
A Near-Optimal Node-to-Agent Mapping Heuristic for
GDL-Based DCOP Algorithms in Multi-Agent Systems

Md. Mosaddek Khan
School of Electronics and Computer Science

University of Southampton, Southampton, UK
mmk1g14@ecs.soton.ac.uk

Long Tran-Thanh
School of Electronics and Computer Science

University of Southampton, Southampton, UK
ltt08r@ecs.soton.ac.uk

William Yeoh
Department of Computer Science and Engineering
Washington University in St. Louis, St. Louis, USA

wyeoh@wustl.edu

Nicholas R. Jennings
Departments of Computing and Electrical and Electronic

Engineering, Imperial College London, London, UK
n.jennings@imperial.ac.uk

ABSTRACT
Distributed Constraint Optimization Problems (DCOPs) can be used
to model a number of multi-agent coordination problems. The con-
ventional DCOP model assumes that the subproblem that each agent
is responsible for (i.e. the mapping of nodes in the constraint graph
to agents) is part of the model description. While this assumption is
often reasonable, there are many applications where there is some
flexibility in making this assignment. In this paper, we focus on
this gap and make the following contributions: (1) We formulate
this problem as an optimization problem, where the goal is to find
an assignment that minimizes the completion time of the DCOP
algorithm (e.g. Action-GDL or Max-Sum) that operates on this map-
ping. (2) We propose a novel heuristic, called MNA, that can be
executed in a centralized or decentralized manner. (3) Our empiri-
cal evaluation illustrates a substantial reduction in completion time,
ranging from 16% to 40%, without affecting the solution quality of
the algorithms, compared to the current state of the art. In addition,
we observe empirically that the completion time obtained from our
approach is near-optimal; it never exceeds more than 10% of what
can be achieved from the optimal node-to-agent mapping.

KEYWORDS
Distributed Problem Solving; DCOP; GDL; Node-to-Agent Mapping

ACM Reference Format:
Md. Mosaddek Khan, Long Tran-Thanh, William Yeoh, and Nicholas R.
Jennings. 2018. A Near-Optimal Node-to-Agent Mapping Heuristic for GDL-
Based DCOP Algorithms in Multi-Agent Systems. In Proc. of the 17th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION
Distributed Constraint Optimization Problems (DCOPs) are prob-
lems where agents need to coordinate the assignments of values to
their variables in such a way that maximizes their aggregated utility
[7, 16, 18]. This model can be applied to solve a number of multi-
agent coordination problems including distributed meeting sched-
uling [15], sensor networks [4, 28], multi-robot coordination [26],

Proc. of the 17th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July
10–15, 2018, Stockholm, Sweden. © 2018 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

coalition formation [3] and smart homes [9, 20]. The problems are
formulated as constraint networks that are often represented graph-
ically using one of the following representations: junction trees
[1, 21], factor graphs [5, 12] or Depth First Search (DFS) trees
[16, 18]. In all of these representations, nodes (i.e. variables and/or
factors depending on the graphical representation) are being held1

by the agents participating in the optimization process.
The conventional DCOP model assumes that the mapping of

nodes to agents is part of the model description. In other words, the
nodes that each agent holds are given as an input. This assumption
is reasonable in many applications where there are obvious and intu-
itive mappings – for example, in a smart home scheduling problem
[9], agents correspond to the different smart homes, and variables
(i.e. nodes) correspond to the different smart devices within each
home. In this case, the agent controls all the variables that map to
the devices in its home. However, in other applications, there may
be more flexibility in the mapping of nodes to agents. For example,
imagine an application where a team of unmanned aerial vehicles
(UAVs) need to coordinate with each other to effectively survey an
area. In this application, agents correspond to UAVs and variables
correspond to the different zones in the area to be surveyed. The
domain for each variable may correspond to the different types of
sensors to be used and/or the different times to survey the zone. Since
a UAV can survey any zone, there are multiple possible assignments
of zones to UAVs. That is, there are multiple possible mappings of
variables (i.e. nodes) to agents.

While it is possible to arbitrarily choose a mapping and run any
off-the-shelf DCOP algorithm to solve the problem, choosing a good
mapping is important as it can have a significant impact on an algo-
rithm’s completion time (as we shall discuss in the following section).
However, choosing an optimal mapping may be prohibitively time
consuming as this is an NP-hard problem problem, as shown by Rust,
Picard and Ramparany [20]. In that paper, they introduced a simple
heuristic of node-to-agent mapping that is specifically tailored to
their smart-home application, called Smart Environment Configu-
ration Problem (SECP). Therefore, this method is not applicable to
other DCOP settings. Considering these issues, coupled with the fact
that this step is only a preprocessing step prior to the actual DCOP
algorithm, we develop a generic heuristic algorithm to address the
problem of node-to-agent mapping in DCOPs.

1The agents act (i.e. generate and transmit messages) on behalf of the nodes they hold.

In more detail, this paper advances the state of the art as follows.
(1) We propose a new time-efficient heuristic to determine a near-
optimal Mapping of Nodes to the participating Agents (MNA). MNA
is a preprocessing step that works prior to executing the optimization
process of a GDL-based DCOP algorithm. Specifically, MNA can
be executed in a centralized or decentralized manner, depending
on the application at hand. As a preprocessing step, MNA does not
alter any internal process of the original DCOP algorithm; therefore,
it does not have any impact on its solution quality. Additionally,
the decentralized version of MNA specifically caters for scenarios
where the graphical representation experiences change(s) during
runtime. (2) We empirically evaluate the performance of MNA in
terms of completion time, and show that it performs at a level of
around 90%−100% of the optimal mapping, which is computationally
infeasible to obtain in practice. (3) Our results also show a speed-up
of 16% − 40% compared to the state of the art, meaning a message
passing algorithm can perform 1.2 − 1.7 times faster when using
node-to-agent mappings generated by MNA.

