPOP) [22]
is a complete inference algorithm composed of three phases:
• Pseudo-tree Generation: The agents build a pseudo-tree [8].
• UTIL Propagation: Each agent, starting from the leafs of the

pseudo-tree, computes the optimal sum of utilities in its subtree
for each value combination of variables in its separator.1 It does
so by adding the utilities of its functions with the variables in its
separator and the utilities in the UTIL messages received from
its children agents, and projecting out its own variables by opti-
mizing over them.
• VALUE Propagation: Each agent, starting from the pseudo-tree

root, determines the optimal value for its variables. The root
agent does so by choosing the values of its variables from its
UTIL computations.
Super-stabilizing DPOP (S-DPOP) [23] is a self-stabilizing ex-

tension of DPOP, where the agents restart the DPOP phases when
they detect changes in the problem. S-DPOP makes use of infor-
mation that is not affected by the changes in the problem.

3. MOTIVATING DOMAIN
We now introduce a distributed dynamic meeting scheduling prob-
lem, which will serve as a representative domain to motivate our
work. In a distributed meeting scheduling problem [15], a set of M
weekly meetings need to be scheduled between members of an or-
ganization (e.g., employees of a company; students, faculty mem-
bers, and staff of a university), taking restrictions in their availabil-
ity as well as their time and location preferences into account. For
a meetingm ∈M, Am is the set of attendees to the meeting, sm is
the start time of the meeting, dm is its duration, and lm is its loca-
tion. Typically, the attendees commit to a meeting time. However,
certain exogenous factors may affect the meeting time preferences
of some participants. For instance, depending on the location and

1The separator of xi contains all ancestors of xi in the pseudo-tree that are
connected to xi or one of its descendants.

time of the meeting, traffic conditions may cause delays that should
be taken into account, as they could cause cascading effects.

In a typical DCOP formulation, meeting starting times are mod-
eled as decision variables of the agents. Thus, for a given meet-
ing m, each agent a ∈ Am, controls a pair of decision variables,
xsm , xlm , whose values represent possible start times sm and loca-
tions lm for the meeting m. All agents participating in meeting m
need to agree upon a given meeting time and location. This condi-
tion can be modeled by imposing an equality constraints on the val-
ues of the variables xsm , and xlm controlled by the agents in Am.
Agent preferences on the time and location for a given meeting can
be modeled as unary constraints involving the variable describing
the desired meeting. The goal is to find a feasible weekly schedule
that maximizes the utility over all attendees.

Typical weekly meeting schedules may be adjusted based on
changes of the meeting participants’ preferences. To address such
a requirement, one can use a Dynamic DCOP formulation, where
a new DCOP problem, representing the scheduling problem for a
single week, can be modeled according to the previous formulation
and solved, as soon as some agent’s meeting preference changes.
However, these formulations exhibit several limitations: (i) they
fail to capture the presence of exogenous factors (e.g., traffic con-
ditions) in the dynamic aspect of the problem, and (ii) they do not
take account the inconvenience of the participants to change their
schedule, when the preference of some agents are updated. Our
proposed PD-DCOP model alleviates these limitations by acting
proactively during the problem resolution, which allows us to make
a step forward towards more refined dynamic solutions.

4. PD-DCOP MODEL
A Proactive Dynamic DCOP (PD-DCOP) is a tuple
〈A,X,D,F, h,T, c, γ, p0

Y, α〉, where:
• A = {ai}pi=1 is a set of agents.
• X = {xi}ni=1 is a mixed set of decision and random vari-

ables. To differentiate between decision variables and random
variables, we use Y ⊆ X to denote the set of random variables
that model uncontrollable stochastic events (e.g., traffic, weather,
malfunctioning devices).
• D = {Dx}x∈X is a set of finite domains. Each variable
x ∈ X takes values from the set Dx ∈ D. We also use
Ω = {Ωy}y∈Y ⊆ D to denote the set of event spaces for the
random variables (e.g., different traffic conditions, weather con-
ditions, or stress levels to which a device is subjected to) such
that each y ∈ Y takes values in Ωy .
• F = {fi}mi=1 is a set of reward functions, each defined over

a mixed set of decision variables and random variables: fi :∏
x∈xfi Dx → R+ ∪ {⊥}, where xfi ⊆ X is scope of fi and
⊥ is a special element used to denote that a given combination
of values for the variables in xfi is not allowed.
• h ∈ N is a finite horizon in which the agents can change the

values of their variables.
• T = {Ty}y∈Y is the set of transition functions Ty : Ωy×Ωy →

[0, 1] ⊆ R for the random variables y ∈ Y, describing the prob-
ability for a random variable to change its value in successive
time steps. For a time step t > 0, and values ωi ∈ Ωy, ωj ∈ Ωy ,
Ty(ωi, ωj) = P (yt = ωj | yt−1 = ωi), where yt denotes the
value of the variable y at time step t, and P is a probability mea-
sure. Thus, Ty(ωi, ωj) describes the probability for the random
variable y to change its value from ωi at a time step t−1 to ωj at
a time step t. Finally,

∑
ωj∈Ωy

Ty(ωi, ωj) = 1 for all ωi ∈ Ωy .

• c ∈ R+ is a switching cost, which is the cost associated with the
change in the value of a decision variable between time steps.



