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ABSTRACT
Distributed Constraint Optimization Problems (DCOPs) have been
used to model a number of multi-agent coordination problems. In
DCOPs, agents are assumed to have complete information about
the utility of their possible actions. However, in many real-world
applications, such utilities are stochastic due to the presence of ex-
ogenous events that are beyond the direct control of the agents.
This paper addresses this issue by extending the standard DCOP
model to Expected Regret DCOP (ER-DCOP) for DCOP applica-
tions with uncertainty in constraint utilities. Different from other
approaches, ER-DCOPs aim at minimizing the overall expected re-
gret of the problem. The paper proposes the ER-DPOP algorithm
for solving ER-DCOPs, which is complete and requires a linear
number of messages with respect to the number of agents in the
problem. We further present two implementations of ER-DPOP—
GPU- and ASP-based implementations—that orthogonally exploit
the problem structure and present their evaluations on random net-
works and power network problems.

Keywords
DCOP; Expected Regret; GPU; ASP

1. INTRODUCTION
Distributed Constraint Optimization Problems (DCOPs) are prob-
lems where agents need to cooperatively determine their variables’
value assignment to maximize the sum of resulting constraint utili-
ties [22, 25, 19, 31]. Researchers have used them to model various
multi-agent coordination and resource allocation problems [18, 7,
28, 30, 32].

A DCOP is typically specified by a finite set of decision vari-
ables (throughout the paper, whenever we mention variables, we
mean decision variables) and a finite set of constraints among these
variables. Each constraint indicates a utility for each value assign-
ment of the variables involved in it. One limitation of DCOPs is
that the constraint utilities are assumed to be known and determin-
istic. Thus, the DCOP model is not suitable for modeling prob-
lems where constraint utilities are stochastic (e.g., the utility of a
constraint might depend on exogenous factors that are beyond the
direct control of the agents, such as weather conditions, properties
of the surrounding environment, etc.).

To address the above limitation, several DCOP extensions that
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handle stochasticity in the constraint utilities have been developed.
These extensions require that the constraint utilities (i) are sampled
from a predefined function that is either known [1] or concave [23];
or (ii) depend on additional random variables (not controlled by
agents) whose probability distributions are known [16, 14]. Unfor-
tunately, such requirements are not met in several real-world appli-
cations (e.g., accurate weather models are often unavailable).

Uncertain Reward DCOP (UR-DCOP) [29] is another extension
of the DCOP model that uses an additional random variable for
each constraint, in order to handle stochastic utilities. Different
from other approaches, it can model problems where the probabil-
ity distribution (referred to as belief ) of random variables is not
known, but sampled from a known probability distribution space
(referred to as the belief space). UR-DCOP (i) assumes that the
belief of a random variable is independent from the values of the
decision variables; and (ii) uses the minimax regret strategy, which
minimizes the worst-case loss (the regret) over the known belief
space. This strategy may be overly pessimistic in many situations.

In this paper, we develop an alternative approach for DCOPs
with stochastic constraint utilities that relaxes some of the as-
sumptions made by previously developed models. Specifically,
we (1) propose the Expected Regret DCOP (ER-DCOP) model,
which removes the independence assumption in UR-DCOPs and
optimizes the minimum expected regret in response to the con-
straint utilities’ uncertainty; (2) develop the ER-DPOP algorithm
to solve ER-DCOPs, proposing two implementations: one that ex-
ploits GPUs to speed up the process of solving ER-DCOPs, and an-
other one that uses ASP and exploits inference rules to prune the so-
lution search space; (3) evaluate the performance of the ER-DPOP
implementations on random graphs and power network problems;
and (4) experimentally show that ER-DCOP solutions outperform
corresponding UR-DCOP solutions in terms of the actual regret.

The rest of the paper is organized as follows. We start with a mo-
tivating example and review some background in Sections 2 and 3,
respectively. The ER-DCOP model is introduced in Section 4, the
ER-DPOP algorithm to solve this model is proposed in Section 5,
followed by some theoretical analysis in Section 6. Next, we intro-
duce the GPU-based and the ASP-based ER-DPOP implementa-
tions in Section 7. Section 8 provides the experimental results, and
we conclude the paper with some discussions and related works.

2. MOTIVATING EXAMPLE
In this section, we introduce a motivating example that is used to
illustrate the proposed model and algorithm.