The remainder of this paper is structured as follows. In Section 2,
we formulate this particular phase of node-to-agent mapping as an
optimization problem, where the objective is to obtain an assignment
that reduces the completion time of a GDL-based DCOP algorithm
that operates on this mapping. In Section 3, we discuss the details of
both the centralized and decentralized versions of MNA. Afterwards,
Section 4 reports the empirical evaluation of our approach as opposed
to the current state-of-the-art, and Section 5 concludes.

2 BACKGROUND AND PROBLEM
FORMULATION

A DCOP is defined by a tuple ⟨X ,D, F ,A,δ⟩ [16], where X is a set
of discrete variables {x0,x1, . . . ,xm } and D = {D0,D1, . . . ,Dm }

is a set of discrete and finite variable domains. Each variable xi
can take its value from the domain Di . F is a set of constraints
{F1, F2, . . . , Fn }, where each Fi ∈ F is a function dependent on a
subset of variables xi ∈ X defining the relationship among the vari-
ables in xi . Thus, the function Fi (xi) denotes the value for each
possible assignment of the variables in xi . The dependencies be-
tween the variables and the functions are often graphically repre-
sented by a constraint graph such as a junction tree or a factor graph,
where the nodes (i.e. variables and/or functions) of the correspond-
ing graphical representation G are being held by a set of agents
A = {A1,A2, . . .Ak }. This mapping of nodes to agents is repre-
sented by δ : η → A. Here, η stands for the set of nodes within
the constraint graph G. As a result of the mapping represented by δ ,
we get a partition P(A) of k = |A| sub-graphs (i .e . G1,G2, . . . ,Gk)

fromG, where eachG j ∈ G is held by the agent Aj ∈ A (Equation 1).

P(A) ←
k⋃
j=1

G j | ∀j ′ , j : (G j ∩ G j′) = ∅ (1)

Within this model, a DCOP algorithm (e.g. Action-GDL [24],
Max-Sum [5] or Bounded Max-Sum [19]) operates directly on G
by passing messages among the nodes η ∈ G to have each agent
assign values to its associated variables from their corresponding
domains. The aim is to maximize (or minimize) the aggregated
global objective function which eventually produces the value of

Figure 1: Two sample mappings of nodes {A,B,C,D,E} of a con-
straint graph to agents A1 and A2. In the figure, nodes are de-
noted by circles and agents as octagons.

each variable, X ∗ = arg maxX
∑n
i=1 Fi (xi). As already mentioned,

in this work, we specifically concentrate on GDL-based DCOP
algorithms such as Action-GDL, Max-Sum and Bounded Max-Sum.
In such algorithms, to compute a message for a particular neighbour,
a node takes into account the messages from its neighbours along
with its own utility. Thus, a number of nodes initially start generating
(i.e. computation) and then sending (i.e. communication) messages,
each of which we jointly denote as a single event. That means,
an event involves both the computation and communication of a
certain message. In this process, the completion of certain events
might trigger one or more new events to be initiated. Thus, the total
message passing procedure will complete when each node receives
messages from all of its neighbours, such that all the running events
are completed without initiating any new events. The dependencies
among the events during the message passing process can be seen as
an event-based dependency graph EG (A, P), where A is the specific
DCOP algorithm deployed and P is the partition obtained from
Equation 1. Formally, let E be the set of events {E1,E2, . . . ,El }
of EG (A, P). Here, the weight of an edge Ei → Ej between two
events Ei and Ej represents the time required to complete event Ei .
Finally, the longest path cost of all existing event pairs is the total
completion time T (A, P) for a given graphical representation of a
DCOP (Equation 2). Here, the function υ(Ei ,Ej) represents the time
elapsed (i.e. path cost) between the starting of the event Ei and the
end of the event Ej .

T (A, P) = max∀Ei ,Ej ∈EG (A,P)
υ(Ei ,Ej) (2)

In this formulation, without loss of generality, we assume each
agent possesses its own memory and a separate processing unit.2

Here, on behalf of the sending node of an event, the holding agent
generates and then sends the message to the receiving node. The
2In a multi-processing capable setting, each processing unit with separate memory can
be considered as an agent.

Figure 2: Event-based dependency graph for the constraint
graph of Figure 1.

sending node and its corresponding receiving node can either be
held by the same agent or by two different agents. The time required
to send a message in the former case can be termed the intra-agent
communication cost and the latter the inter-agent communication
cost. The former is typically less expensive in terms of communica-
tion cost than the latter [8, 22]. This is because it requires less time
for an agent to take a message from its local memory than from a
memory belonging to a different agent. Moreover, since an agent has
a single processing unit, it cannot compute more than one message
at a time. However, it can compute a message while transmitting
another one and vice versa. As a consequence, allowing an agent
to hold too many nodes eventually increases the waiting time for
the nodes within the agent. Considering this trade-off, the ultimate
objective is to minimize the completion time T (A, P) of a message
passing algorithm A by providing an efficient mapping of nodes
to agents (Equation 3).

P∗ = arg min
P

T (A, P) (3)

Figure 1 illustrates two sample assignments of a constraint graph
having five nodes {A,B,C,D,E} between two agents A1 and A2. On
the one hand, two sets of nodes {A,B,C} and {D,E} are being held
by the agents A1 and A2 respectively in the mapping δ1, depicted at
the top of Figure 1. On the other hand, A1 holds nodes {B,C} and A2
holds nodes {A,D,E} in the mapping δ2, shown at the bottom of that
figure. Additionally, the message computation cost of each node and
the message transmission/communication cost for the edges in terms
of time-units are given in the tables on the right side of Figure 1.
As can be seen, the computation cost of node A is 25 time-units,
meaning node A requires 25 time-units to generate a message for
any one of its neighbours. In this example, the inter-agent and the
intra-agent communication cost is 7 and 2 time-units, respectively.
Thus, the sending node A requires 7 time-units to send a message to
the receiving node D when both A and D are being held by different
agents (δ1). Otherwise, the same message takes 2 time-units (δ2).