• γ ∈ [0, 1) is a discount factor, which represents the decrease in
the importance of rewards/costs over time.
• p0

Y = {p0
y}y∈Y is a set of initial probability distributions for the

random variables y ∈ Y.
• α : X\Y → A is a function that associates each decision vari-

able to one agent. We assume that the random variables are not
under the control of the agents and are independent of decision
variables. Thus, their values are solely determined according to
their transition functions.
Throughout this paper, we refer to decision (resp. random) vari-

ables as with the letter x (resp. y). We also assume that each agent
controls exactly one decision variable (thus, α is a bijection), and
that each reward function fi ∈ F associates with at most one ran-
dom variable yi.2

The goal of a PD-DCOP is to find a sequence of h + 1 assign-
ments x∗ for all the decision variables in X \Y:

x∗ = argmax
x=〈x0,...,xh〉∈Σh+1

Fh(x) (1)

Fh(x) =

h−1∑
t=0

γt
[
F tx (xt) + F ty (xt)

]
(2)

−
h−1∑
t=0

γt
[
c ·∆(xt,xt+1)

]
(3)

+ F̃x(xh) + F̃y(xh) (4)

where Σ is the assignment space for the decision variables of the
PD-DCOP, at each time step. Equation (2) refers to the optimiza-
tion over the first h time steps, with:

F tx(x) =
∑

fi∈F\FY

fi(xi) (5)

F ty(x) =
∑
fi∈FY

∑
ω∈Ωyi

fi(xi|yi=ω) · ptyi(ω) (6)

where xi is an assignment for all the variables in xfi ; we write
xi|yi=ω to indicate that the random variable yi ∈ xfi takes on the
event ω ∈ Ωyi ; FY ={fi∈F |xfi ∩Y 6=∅} is the set of functions
in F that involve random variables; ptyi(ω) is the probability for
the random variable yi to assume value ω at time t, and defined as

ptyi(ω) =
∑

ω′∈Ωyi

Tyi(ω
′, ω) · pt−1

yi (ω′) (7)

Equation (3) considers the penalties due to the changes in the de-
cision variables’ values during the optimization process, where
∆:Σ×Σ→N is a function counting the number of assignments to
decision variables that differs from one time step to the next.

Equation (4) refers to the optimization over the last time step,
which further accounts for discounted future rewards:

F̃x(x) =
γh

1− γF
h
x (x) (8)

F̃y(x) =
∑

fi∈FY

∑
ω∈Ωyi

f̃i(xi|yi=ω) · phyi(ω) (9)

f̃i(xi|yi=ω) = γh · fi(xi|yi=ω) (10)

+ γ
∑

ω′∈Ωyi

Tyi(ω, ω
′) · f̃i(xi|yi=ω′)

The goal of a PD-DCOP is to find an assignment of values to its
decision variables that maximizes the sum of two terms. The first
2If multiple random variables are associated with a reward function,
w.l.o.g., they can be merged into a single variable.

term maximizes the discounted net utility, that is, the discounted re-
wards for the functions that do not involve exogenous factors (Fx)
and the expected discounted random rewards (Fy) minus the dis-
counted penalties over the first h time steps. The second term max-
imizes the discounted future rewards for the problem.

While the PD-DCOP model can be used to capture the pres-
ence of exogenous factors in the dynamic aspect of the problem,
it can also model dynamic changes to the DCOP constraint graph,
through the transition functions. In particular, the deletion of a
constraint will force the random variable associated with that con-
straint to transit to a 0 reward value for all decision variables; the
addition of a constraint can be handled by defining a 0 reward con-
straint in the model from the start, and updating its reward when
the constraint is added.

4.1 Modeling the Motivating Domain
PD-DCOPs can naturally handle the dynamic characteristic of the
distributed dynamic meeting scheduling problem that we use as our
motivating domain. Uncontrollable events, such as traffic condi-
tions, affecting the meeting times of agents can be modeled via
random variables. In particular, in our model, each pair of agent’s
variables xsm and xlm , describing the time and location of a meet-
ing m, is associated to a random variable ym ∈ Y, describing the
different traffic conditions that can affect agents’ time and location
preferences for the meeting. Traffic predictions are often available
and they are modeled via the transition functions. Additionally,
rescheduling meetings is inconvenient for the meeting participants
and this inconvenience is modeled via switching costs for each at-
tendee, imposed when a meeting is forced to be rescheduled. Fi-
nally, the PD-DCOP horizon captures the horizon (i.e., number of
weeks) of the scheduling problem (e.g., the DCOP problem of each
time step corresponds to the scheduling problem for a single week).

4.2 Theoretical Properties
We now describe some of the theoretical properties of PD-DCOPs.

THEOREM 1. Solving a PD-DCOP is PSPACE-complete (-hard)
if the horizon h is polynomial (exponential) in |X|.
PROOF: We first consider the case when h is polynomial in |X|:
Membership in PSPACE follows from the existence of a naive
depth-first search to solve PD-DCOPs, where a non-deterministic
branch is opened for each complete assignment of the PD-DCOP’s
decision variables and for each time step 0 ≤ t ≤ h. The algorithm
requires linear space in the number of variables and horizon length.
We reduce the satisfiability of quantified Boolean formula (QSAT)
to a PD-DCOP with 0 horizon. Each existential Boolean variable
in the QSAT is mapped to a corresponding decision variable in
the PD-DCOP, and each universal Boolean variable in the QSAT
is mapped to a PD-DCOP random variable. The domains Dx of all
variables x∈X are the sets of values {0, 1}, corresponding respec-
tively to the evaluations, false and true, of the QSAT variables. The
initial probability distribution p0

y of each PD-DCOP random vari-
able y∈Y is set to as the uniform distribution. Each QSAT clause
c is mapped to a PD-DCOP reward function fc, whose scope in-
volves all and only the PD-DCOP-corresponding boolean variables
appearing in c, and such that:

fc(x
c) =

{
1, if c(xc)= true
⊥, otherwise.

where c(xc) denotes the instantiation of the values of the variables
in xc to the truth values of the corresponding literals of c. In other
words, a clause is satisfied iff the equivalent reward function pre-
serves its semantics. The choices for, the switching cost, the dis-
count factor γ, and the transition function Ty , for each y ∈ Y, of



the PD-DCOP, are immaterial. The reduction is linear in the size
of the original quantified Boolean formula. The quantified Boolean
formula is satisfiable iff the equivalent PD-DCOP has at least one
solution x whose cost F(x) 6= ⊥.