EXAMPLE 1. Consider a Mars Rover problem consisting of two
robotic workers x1 and x2 that will collect soil samples on Mars



x1 x3 r1 U1 P e Pu

0 0 0 0 10% 30%
1 50 90% 70%

0 1 0 0 30% 50%
1 30 70% 50%

(a)

x2 x3 r2 U2 P e Pu

0 0 0 0 50% 90%
1 40 50% 10%

0 1 0 0 20% 50%
1 50 80% 50%

(b)

Table 1: Constraints and their Probabilistic Models

(i.e., x1, x2 ∈ {0}1), and an assistant robot x3 (x3 ∈ {0, 1})
that will be able to support one worker, either x1 (x3 = 0) or
x2 (x3 = 1). The random variables r1 and r2 are introduced as
follows: with i ∈ {1, 2}, ri = 1 (resp. ri = 0) represents the
fact that the worker xi succeeds (resp. fails) in collecting soil sam-
ples. The first four columns of the Table 1(a) (resp. 1(b)) describe
the constraint utilities U1 (resp. U2) for the joint work between the
robots x1 and x3 (resp. x2 and x3). For example, in Table 1(a),
with robot x3 supporting (i.e., x3 = 0), if worker x1 succeeds, it
collects 50 samples (i.e., U1 = 50); if it fails, it collects 0 sample
(i.e., U1 = 0). Moreover, we assume that the chance for workers
to succeed or fail depends only on the terrain condition (i.e., even
(e) or uneven (u)). The terrain condition is 88% uneven and 12%
even. The columns P e (resp. Pu) in Table 1(a and b) define the
probability distributions of the respective random variable for even
(resp. uneven) terrain. For example, the first two rows of the col-
umn P e in the Table 1(a) show that, given that the terrain is even
and x3 = 0, the probability of the worker x1 to fail (i.e., r1 = 0)
or succeed (i.e., r1 = 1) is 10% or 90%, respectively.

3. BACKGROUND
In this section, we present an overview of DCOPs; describe DPOP,
a popular, complete algorithm to solve DCOPs, whose resolution
process is central in our ER-DPOP algorithm; and review the for-
mal definition of UR-DCOPs. We further provide some fundamen-
tal definitions of GPU and ASP.

3.1 DCOP
A Distributed Constraint Optimization Problem (DCOP) is a tu-
ple M = 〈X ,D,F ,A, α〉 where X = {x1, . . . , xn} is a finite
set of (decision) variables; D = {D1, . . . , Dn} is a set of fi-
nite domains, where each Di is the domain of variable xi ∈ X ;
F = {f1, . . . , fm} is a finite set of constraints, where each kj-ary
constraint fj : Dj1 × Dj2 × . . . × Djkj

7→ R ∪ {−∞} spec-
ifies the utility of each combination of values of the variables in
its scope; the scope is denoted by scp(fj) = {xj1 , . . . , xjkj

};
A = {a1, . . . , ap} is a finite set of agents; and α : X 7→ A maps
each variable to an agent. Each constraint in F can be either hard,
indicating that some value combinations result in a utility of −∞
and must be avoided, or soft, indicating that all value combinations
result in a finite utility and need not be avoided. Given a constraint
fj and a complete value assignment x for all decision variables, we
denote with xfj a partial value assignment from x for all variables
in scp(fj). A solution of a DCOP is a complete value assignment
x for all variables such that x = argmaxx

∑m
j=1 fj(xfj ).

A DCOP can be described by its constraint graph, i.e., a graph
whose nodes correspond to the variables in X and whose edges
connect pairs of variables in the scope of the same constraint. A
simplifying assumption, which is common practice in the DCOP
literature, is that each agent owns exactly one variable. Thus, nodes
of a constraint graph can be seen as representing agents without
causing any confusion. A pseudo-tree arrangement of a DCOP has
the same nodes as the constraint graph and a subset of its edges such
1We use 0 to denote this single task for simplicity.

that (i) the included edges (called tree edges) form a rooted tree,
and (ii) two variables in the scope of the same constraint appear in
the same branch of the tree. The remaining edges of the constraint
graph not included in the pseudo-tree are called back edges. Tree
edges connect a node with its parent and its children while back
edges connect a node with its pseudo-parents and pseudo-children
(i.e., higher nodes are parents or pseudo-parents, and lower nodes
are children or pseudo-children). In a pseudo-tree, the separator of
a node xi (denoted by sepi) is the set of ancestors of xi that are
directly connected (via tree edges or back edges) with xi or with
descendants of xi.