The reason why the efficient mapping of node-to-agent is sig-
nificant can be clearly seen from Figure 2, where we generate an
event-based dependency graph of the message passing for the ex-
emplar constraint graph shown in Figure 1. Here, the starting and
finishing time of each event are represented by Startt /Startb and
Endt /Endb respectively, where t stands for the mapping δ1 and b

corresponds to δ2. Finally, the largest value of Endt and Endb rep-
resents the completion time of the constraint graph based on the
mappings δ1 and δ2, respectively. In this particular example, we
get 8 events: {E1,E2, . . . ,E8}. For instance, event E4 stands for the
summation of the computation and the communication time of the
message sending from A to D and the event E4 can only initiate
after events E1 and E2 have finished, that is when node A receives
messages from nodes B and C. It is worth mentioning that if the
holding agent of node A (i.e. the sending node of event E4) is already
computing a message for another node, then E4 has to wait until
the agent finishes computing the message, even if E1 and E2 have
finished. Significantly, the degrees of nodes A and D are higher than
those of other nodes in the constraint graph. As such, they require
substantially more time-units to generate each of their messages.
In the mapping δ2, both A and D are being held by agent A2. This
potentially leads to a situation where the nodes of A2 have to wait
for a long period of time, even if the events they depend on have
finished. In this worked example, events E7 and E8 have to wait for
an additional 24 and 61 time-units respectively, even though they are
ready to compute (δ2). On the other hand, the waiting times are 7
and 32 time-units respectively in δ1 due to the fact that the higher
degree nodes A and D are held by two different agents. As a result,
we observe that the completion time of a DCOP algorithm for the
mapping δ1 is 79 time-units, and 108 time-units for δ2. Thus, even
for a small constraint graph of 5 nodes, it is possible to save around
27% of completion time through an efficient node-to-agent mapping.

However, finding an optimal mapping is an NP-hard problem
[20]. Consider an example where a constraint graph of 25 nodes
have to distribute among 8 agents. In this case, there are 1, 081, 575
possible uniform mappings. In addition to that, we cannot ignore the
possibility of getting better results from a non-uniform assignment.
Even though the search space can be reduced by giving preference
to the contiguous nodes being held by the same agent, the number
is still significant (see empirical results). Furthermore, the optimal
mapping is completely dependent on the structure of the graph, so it
is not possible to predict such mapping in advance based on prior
information. Under such circumstances, finding an optimal mapping
is not practicable for large multi-agent settings. This leads us to the
MNA heuristic detailed in the following section.

3 THE MNA HEURISTIC
Considering the observations made in the previous section, MNA
specifically aims to find mappings where nodes with high degrees
are held by different agents. In other words, the objective is to obtain
a node-to-agent mapping for a DCOP, where nodes with higher
computational requirements for producing their messages do not end
up being held by the same agent. At the same time, it is important to
ensure that the mapping process itself is not prohibitively expensive
in terms of time consumption. To this end, we propose two versions
of MNA, centralized and decentralized, each of which is discussed
in Sections 3.1 and 3.2, respectively.

3.1 Centralized Version of MNA
The complete process of MNA’s centralized version is detailed in
Algorithm 1. As aforementioned, it aims to reach a point where no
two high-degree nodes are held by the same agent. Subsequently, a

Algorithm 1: MNA (G,η,A, A)

Input: G is the corresponding graphical representation of a DCOP consisting of a set η = {η1, η2, . . . ηN } of N nodes and A = {A1, A1, . . .Ak } is the
set of k agents participating in the optimization process, where k <= N . A stands for the deployed GDL-based DCOP algorithm.

Output: Mapping δ of the nodes of η to their associated agents A (i.e. δ : η → A), so that overall completion time can be minimized. Note that, each node
can be held by a single agent; however, each agent can hold several nodes.

1 Let deд = {deд(η1), deд(η2), . . . , deд(ηN)} be the set where each deд(ηi) ∈ deд stands for the degree/number of connected nodes of ηi

2 D is a set of domains {D1, D2, . . . , DN }, where each Di ∈ D is a finite set containing the values from which its associated node ηi has to get its
preferred value

3 unif ormVal ← N /k

4 if (deд(ηi) − deд(ηi′) == 0) ∧ (|Di | − |Di′ | == 0), where ∀ηi , ηi′ ∈ η, ∀Di , Di′ ∈ D then // Contiguous uniform node-to-agent

mapping, when the nodes possess similar degree and equal domain size.

5 return δunif ormVal : η → A

6 else
7 λ ← k -larдestNodes(G, η, k) // Find a set λ of k largest nodes from η in terms of degree.

Use the domain size of the connected nodes in case of a tie.

8 δ : λ → A // Distribute the nodes of λ = {λ1, λ2, . . . , λk } to A such that each agent holds a single node.

9 λ = {λ1, λ2, . . . , λk } are the control points of the graph G

10 foreach node ηi ∈ η \ λ do // Distribute non control point nodes.

11 λcp ←minDistance(G, ηi , λ, unif ormVal), where λcp ∈ λ // Call Algorithm 2: choose the suitable

control point λcp for the node ηi.

12 δ : ηi → λcp .Acp // allocate ηi to the agent Acp that holds the control point λcp.