We next consider the case when h is exponential in X: In such
case solving PD-DCOPs is PSPACE-hard as storing a solution re-
quires space exponential in |X|. 2

Absolute Error Bound: Let U∞ denote the optimal solution
quality with an infinite horizon and Uh denote the optimal so-
lution quality with a finite horizon h. Thus, ε ≥ U∞ − Uh

and we first describe this error bound. Let’s define F∆ =
max
y∈Ω

max
x∈Σ

(F(x∗ ∪ y)− F(x ∪ y)), where x and y are assign-

ments of values to all decision and random variables, respectively;
F is the overall reward function for a (regular) DCOP in the PD-
DCOP; and x∗ is an optimal value assignment of decision variables
for that regular DCOP given value assignment y.

THEOREM 2. The absolute error bound ε equals γh

1−γF
∆.

PROOF: Let x̌∗ = 〈x̌∗0, . . . , x̌∗h, x̌∗h+1, . . .〉 be the vector of as-
signments that maximizes U∞.

U∞ =

∞∑
t=0

γt
[
F tx(x̌∗t ) + F ty(x̌∗t )− c ·∆(x̌∗t , x̌

∗
t+1)

]
Ignoring switch costs after time h, we get U∞+ and U∞≤U∞+ , as:

U∞+ =

h−1∑
t=0

γt
[
F tx(x̌∗t ) + F ty(x̌∗t )− c ·∆(x̌∗t , x̌

∗
t+1)

]
+

∞∑
t=h

γt
[
F tx(x̌∗t ) + F ty(x̌∗t )

]
Let x∗=〈x∗0,. . .,x∗h〉 be the vector of assignments maximizing Uh,

Uh =

h−1∑
t=0

γt
[
F tx(x∗t ) + F ty(x∗t )− c ·∆(x∗t ,x

∗
t+1)

]
+

∞∑
t=h

γt
[
F tx(x∗h) + F ty(x∗h)

]
For x̌∗, if we change the decision variable assignment after time

step h to x̌∗h, as 〈x̌∗0, . . . , x̌∗h, x̌∗h, . . .〉, we get U∞− :

U∞− =

h−1∑
t=0

γt
[
F tx(x̌∗t ) + F ty(x̌∗t )− c ·∆(x̌∗t , x̌

∗
t+1)

]
+

∞∑
t=h

γt
[
F tx(x̌∗h) + F ty(x̌∗h)

]
Since the value assignments of x̌ are identical for all time steps
t ≥ h, U∞− ≤ Uh. Therefore, we get U∞− ≤ Uh ≤ U∞ ≤ U∞+ .

Next, we know that

U∞+ − U∞− =

∞∑
t=h

γt
[
F tx(x̌∗t ) + F ty(x̌∗t )−F tx(x̌∗h) + F ty(x̌∗h)

]
Given a value assignment y for all random variables, the PD-
DCOP becomes a regular DCOP, where one only needs to find
value assignment of decision variables and maximize the total
utility. For this DCOP, there is a utility difference between the
best assignment and the worst assignment for all decision vari-
ables. Among all these utility differences, the maximum one is
F∆ = max

y∈Ω
max
x∈Σ

(F(x∗ ∪ y)− F(x ∪ y)), where x and y are

assignments of values to all decision and random variables, respec-
tively; F is the overall reward function for a (regular) DCOP in the
PD-DCOP; and x∗ is an optimal value assignment of decision vari-
ables for that regular DCOP given value assignment y. Thus, it is
the maximum difference in overall reward over all combination of
value assignments x and y.

Notice that the quantity F tx(x̌∗t ) +F ty(x̌∗t )−F tx(x̌∗h) +F ty(x̌∗h)
is the utility difference between the value assignment x̌∗t and x̌∗h
for the regular DCOPs in time step t. So, we have:

F tx(x̌∗t ) + F ty(x̌∗t )−F tx(x̌∗h) + F ty(x̌∗h) ≤ F∆

which concludes the proof. 2

COROLLARY 1. Given a maximum acceptable absolute error ε,
the minimum horizon h is logγ

(1−γ)·ε
F∆ .

Upper Bound on Optimal Quality: We now describe an up-
per bound on the optimal solution quality Fh(x∗). Let x̂∗ =
〈x̂∗0, . . . , x̂∗h〉 be the vector of assignments, where:

x̂∗t =


argmax

x∈Σ
γt
[
F tx (x)+F ty (x)

]
if 0≤ t<h

argmax
x∈Σ

[
F̃x(x)+F̃y(x)

]
otherwise

and F̂h(x) =
∑h−1
t=0 γ

t
[
F tx (x)+F ty (x)

]
+F̃x(x)+F̃y(x).

THEOREM 3. ∀x ∈ Σh+1 : Fh(x) ≤ Fh(x∗) ≤ F̂h(x̂∗).

PROOF: For any given assignment x ∈ Σh+1, Fh(x) is a clear
lower bound for Fh(x∗).