3.2 DPOP
The Distributed Pseudo-tree Optimization Procedure (DPOP) [25]
is a complete distributed algorithm to solve DCOPs. DPOP consists
of three phases: Pseudo-tree generation, UTIL propagation, and
VALUE propagation.
• Pseudo-tree Generation: DPOP calls existing distributed DFS

algorithms [12] to build a pseudo-tree.
• UTIL Propagation: Starting from the leafs of the pseudo-tree,

each agent computes the optimal sum of utilities in its sub-
tree for each value combination of variables in its separator and
sends these utilities in a UTIL message to its parent.
• VALUE Propagation: Each agent, starting from the root of

the pseudo-tree, determines its variable’s optimal value and
sends this value, together with its ancestors’ optimal values, in
VALUE messages to its children. The root agent does so by
choosing the value of its variable from its UTIL computations.

3.3 UR-DCOP
Uncertain Reward DCOP (UR-DCOP) [29] is an extension of the
original DCOP model with two additional components:
• E = {s1, . . . , sm} is a set of random variables, each random

variable sj is for each constraint fj ∈ F .
• S = {S1, . . . , Sm} is a set of finite domains where Sj is the

domain of random variable sj .
The constraints in F are augmented to consider both decision vari-
ables and random variables—i.e., each kj-ary constraint has the
form fj : Sj ×Dj1 ×Dj2 × . . .×Djkj

7→ R ∪ {−∞}.
Given a random variable sj in UR-DCOPs, let bj ∈ 4(Sj) be

the probability distribution over domain Sj , and b = 〈b1, . . . , bm〉.
When b is known, solving a UR-DCOP involves finding an assign-
ment of all decision variables x that minimizes the sum of expected
values V (b, x) =

∑m
j=1

∑
sj∈Sj

bj(sj) · fj(sj , xfj ).
However, since b is unknown, given the space B of b, the objec-

tive of UR-DCOPs is the minimax regret:

Vregret = min
x′

max
b∈B

max
x∗

[V (b, x∗)− V (b, x′)]

where x∗ is the optimal solution given b.

3.4 GPUs
Graphics Processing Units (GPUs) are multiprocessor devices, of-
fering hundreds of computing cores and a rich memory hierar-
chy. A parallel computation is described by a collection of kernels
(i.e., procedures) executed by several threads. Threads are in turn
organized hierarchically into blocks and grids of blocks, and have
access to several memory levels, each with different properties in
terms of speed and capacity. Each thread can store its private vari-
ables in very fast, but few in number, registers. Threads within a
block can communicate by reading and writing a common shared
memory area. Communication between blocks and between blocks
and the host (i.e., the CPU) is done through a large but slow global



memory. Memory levels have significantly different sizes (e.g., reg-
isters are in the order of dozens per thread, while shared mem-
ory is in the order of a few kilobytes per block) and access times
(e.g., global memory access typically requires 400-600 clock cy-
cles, shared memory 20-40 cycles). The conceptual model of par-
allelism supported by CUDA [26] is Single-Instruction Multiple-
Thread (SIMT), where the same instruction is executed by differ-
ent threads that run on identical cores, while data and operands may
differ from thread to thread.

3.5 ASP
We now review some background on Answer Set Programming
(ASP). An answer set program [3] Π is a set of rules of the form

c← a1, . . . , as, not b1, . . . , not bt

where s ≥ 0, t ≥ 0, and the ai’s and bi’s are ground literals of a
first order language L. The formula not bi is called a negation-as-
failure literal (or naf-literal). c can be a ground literal or omitted. A
program is definite if it does not contain naf-literals. If s = t = 0,
the rule is called a fact.

A set of ground literalsX is consistent if there is no atom a such
that {a,¬a} ⊆ X . A literal ` is true (false) in a set of literals X if
` ∈ X (` 6∈ X). A set of ground literalsX satisfies a ground rule if
any of the following cases is true: (i) c ∈ X; (ii) some ai is false in
X; or (iii) some bi is true in X . A solution of a program, called an
answer set [10], is a consistent set S of ground literals such that:
• If Π is a definite program, then S is a subset-minimal set of

ground literals satisfying all rules in Π.
• If Π contains some naf-literals, then S is an answer set of ΠS

that is obtained from Π by deleting (i) each rule that has a naf-
literal not b in its body with b ∈ S, and (ii) all naf-literals in the
bodies of the remaining rules.

A rule with variables is viewed as a shorthand of the collection of
all of its ground instances. Similarly, a non-ground program is a
shorthand for all ground instances of its rules. The ASP language
includes also language-level extensions to facilitate the encoding of
aggregates (min, max, sum, etc.). ASP solves a problem by encod-
ing it as an ASP program whose answer sets correspond one-to-one
to the solutions of the problem [20, 24]. Solutions can be computed
using ASP solvers like CLASP [9] and DLV [5].