13 return δ : η → A

suitable agent is picked for each of the remaining nodes of a DCOP
graphical representation based on this initial assignment. MNA op-
erates directly on the corresponding graphical representation G of a
DCOP that is going to be solved by deploying a GDL-based algo-
rithm A. Here, G consists of a set η = {η1,η2, . . .ηN } of N nodes
and a set A = {A1,A1, . . .Ak } of k agents. At the end, Algorithm 1
returns δ : η → A, that is the mapping δ of the nodes η to their associ-
ated agents A. In line 1, a set deд = {deд(η1),deд(η2), . . . ,deд(ηN)}
represents the number of connected neighbours of the nodes in η.
More specifically, the function deд(ηi) ∈ deд stands for the number
of neighbours of the node ηi ∈ η, and it also provides information
regarding how many incoming messages are required to produce
each of ηi ’s outgoing messages, taking the deployed algorithm A
into consideration. Then, line 2 presents the set of domains D, and
each Di ∈ D is a finite set containing the values from which its
associated node ηi has to take its preferred value. It is clearly illus-
trated in the example of the previous section that the degree of each
node and the domain sizes of the connected neighbouring nodes
contribute significantly in determining the overall completion time
for a particular mapping. To be exact, the computation cost of the
node ηi in terms of time corresponds to the values of deд(ηi) and Di .
In the worked example of Figure 1, the degrees of node A and B are
3 and 1, respectively. Therefore, node A has to consider the messages
of at least two nodes along with its own utility to generate a message
for any of its neighbours. Moreover, the time required to generate a
message is highest for node A, as its degree is higher than that of any
other nodes. On the other hand, node B only needs to send a message

to its only neighbouring node A. Consequently, for B to be able to
generate that message, it does not need to rely on receiving any other
message. As a result, B can immediately generate the message based
on its local utility or often this is a pre-defined initial message. Thus
the computation cost of B is negligible. Afterwards, line 3 computes
the value of uni f ormVal , which is the ratio of the number of nodes
N and the number of agents k in G.

It is noteworthy that the problem of node-to-agent mapping be-
comes trivial if all the nodes possess similar degrees and equal
domain size. In this case, we can uniformly distribute the nodes
among the agents by giving preference to the contiguous nodes be-
ing held by the same agent (lines 4 − 5). Nevertheless, this is not the
case for most DCOP applications, rather it is common to have nodes
with dissimilar degrees and domain size [11, 13]. This phenome-
non, particularly, accounts for the differences in completion time
for various possible mappings of nodes to agents. Specifically, lines
6 − 13 of the algorithm concentrate on this issue. Now, the function
k-larдestNodes(G,η,k) finds the k largest nodes from η in terms
of degree. In case of a tie, it uses larger domain size, then records
them to a set λ = {λ1, λ2, . . . , λk } (line 7). As a result, we get top k
nodes with the highest degrees in G that require more time-units to
compute each of their messages. At this point, line 8 allocates each
node λi ∈ λ to the different agents of A, and MNA defines each of
these nodes as a control point (explained shortly) of the constraint
graph G (line 9). In other words, the set {λ1, λ2, . . . , λk } of k high-
degree nodes are going to act as the control points, each of which
is exclusively held by one of the k agents of A. In the example of

Algorithm 2: minDistance(G,ηi , λ,uni f ormVal)

Input: λ is a set of control points of the graph G , ηi is a non-control
point node of G to be associated with one of the control point
nodes of λ and unif ormVal is obtained from line 3 of
Algorithm 1.

Output: λm ∈ λ, the corresponding control point for ηi .

1 λ′ ← λ
2 λm ← sPath(G, ηi , λ′)

3 if p(λm, Am) < unif ormVal then // when the agent Am
corresponds to λm holds fewer nodes than the

value of unif ormVal.
4 return λm

5 else
6 λ′ ← λ′ \ λm
7 if λ′ , ∅ then
8 go to line 2
9 else

10 λm ← alt_sPath(G, ηi , λ) // assign ηi to the
closest control point that does not

currently associates the most number of
non-control point nodes among λ.

11 return λm

Figure 1, the agents A1 and A2 are participating in the optimization
process, hence the value of k is two. Therefore, we need to find two
control points from the set of nodes: {A,B,C,D,E}. In this particular
instance, MNA picks A and D as the control points as they posses
degrees that are higher than those of the other nodes, and they should
be held by those two different agents. Let A and D be held by agents
A1 and A2, respectively. This is significant because it assures that
no two high-degree nodes will be held by the same agent, which is
the biggest cause of an increase in the waiting time (as discussed
in the previous section).

At this point, the for loop of lines 10 − 12 associates the rest
of the nodes that are not the control points (i.e. η \ λ), to their
corresponding agents. In so doing, we utilize the concept of Fortune’s
algorithm to generate the Voronoi diagram [10]. Notably, a Voronoi
diagram is a partitioning of a plane into regions based on the distance
to a specific subset of points of the plane. This subset of points,
denoted as control points, is specified beforehand. For each of the
control points, Fortune’s algorithm generates a corresponding region
consisting of all points closer to the control point than to others.
In other words, given a set of control points in a plane, Fortune’s
algorithm specifically finds the associated control points for the
rest of the points on that plane, based on the nearest Euclidean
distance at the worst case cost of only O(N logN) time. Here, the
functionminDistance(G,ηi , λ,uni f ormVal), detailed in the pseudo-
code of Algorithm 2, takes as input a non-control point node ηi , the
subset λ of η that acts as the control points and previously computed
uni f ormVal , and then finds a suitable control point λcp ∈ λ for ηi
(line 11 of Algorithm 1).