For the upper bound, let Fht (·) be the tth component of the
Fh(·), defined as:

Fht (xt)=

{
γt
[
F tx (xt)+F ty (xt)− [c∆(xt,xt+1)

]
if 0≤ t<h

F̃x(xt)+F̃y(xt) otherwise

with xt, defined as the tth value assignment in the PD-DCOP solu-
tion x. Analogously, let us denote with F̂ht (·) the tth component of
the F̂h(·), defined as:

F̂ht (xt)=

{
γt
[
F tx (xt)+F ty (xt)

]
if 0≤ t<h

F̃x(xt)+F̃y(xt) otherwise

It follows that for all 0 ≤ t < h:

Fht (x∗t ) = γt
[
F tx (x∗t )+F ty (x∗t )− [c∆(xt,xt+1)

]
≤ γt

[
F tx (x∗t )+F ty (x∗t )

]
≤ max

x∈Σ
γt
[
F tx (x)+F ty (x)

]
= F̂ht (x̂∗t )

where x∗t (resp. x̂∗t ) is the tth component of the PD-DCOP solution
vector x∗ (resp. x̂∗). For t = h, it follows:

Fhh (x∗h) = F̃x(x∗h)+F̃y(x∗h)

≤ max
x∈Σ

[
F̃x(x)+F̃y(x)

]
= F̂hh (x̂∗h)

Thus, from the two inequalities above, it follows:

Fh(x∗) ≤
h∑
t=0

F̂ht (x∗t ) = F̂h(x̂∗)

which concludes the proof. 2

COROLLARY 2. The approximation ratio ρ is F̂
h(x̂∗)
Fh(x)

for any so-
lution x.



5. PD-DCOP ALGORITHMS
We now introduce exact and approximation PD-DCOP algorithms.

5.1 Exact Approach
We first propose an exact approach, which transforms a PD-DCOP
into an equivalent DCOP and solves it using any off-the-shelf
DCOP algorithm. Since the transition of each random variable is
independent of the assignment of values to decision variables, this
problem can be viewed as a Markov chain. Thus, it is possible to
collapse an entire PD-DCOP into a single DCOP, where (1) each
reward function Fi in this new DCOP captures the sum of rewards
of the reward function fi ∈ F across all time steps, and (2) the do-
main of each decision variable is the set of all possible combination
of values of that decision variable across all time steps. However,
this process needs to be done in a distributed manner.

We divide the reward functions into two types: (1) The functions
fi ∈ F whose scope xfi ∩Y = ∅ includes exclusively decision
variables, and (2) the functions fi ∈ F whose scope xfi ∩Y 6= ∅
includes one random variable. In both cases, let xi=〈x0

i , . . . ,x
h
i 〉

denote the vector of value assignments to all decision variables in
xfi for each time step.

Then, each function fi ∈ F whose scope includes only decision
variables can be replaced by a function Fi:

Fi(xi) =

h−1∑
t=0

F ti (xti) + Fhi (xhi ) (11)

=

[
h−1∑
t=0

γt · fi(xti)

]
+

[
γh

1− γ fi(x
h
i )

]
(12)

where the first term with the summation is the reward for the first
h time steps and the second term is the reward for the remaining
time steps. Each function fi ∈ F whose scope includes random
variables can be replaced by a unary function Fi:

Fi(xi) =

h−1∑
t=0

F ti (xti) + Fhi (xhi ) (13)

=

h−1∑
t=0

γt
∑
ω∈Ωyi

fi(x
t
i|yi=ω) · ptyi(ω) (14)

+
∑
ω∈Ωyi

f̃i(x
h
i |yi=ω) · phyi(ω) (15)

where the first term (Equation (14)) is the reward for the first h
time steps and the second term (Equation (15)) is the reward for
the remaining time steps. The function f̃i is recursively defined
according to Equation (10). Additionally, each decision variable xi
will have a unary function Ci:

Ci(xi) = −
h−1∑
t=0

γt
[
c ·∆(xti,x

t+1
i )

]
(16)

which captures the cost of switching values across time steps. This
collapsed DCOP can then be solved with any off-the-shelf DCOP
algorithm. In our experiments, we use DPOP [22] to solve it.

5.2 Approximation Approach
Since optimally solving PD-DCOPs is P-SPACE-hard, the exact
approach described earlier will fail to scale to large problems, as
we show in our experimental results. Therefore, approximation
approaches are necessary to solve the larger problems of inter-
est. Our local search algorithm to solve PD-DCOPs is inspired
by MGM [14], which has been shown to be robust in dynamically

Algorithm 1: LOCAL SEARCH( )
1 iter ← 1

2 〈v0∗
i , v1∗

i , . . . , vh∗i 〉 ← 〈Null, Null, . . . , Null〉
3 〈v0

i , v
1
i , . . . , v

h
i 〉 ← INITIALASSIGNMENT()

4 context← 〈(xj , t, Null | xj ∈ N(ai), 0 ≤ t ≤ h)〉
5 Send VALUE(〈v0

i , v
1
i , . . . , v

h
i 〉) to all neighbors

Procedure CalcGain()
6 〈u0

i , u
1
i , . . . , u

h
i 〉 ← CALCUTILS(〈v0

i , v
1
i , . . . , v

h
i 〉)

7 u∗ ← −∞
8 foreach 〈d0

i , d
1
i , . . . , d

h
i 〉 in ×hi=0Dxi do

9 u← CALCCUMULATIVEUTIL(〈d0
i , d

1
i , . . . , d

h
i 〉)

10 if u > u∗ then
11 u∗ ← u

12 〈v0∗
i , v1∗

i , . . . , vh∗i 〉 ← 〈d0
i , d

1
i , . . . , d

h
i 〉

13 if u∗ 6= −∞ then
14 〈u0∗

i , u
1∗
i , . . . , u

h∗
i 〉 ← CALCUTILS(〈v0∗

i , v
1∗
i , . . . , v

h∗
i 〉)