4. THE ER-DCOP MODEL
In this section, we introduce the Expected Regret DCOP (ER-
DCOP) model—a new representation for DCOPs with uncertainty
in constraint utilities. An ER-DCOP model is always defined over
a so-called belief space. So, we first propose the ER-DCOP model
and then introduce the definition of a belief space.

An ER-DCOP is an extension of DCOP to model stochastic con-
straint utilities. Formally, it is a tuple E = 〈A,X ,D, α,R,S,F〉,
where:
• A,X ,D, and α are the same as in a DCOP.
• R = {r1, . . . , rm} is a set of random variables modeling exter-

nal factors beyond the direct control of agents (e.g., the factor of
whether robots succeed or not in Example 1). We note that an
agent cannot change the value of the random variable directly.
• S = {S1, . . . , Sm} is a set of finite domains, where Sj is the

domain of the random variable rj ∈ R (e.g., success or failure
in Example 1).
• F = {f1, . . . , fm} is a finite set of constraints, where each kj-

ary constraint fj : rj × Dj1 × Dj2 × . . . × Djkj
7→ R ∪

{−∞}, different from that in DCOPs, is augmented to consider
both a random variable and decision variables in specifying the

corresponding utilities. The scope of a constraint fj is denoted
by scp(fj) = {xj1 , . . . , xjkj

}, which is similar as the scope of
constraints in standard DCOP.

We assume that each constraint fj is associated to one random vari-
able rj . If a constraint is associated with multiple random variables
(i.e., multiple external factors affect the utilities of a constraint),
we can merge all such random variables into a single random vari-
able. Furthermore, we assume that random variables are affected by
the decision variables (i.e., random variables are beyond the direct
control of the agents but are influenced by the agent’s decisions).
Moreover, their values are drawn from unknown probability dis-
tributions but can be sampled from known probability distribution
spaces. For example, in Table 1(b), the probability distributions of
r2 varies in: (i) different terrain conditions (see columns P e and
Pu) and (ii) different value assignments of x2 and x3. For exam-
ple, given x2 = x3 = 0, the probabilities of r2 = 1 in the even and
in the uneven terrain conditions are 50% and 10%, respectively.
Additionally, with the even terrain condition, the probabilities of
r2 = 1 where x2 = x3 = 0 and where x2 = 0, x3 = 1 are 50%
and 80%, respectively.

Given a constraint fj , let Xfj be the set of all possible value as-
signments for the decision variables in scp(fj). In ER-DCOPs, the
conditional probability distribution of a random variable rj over
its domain Sj given a specific value assignment of the variables
in scp(fj), denoted by bj , is called a belief of the random vari-
able rj . Thus, the probability that rj = sj ∈ Sj given a spe-
cific value assignment xfj ∈ Xfj is bj(sj |xfj ), and we have∑

sj∈Sj
bj(sj |xfj ) = 1. For example, in Table 1(a), the column

P e denotes the belief be1—the belief of the random variable r1 in
the even terrain. Let xf1 be a partial value assignment in which
x1 = x3 = 0. We have, be1(0|xf1) = 0.1, and be1(1|xf1) = 0.9.

We denote with B = 〈b1, . . . , bm〉 a joint belief of all random
variables, where each bj is a belief of rj ∈ R. For example, the
columns P e (resp. Pu) in Table 1(a and b) together detail the joint
belief Be (resp. Bu)—the joint belief for even (resp. uneven) ter-
rain.

When the joint belief B = 〈b1, . . . , bm〉 is known, solving ER-
DCOPs with respect to the joint belief B is straightforward; it in-
volves finding a complete value assignment x that maximizes the
sum of the expected utility of the constraints:

E(B,x) =

m∑
j=1

∑
sj∈Sj

bj(sj |xfj ) · fj(sj ,xfj )

︸ ︷︷ ︸
E(bj ,xfj

)

(1)

In Equation (1), E(bj ,xfj ) is the expected utility of the constraint
fj corresponding to the partial value assignment xfj w.r.t. bj .

In Example 1 and throughout the rest of the paper, let xa (resp.
xb) be a value assignment where x1 = x2 = x3 = 0 (resp. x1 =
x2 = 0, x3 = 1). Since E(Be, xa) = 65 > E(Be, xb) = 61, we
have that xa is the solution for the ER-DCOP with respect to Be.
Moreover, we also have E(Bu, xa) = 39 < E(Bu, xb) = 40, so
xb is the solution for the ER-DCOP with respect to Bu.