The function is inspired by the method employed by Fortune’s
algorithm to obtain the appropriate control points for all such non-
control point nodes. However, unlike Fortune’s algorithm, which
uses only the shortest Euclidean distance as the metric to choose the

suitable control point for a node, MNA uses different criteria. This
is because we have to deal with a graphical representation instead
of a plane. In more detail, in line 2 of Algorithm 2, sPath(G,ηi , λ′)
finds such a control point λm ∈ λ′ for ηi that possesses the shortest
path from ηi within the constraint graph G, and G is considered as
an unweighted graph during this process. Here, λ′ is a stand-in for
the set of control points λ (line 1). At this point, if the holding agent
of λm , denoted by Am , currently holds fewer nodes than the value of
uni f ormVal , then λm becomes the desired control point for ηi (lines
3 − 4). Here, the function p(λm ,Am) represents the current number
of nodes held by the agent Am . If this is not the case, λm is excluded
from λ′, and the process is repeated (lines 6 − 8). Now, if none of
the control points of λ′ satisfies the condition of line 3, we assign ηi
to its closest control point that does not already associate the most
number of non-control point nodes among all the control points λ
(lines 9 − 11). This is important because in this way we can ensure
that no agent corresponding to a control point ends up holding too
many nodes. Notably, in case of a tie in either or both of the functions
in lines 2 and 10, priority should be given to the control point whose
associated agent possesses higher computational power. Thus, we
can utilize the disparity in agents’ computational capabilities (i.e.
processing power). Hence, Algorithm 2 returns the control point
to line 11 of Algorithm 1, which is denoted by λcp . Afterwards,
line 12 assigns node ηi to the agent holding its associated control
point λcp . As a result, we produce a mapping where a high-degree
node is held by the same agent as its connected neighbours in most
cases. Such a mapping experiences an additional axiomatic benefit;
that is, the intra-agent messages greatly outnumber more expensive
inter-agent messages. This is because the majority of the messages
generated by the high-degree nodes are transmitted by means of the
intra-agent communication.

In the example of Figure 1, the unweighted path costs of the non-
control points nodes B, C and E from control point A are one, one
and two, respectively. In contrast, the path costs are two, two and
one respectively from control point D. According to the regulation
of MNA, nodes B and C will be associated with control point A,
as they have the shortest path from A compared to D. Thus, along
with node A, both nodes B and C are eventually held by agent A1. In
the same way, node E picks control point D, and both of them are
held by agent A2. Finally, the mapping obtained by following the
process of MNA is δ1 which significantly outperforms δ2, as already
illustrated in the explanation of Figure 2 (see the previous section).
The time complexity of the MNA algorithm involves two parts.
Firstly, O(k+(N−k) logk) for finding the k-largest nodes (i.e. control
points) from N nodes. Secondly, O(N logN) for choosing suitable
control points for the rest of the nodes in G. The overall complexity
is therefore O(N logN) as the value of k is always smaller (or in the
worst case, equal) to the number of nodes N .

3.2 Decentralized Version of MNA

Until this point, MNA considers those DCOP settings where a node-
to-agent mapping is not included as a part of the problem definition,
or considerable flexibility exists in choosing the mapping in a cen-
tralized manner. However, as discussed in Section 1, the assignment
is assumed as a part of the problem in a number of applications, and
as such, the centralized approach is not suitable for them. Moreover,

it is important for MNA to cope with settings that are not impervi-
ous to the introduction of new nodes (and the departure of existing
nodes), even after the node-to-agent mapping is done or given. In
order to yield the benefits similar to that of the centralized version
in such cases, we introduce a decentralized version of MNA (i.e.
Steps 1 − 4). To be precise, this particular version of MNA can be
used before initiating the message passing in applications where the
mapping is given a priori; at the same time, it can be used in the
event of a change within the graphical representation G during the
runtime of a GDL-based DCOP algorithm.

• Step 1: Token Generation. Each agent Aj ∈ A generates
a token that contains degree deд(ηi) and domain info Di
for each node ηi it currently holds. The token also contains
cap(Aj), which represents the computation capability (i.e.
processing power) of agent Aj .

• Step 2: Multicast Token. Each agent Aj (or the agents that
experience change in G at runtime) shares its token to agents
holding nodes within the path distance of length l in G. To
be able to ensure that contiguous nodes are being held by the
same agent in most cases, it is recommended that the value of
l is not too large.3 Moreover, larger values of l would mean
more messages are exchanged, thus eventually increasing
overall communication costs.

• Step 3: Request Message. Based on the information of de-
gree and domain from the received tokens, each agent Aj
(or only the receiving agents in the event of change) decides
whether it needs to hand over one or more nodes it is holding
to some other agent(s). The decision should be taken based
on the main feature of MNA; that is, an agent should hold the
least number of high-degree nodes. Note that, in the case of a
tie, priority should be given to an agent that possesses higher
processing power (i.e. cap(Aj)). Then, each of the deciding
agents sends a single unicast request message to each of the
agents it wants to relinquish its one or more nodes to.

• Step 4: Response Message. Finally, considering all the re-
ceived Request Messages, an agent takes a decision (based
on the main feature of MNA and cap()) about each node it
received request(s) for. Then, it sends a message in response
to each of the Request Messages, where the value 1 is used to
mark the nodes it is willing to hold, and 0 is used otherwise.

In terms of complexity, concurrently, each agent Aj is observed
to generate its own token, which is a small message that contains
its nodes’ degree, domain information and cap(Aj) based on exist-
ing data. Additionally, two decision operations are performed in
Steps 3 − 4 of decentralized MNA. Thus, the overall computation
complexity is O(2), and in effect, negligible with regard to time.
Nevertheless, in Step 2, the agent transmits the token (i.e. a small
size message) to the holding agents of nodes within the path distance
l in G. Since the value of l and the token size is usually small, the
overall communication complexity of this approach is linear in terms
of time (see Figure 4 and its discussion for empirical evidence).

3By considering the value of l within the range 3 to 5, we empirically observe a similar
performance between decentralized MNA and it’s centralized version.