15 〈û0
i, û

1
i, . . . , û

h
i 〉 ← 〈u0∗

i , u
1∗
i , . . . , u

h∗
i 〉 − 〈u0

i, u
1
i, . . . , u

h
i 〉

16 else
17 〈û0

i , û
1
i , . . . , û

h
i 〉 ← 〈Null, Null, . . . , Null〉

18 Send GAIN(〈û0
i , û

1
i , . . . , û

h
i 〉) to all neighbors

changing environments. Algorithm 1 shows its pseudocode, where
each agent ai maintains the following data structures:
• iter is the current iteration number.
• context is a vector of tuples (xj , t, vtj) for all its neighboring

variables xj ∈N(ai). Each of these tuples represents the agent’s
assumption that variable xj is assigned value vtj at time step t.
• 〈v0

i , v
1
i , . . . , v

h
i 〉 is a vector of the agent’s current value assign-

ment for its variable xi at each time step t.
• 〈v0∗

i , v
1∗
i , . . . , v

h∗
i 〉 is a vector of the agent’s best value assign-

ment for its variable xi at each time step t.
• 〈u0

i , u
1
i , . . . , u

h
i 〉 is a vector of the agent’s utility (rewards from

reward functions minus costs from switching costs) given its cur-
rent value assignment at each time step t.
• 〈u0∗

i , u
1∗
i , . . . , u

h∗
i 〉 is a vector of the agent’s best utility given

its best value assignment at each time step t.
• 〈û0∗

i , û
1∗
i , . . . , û

h∗
i 〉, which is a vector of the agent’s best gain in

utility at each time step t.
The high-level ideas are as follows: (1) Each agent ai starts by

finding an initial value assignment to its variable xi for each time
step 0 ≤ t ≤ h and initializes its context context. (2) Each agent
uses VALUE messages to ensure that it has the correct assumption
on its neighboring agents’ variables’ values. (3) Each agent com-
putes its current utilities given its current value assignments, its
best utilities over all possible value assignments, and its best gain
in utilities, and sends this gain in a GAIN message to all its neigh-
bors. (4) Each agent changes the value of its variable for time step t
if its gain for that time step is the largest over all its neighbors’ gain
for that time step, and repeats steps 2 through 4 until a termination
condition is met. In more detail:

Step 1: Each agent initializes its vector of best values to a vector
of Nulls (line 2) and calls INITIALASSIGNMENT to initializes its
current values (line 3). The values can be initialized randomly or
according to some heuristic function. We describe later one such
heuristic. Finally, the agent initializes its context, where it assumes
that the values for its neighbors is null for all time steps (line 4).

Step 2: The agent sends its current value assignment in a VALUE
message to all neighbors (line 5). When it receives a VALUE mes-
sage from its neighbor, it updates its context with the value assign-
ments in that message (lines 19-21). When it has received VALUE



Procedure When Receive VALUE(〈v0∗
s , v

1∗
s , . . . , v

h∗
s 〉)

19 foreach t from 0 to h do
20 if vt∗s 6= Null then
21 Update (xs, t, vts) ∈ context with (xs, t, vt∗s )

22 if received VALUE messages from all neighbors in this iteration then
23 CALCGAIN()

24 iter ← iter + 1

Procedure When Receive GAIN(〈û0
s, û

1
s, . . . , û

h
s 〉)

25 if 〈û0
s, û

1
s, . . . , û

h
s 〉 6= 〈Null, Null, . . . , Null〉 then

26 foreach t from 0 to h do
27 if ûti ≤ 0 ∨ ûts > ûti then
28 vt∗i ← Null

29 if received GAIN messages from all neighbors in this iteration then
30 foreach t from 0 to h do
31 if vt∗i 6= Null then
32 vti ← vt∗i

33 Send VALUE(〈v1∗
i , v2∗

i , . . . , vh∗i 〉) to all neighbors

messages from all neighbors in the current iteration, it means that
its context now correctly reflects the neighbors’ actual values. It
then calls CALCGAIN to start Step 3 (line 23).
Step 3: In the CALCGAIN procedure, the agent calls CALCUTILS
to calculate its utility for each time step given its current value as-
signments and its neighbors’ current value assignments recorded in
its context (line 6). The utility for a time step t is made out of two
components (line 41). The first component is the sum of rewards
over all reward functions that involve the agent, under the assump-
tion that the agent takes on its current value and its neighbors take
on their values according to its context. Specifically, if the scope
of the reward function F tj involves only decision variables, then
F tj (vti , v

t
j) is a function of both the agent’s current value vti and

its neighbor’s value vtj in its context and is defined according to
Equations (11) to (12). If the scope involves both decision and
random variables, then F tj (vti) is a unary constraint that is only a
function of the agent’s current value vti and is defined according
to Equations (13) to (15). The second component is the cost of
switching values from the previous time step t − 1 to the current
time step t and switching from the current time step to the next time
step t+ 1. This cost is c if the values in two subsequent time steps
are different and 0 otherwise. The variable cti captures this cost
(lines 35-40). The (net) utility is thus the reward from the reward
functions minus the switching cost (line 41).