The key challenge here in solving ER-DCOPs is that the joint
belief is typically unknown—i.e., an ER-DCOP may have mul-
tiple joint beliefs that have to be considered. Formally, an ER-
DCOP is defined over a finite nonempty set of joint beliefs, B =
{B1, . . . , Bv}, referred to as the belief space of the ER-DCOP. The
uncertainty of joint beliefs in the belief space B is drawn under a
probabilistic model PB where

∑v
q=1 PB(Bq) = 1. The goal of an

ER-DCOP, given the belief space B whose probability distribution
is PB, is to find a complete value assignment x′ that minimizes the



expected regret:

ER(B,x′) =
∑

Bq∈B

PB(Bq) ·max
xBq

[E(Bq,xBq

)−E(Bq,x′)]︸ ︷︷ ︸
R(Bq,x′)

(2)

The assignment xBq

selected by the maximization operator is the
solution of the ER-DCOP with respect to Bq—i.e., E(Bq,xBq

) is
the maximal expected utility achieved with respect to Bq and its
associated xBq

. R(Bq,x′) is the regret (or loss) for a complete
value assignment x′ relative to Bq—i.e., the difference of the ag-
gregate expected utilities achieved by x′ and xBq

. Note that the
smallest value of the expected regret ER(B,x′) minimizes the ex-
pected loss over all possible joint beliefs Bq ∈ B.

In Example 1, B = 〈Be, Bu〉, PB(Be) = 12%, and PB(Bu) =
88%. We haveER(B, xa) = 12% ·(65−65)+88% ·(40−39) =
0.88 andER(B, xb) = 12% ·(65−61)+88% ·(40−40) = 0.48.
Thus, since ER(B, xa) = 0.88 > ER(B, xb) = 0.48, the value
assignment xb is the solution of the original ER-DCOP as it yields
the minimal expected regret of 0.48.

5. ER-DPOP ALGORITHM
We now describe a distributed algorithm, called Expected Regret-
DPOP (ER-DPOP), to solve ER-DCOPs. It is composed of three
phases: (1) Generation of the pseudo-tree; (2) Resolution of sub-
problems, where ER-DPOP computes an optimal solution xBq

for
each joint belief Bq ∈ B; and (3) Resolution of the main problem,
where ER-DPOP finds the solution x′ of the original ER-DCOP
that minimizes ER(B,x′). ER-DPOP makes use of repeated calls
to the DPOP algorithm [25]. We choose DPOP to develop ER-
DPOP because DPOP is one of the most popular complete DCOP
algorithms. Moreover, since DPOP is synchronous, a modification
of DPOP will allow to solve optimal solutions for every joint belief
in Phase 2 simultaneously.
Phase 1 [Generation of the pseudo-tree]: In this phase, agents co-
ordinate to build a pseudo-tree as in DPOP.
Phase 2 [Resolution of subproblems]: This phase consists of two
steps. In the first step, the original ER-DCOP is transformed into
a standard DCOP for each joint belief Bq ∈ B, where the con-
straint utilities are updated with the respective expected utilities.
More precisely, for each joint belief Bq ∈ B, a new standard
DCOP MBq

= 〈X ,D,FBq

,A, α〉 is generated where FBq

=

{fBq

1 , . . . , fBq

m } and fBq

j is a constraint—whose scope is identi-
cal to that of fj ∈ F , and whose constraint utilities are given by
fBq

j (xfj ) = E(bqj , xfj ) for each value assignment xfj of the vari-
ables in scp(fj), where bqj ∈ B

q .
In the second step, the |B| DCOPs built in the first step are

solved, following the general model of DPOP. Rather than solv-
ing each DCOP MBq

sequentially, ER-DPOP adapts the DPOP
algorithm to solve them simultaneously. Intuitively, the UTIL mes-
sages produced in this phase (referred to as UTIL2 messages) trans-
mit vectors of aggregate utilities—within such a vector, each of
aggregate utilities is with respect to a joint belief Bq ∈ B. The
VALUE messages produced in this phase (referred to as VALUE2
messages) transmit vectors of optimal value assignments—within
such a vector, each of optimal value assignments is with respect to
a DCOP MBq

. In detail, each agent ai ∈ A:
• Constructs its UTIL2 message that includes a vector ~uxsepi

(re-

ferred to as a utility vector) ~uxsepi
= (uB1

, . . . , uB|B| ) for each
value assignment xsepi of the variables in sepi, where each uBq

is the optimal utility for its subtree in the DCOP MBq

given the
value assignment xsepi .