4 EMPIRICAL EVALUATION
We now empirically evaluate the performance of MNA4 in terms
of completion time, and compare it with the optimal mapping. As
finding an optimal mapping is not feasible for large-scale settings
(see Figure 4), we also compare MNA with two more benchmarks:
(i) a centralized approach, where all the nodes are assumed to be
held by a single agent, and (ii) a contiguous random uniform dis-
tribution (i.e. mapping). We choose the former as a benchmark to
check whether distributing to many agents is indeed necessary. On
the other hand, the latter checks the impact of doing this mapping in
a simple way, similar to the method used by SECP (see Section 1).
All the experiments were performed on a simulator in which we
generated different instances of the constraint graph that have a
varying number of nodes from 7 to around 100, and the degree of
each node is randomly chosen from the range 1 to 7. In the simula-
tion, we made use of the so-called “event-based dependency graph"
method (see Section 2 for details) to obtain the completion time for
a particular node-to-agent mapping of a constraint graph. In order to
accomplish this, we performed an independent set of experiments to
generate each node’s computation cost (i.e. time) in advance. Here,
we consider the domain size of all the nodes in the range of 11 − 30.
To obtain a node’s computation time for all its messages, we initially
generated 20 messages of varying sizes from that range, and then
averaged the time elapsed in computing the messages. We did so
to reflect the growth of search space in the generation of a message
by an individual node with an increase in the node’s degree and
domain size in a DCOP [5, 11, 18]. For example, the computation
cost (i.e. the time required to generate each message) of a node with
degree 5 is calculated by taking the average duration to compute
20 messages of following complexities: (115, 125, . . . , 305), where
degree n = 5 and domain size d = (11, 12, . . . , 30). While these
experiments were performed in a simulator, it is worth mentioning
that we use the FRODO repository [23] to generate utility (i.e. cost)
tables of such complexities. Meanwhile, we used a network simu-
lator tool (GNS3) in order to obtain the intra-agent and inter-agent
communication costs in terms of time [25]. It has been observed
that the former type of communication is a few times faster than the
latter because we can take the underline network cost into account
by using GNS3. Notably, we obtained the values (costs) of the pa-
rameters (i.e. computation and communication) through independent
empirical observations (and in advance), so as to accurately report
the comparative performance from different conceivable mapping
approaches without being affected by any application-specific fac-
tors (e.g. hazardous communication in disaster response scenarios).
Moreover, the exact value of communication cost (in terms of time),
which has a significant impact on the overall completion time of a
DCOP algorithm, cannot be ascertained accurately in a simulated
environment that runs on a single machine (or even a few machines),
implying that this would not reflect the application-specific situation
such as disaster response, sensor networks, etc. Therefore, we chose
to carry out such controlled and systematic experiments wherein
the results are neither affected nor generated by skipping several
implementation and application-specific issues. Without loss of gen-
erality, the comparative results are reported for a single round of

4Note that both centralized and decentralized MNA provide comparable node-to-agent
mapping, depending on the choice of the value l in the decentralized version.

0 20 40 60 80 100
0

4000

8000

12000

16000

20000

C
o
m
p
le
ti
o
n
T
im
e
(m
s)

Number of Nodes

Optimal mapping

Mapping obtained from MNA

Contiguous random uniform distribution (mean)

Contiguous random uniform distribution (worst-case)

All nodes in a single agent

(a) Random constraint graphs

0 20 40 60 80 100
0

3000

6000

9000

12000

15000

C
o
m
p
le
ti
o
n
T
im
e
(m
s)

Number of Nodes

Optimal mapping

Mapping obtained from MNA

Contiguous random uniform distribution (mean)

Contiguous random uniform distribution (worst-case)

All nodes in a single agent

(b) Scale-free constraint graphs.

Figure 3: Empirical results for different instances of the constraint graphs with the number of nodes and the number of agents ratio:
(2 − 12). Error bars are calculated using standard error of the mean.

message passing5 for the constraint graphs with cycles, since the
results for a single round stand in as a proportional representation
for multiple rounds required for the cyclic constraint graphs in this
experiment. Nevertheless, we consider the total completion time
of the message passing operation for acyclic graphs, as they con-
verge after a single round of message passing. Finally, we report the
results averaged over 20 test runs in Figure 3, recording standard
errors to ensure statistical significance. Note that the simulator is
being implemented and run in an Intel i7 Quadcore 3.4GHz machine
with 16GB of RAM.

Figure 3a illustrates the comparative results considering the num-
ber of nodes-agents ratio from the range (2 − 12). We found that
the results are comparable for settings with higher node-agent ra-
tios. The completion time considering the obtained mapping from
MNA is compared with the optimal mapping for a particular con-
straint graph. To report the optimal result for the constraint graph,
we run our simulation for all possible uniform mappings. Note that
the results depicted in Figure 3 do not include the time required
to run the mapping algorithm (MNA or optimal) itself, but rather
illustrate the completion time of the message passing based on the
obtained mapping. We discuss the run-time of the algorithms shortly.
In Figure 3a, the dark yellow line indicates the time to complete
the message passing from the optimal mappings. As finding such
optimal results through this exhaustive approach is not practicable
for larger settings, we can only report this up to the constraint graph
of 35 nodes (see Figure 4). Here, the dashed black line represents the
completion time on the mapping obtained from MNA. Significantly,
MNA always performs at a level of at least 90% of the optimal one.
Moreover, in a number of instances, we observe that MNA provides
the optimal performance. The solid black line represents the outcome
from the centralized system, where a single agent holds all the nodes.
It performs worse in all the instances because of the fact that an agent

5We report results based on the standard message passing protocol, also known as the
message update rule, followed by GDL-based algorithms. See [1, 12] for more details.

cannot compute more than a single message at a time. Even though
all the communications are intra-agent in this case, the waiting time
for the nodes eventually increases with the growth of the number
of nodes. Afterwards, the dashed-dot-dot black line of Figure 3a
shows the results of the mean of 10 − 50 randomly taken contiguous
uniform mappings for each constraint graph. As observed, MNA
takes around 17 − 32% less time compared to this benchmark for
the constraint graphs having a number of nodes ranging from 7 to
35. Furthermore, we report 16% to around 23% performance gain of
MNA in the larger constraint graphs compared to the same bench-
mark. Finally, the solid grey line reports the worst case outcome
from the randomly taken contiguous uniform distributions to indi-
cate the possible impact of doing this mapping in a trivial way. In the
worst case, a randomly taken uniform distribution performs 25% to
around 38% (i.e. around 1.23 to 1.6 times) slower than the mapping
obtained from MNA.