The agent then searches over all possible combination of values
for its variable across all time steps to find the best value assign-
ment that results in the largest cumulative cost across all time steps
(lines 8-12). It then computes the net gain in utility at each time
step by subtracting the utility of the best value assignment with the
utility of the current value assignment (lines 13-15).
Step 4: The agent sends its gains in a GAIN message to all neigh-
bors (line 18). When it receives a GAIN message from its neigh-
bor, it updates its best value vt∗i for time step t to null if its gain
is non-positive (i.e., ûti ≤ 0) or its neighbor has a larger gain
(i.e., ûts > ûti) for that time step (line 27). When it has received
GAIN messages from all neighbors in the current iteration, it means
that it has identified, for each time step, whether its gain is the
largest over all its neighbors’ gains. The time steps where it has
the largest gain are exactly those time steps t where vt∗i is not null.
The agent thus assigns its best value for these time steps as its cur-
rent value and restarts Step 2 by sending a VALUE message that
contains its new values to all its neighbors (lines 29-33).

Function CalcUtils(〈v0
i , v

1
i , . . . , v

h
i 〉)

34 foreach t from 0 to h do
35 if t = 0 then
36 cti ← γ0· cost(v0

i , v
1
i )

37 else if t = h then
38 cti ← γh−1· cost(vh−1

i , vhi )
39 else
40 cti ← γt−1· cost(vt−1

i , vti) +γ
t· cost(vti , v

t+1
i )

41 uti ←
∑
F tj |xi∈x

Ft
j
F tj − cti

42 return 〈u0
i , u

1
i , . . . , u

h
i 〉

Function CalcCumulativeUtil(〈v0
i , v

1
i , . . . , v

h
i 〉)

43 u←
∑h
t=0

∑
F tj |xi∈x

Ft
j
F tj

44 c← 0
45 foreach t from 0 to h− 1 do
46 c← c+ γt· cost(vti , v

t+1
i )

47 return u− c

Heuristics for INITIALASSIGNMENT: We simplify the PD-
DCOP into h independent DCOPs by assuming that the switching
costs are 0 and the constraints with random variables are collapsed
into unary constraints similar to the description for our exact ap-
proach. Then, one can use any off-the-shelf DCOP algorithm to
solve these h DCOPs. We initially used DPOP to do this, but our
preliminary experimental results show that this approach is compu-
tationally inefficient; the runtimes with this approach were larger
than with the random assignment heuristic.

However, we observed that these h DCOPs do not vary much
across subsequent DCOPs as changes are due only to the changes in
distribution of values of random variables. Therefore, the utilities
in UTIL tables of an agent ai remain unchanged across subsequent
DCOPs if neither it nor any of its descendants in the pseudo-tree
are constrained with a random variable. We thus used S-DPOP to
solve the h DCOPs and the runtimes decreased marginally.

We further optimized this approach by designing a new pseudo-
trees construction heuristic, such that agents that are constrained
with random variables are higher up in the pseudo-tree. Intu-
itively, this will maximize the number of utility values that can be
reused, as they remain unchanged across subsequent time steps.
This heuristic, within the Distributed DFS algorithm [8], assigns a
score to each agent a according to heuristic h1(a):

h1(a) = (1 + I(a)) · |Ny(a)| (17)

Ny(a) = {a′|a′∈ N(a) ∧ ∃f ∈F, ∃ y∈Y :{a′, y}∈xf}

I(a)=

{
0 if ∀f ∈F, ∀y∈Y :{a, y} 6∈ xf

1 otherwise

It then makes the agent with the largest score the pseudo-tree root
and traverses the constraint graph using DFS, greedily adding the
neighboring agent with the largest score as the child of the cur-
rent agent. However, this resulting pseudo-tree can have a large
depth, which is undesirable. The popular max-degree heuristic
h2(a) = |N(a)|, which chooses the agent with the largest number
of neighbors, typically results in pseudo-trees with small depths.
We thus also introduced a hybrid heuristic h3(a) = wh1(a) +
(1 − w)h2(a), which combines both heuristics and weigh them
according to a heuristic weight w.

5.3 Theoretical Properties
In the following discussion, let O(L) denote the agent’s space re-
quirement for the INITIALASSIGNMENT function in line 3.
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Figure 1: Experimental Results Varying Heuristic Weight (left), Switching Cost (middle), and Horizon (right)

THEOREM 4. The agent’s space required by the PD-DCOP ap-
proximation approach is O(L+ (h+ 1)|A|).

PROOF: In our approximation algorithm, each agent first calls
the INITIALASSIGNMENT function to find an initial value assign-
ment to its variable for each time step 0 ≤ t ≤ h (line 3). Thus,
the memory requirement of this step is O((h + 1) + L) at each
agent. Next, each agent running our approximation algorithm per-
forms a local search step (lines 4-5), which is analogous to that of
MGM. However, different from MGM, our agents search for tuples
of h + 1 values, one for each time step in the horizon. Thus, at
each iteration, and for each time step t, each agent stores a vec-
tor of values for its current and best variable assignments for its
variable; a vector of the agent’s utilities and best utilities given its
current value assignments; and a vector of the agent’s best gain in
utility. In addition, each agent stores the context of its neighbors’
values for each time step t, which requires O((h + 1) · |N(ai)|)
space. Thus, the overall space requirement for our approximation
algorithm is O(L+ (h+ 1)|A|) per agent. 2

In Section 7, we present two approximation approaches: LS-
DPOP, which uses DPOP as the INITIALASSIGNMENT function,
and LS-RAND, which uses a random assignment function. Thus,
the space complexity of LS-DPOP is O(dw

∗
) – where d is the size

of the largest domain and w∗ is the induced width of the pseudo-
tree – as DPOP dominates the space complexity in the initialization
step. The space complexity of LS-RAND is instead dominated by
the second step of the approximation PD-DCOP algorithm, and it
is thus O((h+ 1)|A|).