• Constructs its VALUE2 message that includes a vector of opti-
mal value assignments x = (xB

1

, . . . , xB
|B|

) for each variable
x ∈ sepi∪{xi}, where each xB

q

is the value of x in the solution
of the DCOP MBq

.
The actions of aggregating the utilities contained in each UTIL2
message and of determining the value assignment for their vari-
ables (given the VALUE2 message from the parent agent) are per-
formed as in DPOP. Each operation is performed |B| times by each
agent, one for each joint belief in the belief space of the original
ER-DCOP. At the end of these two steps, ER-DPOP has an optimal
solution xBq

for each Bq ∈ B.
In Example 1, consider a pseudo-tree where sep1 = sep2 =
{x3} and B = 〈Be, Bu〉. The UTIL2 message of agent a1 is
~ux3=0 = (45, 35) and ~ux3=1 = (21, 15); the UTIL2 message of
agent a2 is ~ux3=0 = (20, 4) and ~ux3=1 = (40, 25). Agent a3
joins the UTIL2 messages that are received from its children a1
and a2 as: ~ux3=0 = (65, 39) and ~ux3=1 = (61, 40), and selects
its assignment solution x3 = 0 (resp. x3 = 1) as solutions for the
joint belief Be (resp. Bu).

Phase 3 [Resolution of the main problem]: Once Phase 2 termi-
nates, ER-DPOP agents can compute ER(B,x′) for every possi-
ble complete value assignment x′. To do so, ER-DPOP transforms
all MBq

DCOPs generated in the previous phase into a standard
DCOP MB = 〈X ,D,FB,A, α〉, where FB = {fB1 , . . . , fBm} and
each fBj has the same scope as fj ∈ F and its constraint utility
values are given by:

fBj (xfj ) =
∑

Bq∈B

PB(Bq) · [fBq

j (xBq

fj )− fBq

j (xfj )] (3)

for each value assignment xfj of the variables in scp(fj). In Equa-
tion (3), xBq

fj
is a value assignment of the variables in scp(fj)

from the optimal solution xBq

, computed in the previous phase
of ER-DCOP with respect to Bq . Each ER-DPOP agent computes
the constraint fBj shared among its variables and its ancestor vari-
ables without incurring any privacy loss. In Example 1, agents a1
and a2 update their constraints fB1 and fB2 , respectively, where:
fB1 (x1 = 0, x3 = 0) = 12%·(45−45)+88%·(15−35) = −17.6;
fB1 (x1 = 0, x3 = 1) = 2.88; fB2 (x2 = 0, x3 = 0) = 18.48; and
fB2 (x2 = 0, x3 = 1) = −2.4.

Once the standard DCOP MB is generated, ER-DPOP agents
solve this problem to find the minimal aggregated utility that is the
minimal expected regret using standard DPOP.2 To distinguish from
the UTIL2 and VALUE2 messages that are produced in Phase 2,
the UTIL and VALUE messages produced in Phase 3 by standard
DPOP are referred to as UTIL3 and VALUE3 messages, respec-
tively. The solution of the DCOPMB is the solution of the original
ER-DCOP. In Example 1, the solution xb (x1 = x2 = 0, x3 = 1)
is the solution for MB since it minimizes the expected regret of
0.48 and is the solution of the original ER-DCOP that models Ex-
ample 1.

6. THEORETICAL ANALYSIS
We now present some theoretical properties of ER-DPOP including
its correctness and complexity.

THEOREM 1. ER-DPOP is correct, that is, given an ER-DCOP E
over a belief space B, ER-DPOP finds a solution x′ that minimizes
ER(B,x′).

2In this phase, agents minimize their aggregated utilities rather than
maximizing them.



Proof: In Phase 2, ER-DPOP transforms the original ER-DCOP
into |B| standard DCOP MBq

= 〈X ,D,FBq

,A, α〉, where
FBq

= {fBq

1 , . . . , fBq

m } and fBq

j is a constraint whose scope
is identical to that of fj ∈ F except that its constraint utili-
ties are given by fBq

j (xfj ) = E(bqj , xfj ). Thus, the solution
xBq

of DCOP MBq

will maximize the sum of the expected
utility of the constraints in ER-DCOP w.r.t the joint belief Bq

(i.e., xBq

= argmaxxE(Bq, x)). Moreover, ER-DPOP agents
solve each MBq

simultaneously but independently. Each agent
performs the actions (i.e., aggregating the expected utilities and de-
termining its assignment solution) |B| times independently—once
is for each joint belief in B—using DPOP to construct UTIL2
and VALUE2 messages. As a result, following the correctness of
DPOP [25], at the end of Phase 2, ER-DPOP finds a solution xBq

for each Bq ∈ B that maximizes E(Bq,xBq

).
Similarly, in Phase 3, ER-DPOP solves the DCOP MB (whose

constraints are computed as in Equation (3)) to minimize the
aggregated expected regret. Thus, based on the correctness of
DPOP [25], at the end of Phase 3, ER-DPOP finds the solution
x′ ofMB that minimizesER(B,x′), which proves the correctness
of ER-DPOP. 2

Given d = max1≤i≤n |Di| andw = max1≤i≤n |sepi|, we have
the following properties:

PROPERTY 1. The number of messages required by ER-DPOP is
bounded by O(n) where n is the number of agents.