The same experiments were performed with scale-free graphs
[2], and Figure 3b illustrates those results. Although the results
are comparable for both types of constraint graphs, we found a
notable difference for larger settings. The performances of MNA
compared to the contiguous random uniform distributions are better
(i.e. 24% to around 33% for contiguous random uniform distributions
(mean), and 30% to around 43% for the worst case) than what we
observed in Figure 3a for the constraint graphs of around 70 nodes
or more. This is because the degree distribution of a scale-free graph
follows a power law that allows a small subset of nodes to possess
much higher degrees than the rest of the nodes in a graph. This
phenomenon is particularly suitable for MNA to obtain a good node-
to-agent mapping.

The aforementioned results clearly show a significant speed-up
of message passing algorithms, when they are applied based on
the mapping obtained from MNA. Nevertheless, we need to ensure
that running MNA itself is not prohibitively expensive (since it is
an additional preprocessing cost on top of the DCOP algorithms).

10 15 20 25 30

0.00

7.50x104

1.50x105

2.25x105

3.00x105

3.75x105

R
u
n
ti
m
e
(m
s)

Number of Nodes

MNA - centralized version

MNA - decentralized version

Optimal with prior information

(a) Constraint graphs consist of 10 − 30 nodes.

35 40 45 50 55 60 65 70

0

1x107

2x107

3x107

4x107

5x107

R
u
n
ti
m
e
(m
s)

Number of Nodes

MNA - centralized version

MNA - decentralized version

Optimal with prior information

(b) Constraint graphs consist of 35 − 70 nodes.

Figure 4: Comparative runtime to obtain the node-to-agent mapping: MNA versus Optimal.

To this end, we need to consider the time MNA (centralized and
decentralized versions) actually takes to obtain the desired node-
to-agent mapping for different constraint graphs, and compare this
with the time to obtain the optimal mapping. To report the result
for the decentralized version, we consider a processing unit with
separate memory of a High Performance Computing (HPC) cluster
as an agent. Specifically, Figures 4a and 4b show the results for
the constraint graphs with the number of nodes ranging from 10
to 30 and 35 to 70, respectively. It is clear from the grey lines that
the centralized version of MNA takes linear time to find the map-
ping for each of the constraint graphs. Although we observe that
the decentralized version (dotted black lines) takes slightly more
time than its centralized counterpart, it does not incur such delays
that would make it prohibitively expensive to deploy. On the other
hand, the results illustrated in dashed-dot-dot blue lines show that
obtaining the optimal mapping is not practicable or is prohibitively
expensive for the constraint graphs of around 25 nodes or more. Note
that, to obtain the optimal mapping by considering all contiguous
uniform distributions, we had to assume that the computation and
communication cost of each messages are known in advance. This
is generally unknown prior to executing an optimization algorithm.
Taken together, finding an optimal mapping is practically infeasible,
while the overall cost of MNA is linear.

5 CONCLUSIONS
This paper explores an important gap in the literature, namely the
problem of finding good mappings of nodes to agents in DCOPs. As
the choice of the assignment can have a significant impact on the
completion time of the algorithms, finding good assignments is im-
portant. To address this, we propose MNA, a heuristic that provides
an effective node-to-agent mapping for a DCOP so that the overall
completion time of the optimization process can be minimized. To
do so, we begin by formulating this specific phase of node-to-agent
mapping as an optimization problem in such a manner that MNA
can be applied to all GDL-based algorithms operating on different

graphical representations. Finally, we empirically evaluate the per-
formance of our approach in terms of completion time, showing
that it does perform at a level of around 90% − 100% of the optimal
mapping, which is computationally infeasible to obtain in practice.
Our results also denote an acceleration of 16% − 40% as compared
to the state-of-the-art, implying that a message passing algorithm
can perform 1.2− 1.7 times faster when using MNA-generated node-
to-agent mappings. At the end, we empirically illustrate that the
speed-up can be attained with the expense of a linear run-time cost,
which is significant given that an optimal mapping is indeed prohibi-
tively expensive. In future work, we intend to investigate whether
this algorithm can be applied to other classes (i.e. non-GDL) of
DCOP algorithms (e.g. search-based [14, 27] and sampling-based
[6, 17]), as well as how much speed-ups can be achieved for them.

ACKNOWLEDGMENTS
We acknowledge the use of the IRIDIS High Performance Com-
puting Facility, and associated support services at the University of
Southampton, in the completion of some of the experiments. Long
Tran-Thanh is supported by the EPSRC funded project STRICT
(EP/N02026X/1). This research is also partially supported by NSF
grant 1550662. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the
sponsoring organizations or agencies.

REFERENCES
[1] S. M. Aji and R.J. McEliece. 2000. The generalized distributive law. IEEE

Transactions on Information Theory 46, 2 (2000), 325–343.
[2] A. Barabási, R. Albert, and H. Jeong. 1999. Mean-field theory for scale-free

random networks. Physica A: Statistical Mechanics and its Applications 272, 1
(1999), 173–187.

[3] J. B. Cerquides, A. Farinelli, P. Meseguer, and S. D Ramchurn. 2013. A tutorial
on optimization for multi-agent systems. Computer Journal 57 (2013), 799–824.