6. RELATED WORK
Aside from the D-DCOPs described in Sections 1 and 2, several ap-
proaches have been proposed to proactively solve centralized Dy-
namic CSPs, where value assignments of variables or utilities of
constraints may change according to some probabilistic model [29,
10]. The goal is typically to find a solution that is robust to possi-
ble changes. Other related models include Mixed CSPs [6], which
model decision problems under uncertainty by introducing state
variables, which are not under control of the solver, and seek as-
signments that are consistent to any state of the world; and Stochas-
tic CSPs [30, 27], which introduce probability distributions that are
associated to outcomes of state variables, and seek solutions that
maximize the probability of constraint consistencies. While these
proactive approaches have been used to solve CSP variants, they
have not been used to solve Dynamic DCOPs to the best of our
knowledge.

Researchers have also introduced Markovian D-DCOPs (MD-
DCOPs), which model D-DCOPs with state variables that are be-
yond the control of agents [20]. However, they assume that the state
is observable to the agents, while PD-DCOPs assume otherwise.
Additionally, MD-DCOP agents do not incur a cost for changing
values in MD-DCOPs and only a reactive online learning approach
to solving the problem has been proposed thus far.

Another related body of work is Decentralized Markov Decision

Processes (Dec-MDPs) [2]. In a Dec-MDP, agents can also ob-
serve its local state (the global state is the combination of all local
states), and the goal of a Dec-MDP is to find a policy that maps
each local state to the action for each agent. Thus, like PD-DCOPs,
it too solves a sequential decision making problem. However, Dec-
MDPs are typically solved in a centralized manner [2, 1, 4, 5] due to
its high complexity – solving Dec-MDPs optimally is NEXP-hard
even for the case with only two agents [2]. In contrast, PD-DCOPs
are solved in a decentralized manner and its complexity is only
PSPACE-hard. The reason for the lower complexity is because the
solution of PD-DCOPs are open-loop policies, which are policies
that are not dependent on state observations.

Decentralized Partially Observable MDPs (Dec-POMDPs) [2]
is a generalization of Dec-MDPs, where an agent may not accu-
rately observe its local state. Instead, it maintains a belief of its lo-
cal state. A Dec-POMDP policy thus maps each belief to an action
for each agent. Solving Dec-POMDPs is also NEXP-hard [2] and
they are also typically solved in a centralized manner [9, 26, 25, 31,
5, 21] with some exceptions [18]. Researchers have also developed
a hybrid model, called ND-POMDP [19], which is a Dec-POMDP
that exploits locality of agent interactions like a DCOP.

In summary, one can view DCOPs and Dec-(PO)MDPs as two
ends of a spectrum of offline distributed planning models. In
terms of expressiveness, DCOPs can solve single timestep prob-
lems while Dec-(PO)MDPs can solve sequential problems. How-
ever, DCOPs are NP-hard while Dec-(PO)MDPs are NEXP-hard.
PD-DCOPs attempt to balance the trade off between expressive-
ness and complexity by searching for open-loop policies instead of
closed-loop policies of Dec-(PO)MDPs. They are more expressive
than DCOPs at the cost of a higher complexity, yet not as expressive
as Dec-(PO)MDPs, but also without their prohibitive complexity.

7. EXPERIMENTAL RESULTS
We empirically evaluate Collapsed DPOP (C-DPOP), which col-
lapses the PD-DCOP into a DCOP and solves it with DPOP; Lo-
cal Search (Random) (LS-RAND), which runs the local search al-
gorithm with random initial values; and Local Search (S-DPOP)
(LS-SDPOP), which runs the algorithm with S-DPOP and the h3

heuristic function to generate pseudo-trees. In contrast to many
experiments in the literature, our experiments are performed in an
actual distributed system, where each agent is an Intel i7 Quadcore
3.4GHz machine with 16GB of RAM, connected in a local area
network. We thus report actual distributed runtimes. We impose a
timeout of 30 minutes and a memory limit of 16 GB. Results are
averaged over 30 runs. We use the following default configuration:
Number of agents and decision variables |A| = |X \ Y| = 12;
number of random variables |Y| = 0.25 · |X \ Y|; domain size
|Dx|= |Ωy|= 3; horizon h= 3; switching cost c= 50; constraint
densities pa1 =pb1 =pc1 =0.5;3 and constraint tightness p2 =0.8.

3pa1 is the density of functions between two decision variables, pb1 is the
density of functions between a decision variable and a random variable,
and pc1 is the fraction of decision variables that are constrained with random



|A| C-DPOP LS-SDPOP LS-RAND
time (ms) ρ time (ms) ρ time (ms) ρ

2 223 1.001 197 (207) 1.003 203 1.019
4 489 1.000 255 (307) 1.009 273 1.037
6 5547 1.000 382 (456) 1.011 385 1.045
8 — 739 (838) 1.001 556 1.034

12 — 4821 (7091) 1.003 1092 1.031
16 — 264897 (595245) 1.033 2203 1.015

Table 1: Experimental Results Varying Number of Agents

Random Networks. We first vary the weight w of the pseudo-tree
construction heuristic h3 to identify the best weight for LS-SDPOP.
Figure 1(left) shows the runtimes of LS-SDPOP. At w = 0, the
heuristic h3 corresponds the max-degree heuristic h2 and, at w =
1, the heuristic is analogous to our h1 heuristic. The runtimes are
high at both extremes for the following reasons: When w = 0, LS-
SDPOP exploits weakly the reuse of information, and whenw = 1,
the resulting pseudo-trees have large depths, which in turn result in
large runtimes. The best weight is found at w = 0.4, thus we use
this value for the remaining experiments.