Proof: In ER-DPOP, Phase 1 requires a linear number of messages
in n [25]; Phase 2 requires (n − 1) UTIL2 messages and (n − 1)
VALUE2 messages; and Phase 3 requires (n−1) UTIL3 messages
and (n − 1) VALUE3 messages. Thus, the number of messages
required by ER-DPOP is bounded by O(n). 2

PROPERTY 2. The size of messages required by ER-DPOP is
bounded by O(dw · |B|).

Proof: In ER-DPOP, Phase 1 produces messages whose size is lin-
ear in n [25]; Phase 2 produces UTIL2 and VALUE2 messages
whose sizes are bounded by O(dw · |B|) and O(w · |B|), re-
spectively; and Phase 3 produces UTIL3 and VALUE3 messages
whose sizes are bounded by O(dw) and O(w), respectively [25].
Thus, the size of messages required by ER-DPOP is bounded by
O(dw · |B|) 2

7. ER-DPOP IMPLEMENTATIONS
The main technical challenges of ER-DCOP are its exponential
messages size and its exponential search space (Property 2). Thus,
to address these challenges, in this section, we introduce a GPU-
based and an ASP-based implementation of ER-DPOP to exploit
SIMT-style parallelism and hard constraints, respectively.

7.1 GPU-ER-DPOP
The use of a GPU-based approach to solve ER-DCOPs is motivated
by the observation that each utility vector of the UTIL2 messages
and each entry of the UTIL3 messages in Phases 2 and 3, as well
as constraints that are defined in Equation (3), can be computed
independently. Thus, they can be computed in parallel. This ob-
servation finds a natural fit for SIMT processing and, as shown in
recent works [4, 8], this is a viable approach to enhance the per-
formance of belief propagation- and dynamic programming-based
inference processes.

We thus develop GPU-ER-DPOP (GPU-based ER-DPOP imple-
mentation), which allows us to speed up the computation processes
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Figure 1: GPU Parallelization

required by Phases 2 and 3 and, as a consequence, reduces the over-
all runtime.

Figure 1 illustrates the high-level parallelization performed by
each ER-DPOP agent when computing a UTIL2 message. Our
GPU-ER-DPOP operates along three levels of parallelization:
• Each GPU-ER-DPOP agent ai computes its UTIL2i message

using G GPU-blocks: b1, . . . , bG with G = |sepi|
h

, and h being
the number of utility vectors computed within a block.
• In constructing its UTIL2i message, since computing a utility

vector for a value assignment of the variables in sepi is inde-
pendent of the computation of another utility vectors, we design
a GPU-block bj (1 ≤ j ≤ G) to compute h utility vectors in
parallel. More precisely, the GPU-block b1 computes h utility
vectors corresponding to the first h different partial value assign-
ments of variables in sepi, sorted in lexicographical order; the
GPU-block b2 computes h utility vectors corresponding to the
next h different partial value assignments of variables in sepi;
and so on.
• Within a block, we delegate the computation of each of the h

utility vectors to a group of |B| GPU-threads, each of which
is in charge of computing the optimal utility uBq

for the agent
ai’s subtree in the DCOP MBq

. This is possible since the com-
putations of different uBq

in a utility vector is associated to a
particular joint belief and, thus, are independent to each other.

Analogous parallelizations are performed by each GPU agent when
constructing UTIL3 messages and computing Equation (3).

The underlying parallelization strategy adopted in our work is
inspired to that explored in [8]. In that work, the focus is on the
parallelization of the join and projection operators used in classical
(D)COP inference-based resolution approaches. Similarly, GPU-
ER-DPOP uses a GPU-thread to compute the optimal sum of util-
ities in an agent’s subtree for a value combination of variables in
its separator. In addition, different from the previous approaches,
GPU-ER-DPOP heavily exploits the structure of the ER-DCOP
model to compute the optimal utilities, with respect to different
joint beliefs in parallel, as well as the expected regrets.