[4] A. Farinelli, A. Rogers, and N. R. Jennings. 2014. Agent-based decentralised
coordination for sensor networks using the max-sum algorithm. Autonomous
Agents and Multi-Agent Systems 28, 3 (2014), 337–380.

[5] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. 2008. Decentralised
coordination of low-power embedded devices using the max-sum algorithm. In

Proceedings of the 7th International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), Vol. 2. 639–646.

[6] F. Fioretto, F. Campeotto, L. Da Rin Fioretto, W. Yeoh, and E. Pontelli. 2014.
GD-GIBBS: a GPU-based sampling algorithm for solving distributed constraint
optimization problems. In Proceedings of the 13th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS). 1339–1340.

[7] F. Fioretto, E. Pontelli, and W. Yeoh. 2018. Distributed constraint optimization
problems and applications: A survey. Journal of Artificial Intelligence Research
61 (2018), 623–698.

[8] F. Fioretto, W. Yeoh, and E. Pontelli. 2016. Multi-Variable Agent Decomposition
for DCOPs. In Proceedings of the 30th AAAI Conference on Artificial Intelligence.
2480–2486.

[9] F Fioretto, W. Yeoh, and E. Pontelli. 2017. A multiagent system approach to
scheduling devices in smart homes. In Proceedings of the 16th Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS). 981–989.

[10] S. Fortune. 1987. A sweepline algorithm for Voronoi diagrams. Algorithmica 2,
1-4 (1987), 153–174.

[11] Y. Kim and V. Lesser. 2013. Improved max-sum algorithm for DCOP with n-ary
constraints. In Proceedings of the 12th International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS). 191–198.

[12] F. R. Kschischang, B. J Frey, and H.A. Loeliger. 2001. Factor graphs and the
sum-product algorithm. IEEE Transactions on Information Theory 47, 2 (2001),
498–519.

[13] A. R. Leite, F. Enembreck, and J. A. Barthès. 2014. Distributed constraint opti-
mization problems: Review and perspectives. Expert Systems with Applications
41, 11 (2014), 5139–5157.

[14] R. T. Maheswaran, J. P. Pearce, and M. Tambe. 2004. Distributed Algorithms for
DCOP: A Graphical-Game-Based Approach. In Proceedings of the ISCA 17th
International Conference on Parallel and Distributed Computing Systems (ISCA
PDCS). 432–439.

[15] R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and P. Varakantham.
2004. Taking DCOP to the real world: Efficient complete solutions for distributed
multi-event scheduling. In Proceedings of the 3rd International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS), Vol. 1. 310–317.

[16] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. 2005. ADOPT: Asynchronous
distributed constraint optimization with quality guarantees. Artificial Intelligence
161, 1 (2005), 149–180.

[17] B. Ottens, C. Dimitrakakis, and B. Faltings. 2017. DUCT: An Upper Confi-
dence Bound Approach to Distributed Constraint Optimization Problems. ACM
Transactions on Intelligent Systems and Technology 8, 5 (2017), 1–27.

[18] A. Petcu and B. Faltings. 2005. A scalable method for multiagent constraint opti-
mization. In Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI). 266–271.

[19] A. Rogers, A. Farinelli, R. Stranders, and N.R. Jennings. 2011. Bounded approxi-
mate decentralised coordination via the max-sum algorithm. Artificial Intelligence
(2011), 730–759.

[20] P. Rust, G. Picard, and F. Ramparany. 2016. Using Message-Passing DCOP
Algorithms to Solve Energy-Efficient Smart Environment Configuration Problems..
In Proceedings of the 25th International Joint Conference on Artificial Intelligence
(IJCAI). 468–474.

[21] N. Stefanovitch, A. Farinelli, A. Rogers, and N. R. Jennings. 2011. Resource-
aware junction trees for efficient multi-agent coordination. In Proceedings of the
10th International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), Vol. 1. 363–370.

[22] E. A. Sultanik, R. N. Lass, and W. C. Regli. 2008. DCOPolis: a framework for sim-
ulating and deploying distributed constraint reasoning algorithms. In Proceedings
of the 7th international Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS): Demo Papers. 1667–1668.

[23] L. Thomas, O. Brammert, and S. Radoslaw. 2009. FRODO 2.0: An Open-
Source Framework for Distributed Constraint Optimization. In Proceedings of
the IJCAI’09 Distributed Constraint Reasoning Workshop (DCR’09). 160–164.
https://frodo-ai.tech.

[24] M. Vinyals, J. A. Rodriguez-Aguilar, and J. Cerquides. 2009. Generalizing DPOP:
Action-GDL, a new complete algorithm for DCOPs. In Proceedings of the 8th In-
ternational Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
Vol. 2. 1239–1240.

[25] C. Welsh. 2013. GNS3 network simulation guide. Packt Publishers.
[26] H. Yedidsion and R. Zivan. 2016. Applying DCOP_MST to a Team of Mobile

Robots with Directional Sensing Abilities. In Proceedings of the 15th International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS). 1357–
1358.

[27] W. Yeoh, A. Felner, and S. Koenig. 2010. BnB-ADOPT: An Asynchronous
Branch-and-Bound DCOP Algorithm. Journal of Artificial Intelligence Research
38 (2010), 85–133.

[28] R. Zivan, H. Yedidsion, S. Okamoto, R. Glinton, and K. Sycara. 2014. Distributed
constraint optimization for teams of mobile sensing agents. Autonomous Agents
and Multi-Agent Systems 29, 3 (2014), 495–536.

https://frodo-ai.tech

	Abstract
	1 Introduction
	2 Background and Problem Formulation
	3 The MNA Heuristic
	3.1 Centralized Version of MNA
	3.2 Decentralized Version of MNA

	4 Empirical Evaluation
	5 Conclusions
	Acknowledgments
	References