We then vary the switching cost c of the problem from 0 to
500 to investigate its impact on the algorithms’ performance. Fig-
ure 1(center) shows the number of iterations it takes for the lo-
cal search algorithms to converge from the initial solution. When
c = 0, the initial solution found by LS-SDPOP is an optimal so-
lution since the initial solution already optimizes the utilities of
the problem over all time steps ignoring switching costs. Thus,
it requires 0 iterations to converge. For sufficiently large costs
(c ≥ 100), the optimal solution is one where the values for each
agent is the same across all time steps since the cost of changing
values is larger than the gain in utility. Thus, the number of it-
erations they take to converge is the same for all large switching
costs. At intermediate cost values (0 < c < 100), they require
an increasing number of iterations to converge. Finally, LS-RAND
requires more iterations to converge than LS-SDPOP since it starts
with poorer initial solutions.

We also vary the horizon h of the problem from 2 to 10 to eval-
uate the scalability of the algorithms.4 Figure 1(right) shows the
runtimes of all three algorithms. As expected, the runtimes increase
when the horizon increases. When the horizon h ≥ 6 is sufficiently
large, LS-SDPOP is faster than LS-RAND indicating that the over-
head of finding good initial solutions with S-DPOP is worth the
savings in runtime to converge to the final solution.

Finally, we vary the number of agents |A| (and thus the num-
ber of the decision variables) of the problem from 2 to 16. Table 1
tabulates the runtimes and the approximation ration ρ for all three
algorithms. The runtimes of LS-SDPOP without reusing informa-
tion are shown in parentheses. C-DPOP times out after |A| ≥ 8.
In general, the runtimes of C-DPOP is largest, followed the by the
runtimes of LS-SDPOP and the runtimes of LS-RAND. The dif-
ference in runtimes increases with increasing number of agents,
indicating that the overhead to find good initial solutions with S-
DPOP is not worth the savings in convergence runtime. As ex-
pected, the approximation ratio ρ with C-DPOP the is the smallest,
since it finds optimal solutions, whilst the ratios of the local search
algorithms are of similar values, indicating that they converge to
solutions with similar qualities. Therefore, LS-SDPOP is preferred
in problems with few agents but large horizons and LS-RAND is
preferred in problems with many agents but small horizons.

However, another factor to consider when choosing which algo-
rithm to run is their memory requirement. LS-SDPOP suffer from

variables.
4In this experiment, we set the number of decision variables to 6 in order
for the algorithms to scale to larger horizons.

|A| C-DPOP LS-SDPOP LS-RAND
time (ms) % SAT time (ms) % SAT time (ms) % SAT

2 509 100 262 100 271 100
4 4786 100 367 100 399 100
6 — 2651 96 718 93
8 — 71726 96 3249 86

10 — — 9723 86
12 — — 15370 86

Table 2: Results for Dynamic Distributed Meeting Scheduling

the same exponential memory requirement (in the induced width of
the pseudo-tree) of DPOP [22]. In contrast, LS-RAND’s memory
requirement is only linear in the number of agents and the hori-
zon. Thus, LS-RAND is preferred in problems where agents have
a limited amount of memory (e.g., sensor networks).

Dynamic Distributed Meeting Scheduling. We also evaluate our
PD-DCOP algorithms on the dynamic distributed meeting schedul-
ing problem introduced in Section 3, where we use the following
parameters: We allow each meeting to be scheduled in 4 different
starting time and 2 locations. We generate the underlying graph
topology randomly, using the same settings described in the pre-
vious experiments. Thus, the number of meetings and the number
of meetings participants are not bounded by any fixed value. In
order to ensure that each agent controls exactly one decision vari-
able, we use the pseudo-agent decomposition technique [35]. In-
equality constraints between the meeting start time and locations
ensure that an agent can attend at most one meeting at a given time,
and that no two meetings are held in the same location at the same
time. In addition, start times and locations of each meeting’s par-
ticipants are enforced to be equal, so as to produce feasible sched-
ules. Finally, agents’ preferences on time and meeting locations are
modeled through unary costs functions. We use the same heuristic
weight, switching costs, and horizon settings from the previous ex-
periment on random networks.

Table 2 illustrates the average runtimes (in ms) and the percent-
age of feasible solutions over 30 instances, returned by the algo-
rithms at varying the number of agents |A| from 2 to 12. Similar to
the results analyzed for random networks, both approximation ap-
proaches (LS-SDPOP and LS-RAND) can produce solutions faster
than the exact approach. However, the number of satisfiable in-
stances decreases with increasing number of agents. In particular,
the quality of solutions found by LS-SDPOP degrades slower than
the quality of solutions found by LS-RAND. The reason is likely
because LS-SDPOP starts with a better initial solution than LS-
RAND. As expected, these results reveal that for our PD-DCOP
approximation approach, the initial solution is crucial to ensure
convergence to solutions of high quality within a bounded runtime.

8. CONCLUSIONS
In real-world applications, agents often act in dynamic environ-
ments. Thus, the Dynamic DCOP formulation is attractive to
model such problems. Current research has focused at solving
such problems reactively, thus discarding the information on pos-
sible future changes, which is often available in many applications.
To cope with this limitation, we (i) introduce Proactive Dynamic
DCOPs (PD-DCOPs), which model the dynamism in Dynamic
DCOPs; (ii) provide theoretical results on the complexity class of
PD-DCOPs; and (iii) develop an exact PD-DCOP algorithm that
solves the problem proactively as well as an approximation algo-
rithm with quality guarantees that can scale to larger and more
complex problems. Finally, in contrast to many experiments in the
literature, we evaluate our algorithms on an actual distributed sys-
tem, which will ease the transition to real-world applications.
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