The number of threads T used in each block is a parameter that
depends on the GPU architecture. It depends on the resource used
by the GPU kernel and influences the number h of groups associ-
ated to each block. In our settings, we set T = 256 and, thus, each
block computes at most h = b 256|B| c utility vectors. As a technical



expect_f1(E, JB, X1, X3) ←
    jointBelief(JB), f1(X1, X3,  _, _),
    E = #sum { U0 * Prob, R1 : 
                          f1(X1, X3, R1, U0), 
                          belief(JB, X1, X3, R1, Prob) }.
table_row_a1(E, JB, X3) ←
   expect_f1(E, JB, X1, X3).
table_max_a1(M, JB, X3) ←
   jointBelief(JB), 
   table_max_a1(_, _, X3), 
   M = # max { E: table_row_a1(E, JB, X3) }.                  

+

table_max_a1(45, e, 0).   table_max_a1(21, e, 1).
table_max_a1(35, u, 0).   table_max_a1(15, u, 1).
table_info(a1, a3, x3, 0, 1).  

+

solution(x3, e, 0).
solution(x3, u, 1).  

 1 { row(E, JB, X1) }1 ← 
          jointBelief(JB),
          table_max_a1(E, JB, X1), 
          solution(x3, JB, X3),
          expect_f1(E, JB, X1, X3).
 solution(x1, JB, X1) ←
          jointBelief(JB),
          row(E, JB, X1).

solution(x1, e, 0).
solution(x1, u, 0).  

∏1

To agent a3 From agent a3UTIL2 message MU

VALUE2 message MV

SP1 SP’1

(a)

regret_row_a1(Regret, JB, X1, X3) ←
  jointBelief(JB), expect_f1(E, JB, X1, X3),
  expect_f1(MaxE, JB, SolX1, SolX3),
  solution(x1, JB, SolX1), 
  solution(x3, JB, SolX3),
  Regret = MaxE - E.
exp_reg_row_a1(ER, X1, X3) ← 
  regret_row_a1(_, _, X1, X3),
  ER = #sum {R * JBP/100, JB : 
             regret_row_a1(R, JB, X1, X3),
             jointBelief(JB, JBP) }.     
exp_reg_min_a1(ER, X3) ←
   exp_reg_row_a1(ER, _, X3),  
   ER = # min{ V: exp_reg_row_a1(V, _, X3) }.                  

+

exp_reg_min_a1(-17.6, 0). exp_reg_min_a1(2.88, 1).

+

er_sol(x3, 1).  

 1 { er_row(E, X1) }1 ← 
      exp_reg_row_a1(E, X1, X3) 
      er_sol(x3, X3).
 er_sol(x1, X1) ←
          er_row(E, X1).

er_sol(x1, 0).

∏1

To agent a3 From agent a3
UTIL3 message MU’

VALUE3 message MV’
MP1

MP’1

(b)

Figure 2: ASP Programs of Agent a1 for Phase 2 (a) and Phase 3 (b) in Example 1

note, the number of blocks ` that can be scheduled in parallel also
depends on the GPU architecture. In our settings ` = 14. Thus, the
number of utility vectors computed in parallel is bounded by ` · h.

7.2 ASP-ER-DPOP
Inspired by our ASP-based system that provides significant
speedup and better scalability for standard DCOPs [15], we de-
velop ASP-ER-DPOP, an ASP-based implementation of ER-DPOP.
As we have previously noted, the ASP-based approach can capital-
ize on (i) the highly-expressive ASP language to more concisely
represent constraint utilities as functions instead of explicitly enu-
merating them, and (ii) the highly-optimized ASP solvers to exploit
problem structures such as pruning the search space based on hard
constraints. We note that we did observe the same trend in our
experiments (see Section 8).

We now present ASP-ER-DCOP. In this framework, each agent
ai is composed of the agent specification Πi and its controller Ci.

Specifying an ER-DCOP: An ER-DCOP is encoded as a set of
answer set programs {Πi|ai ∈ A}. Each Πi encodes information
about: (i) the agent ai, (ii) the variable xi and its domain, (iii) the
neighboring agents in the constraint graph, their variables, and their
variables’ domain, (iv) the constraints whose scope includes the
variable xi, (v) the belief space and its probabilistic model, and
(vi) the beliefs for the constraints encoded in Πi. Figure 3 shows
the answer set program Π1 for the ER-DCOP in Example 1.

  agent(a1).                    variable(x1, 0).            
  neighbor(a3).              variable(x3, 0..1).
  scope(f1, x1).              scope(f1, x3).
  f1(0, 0, 0, 0).               f1(0, 0, 1, 50).          
  f1(0, 1, 0, 0).               f1(0, 1, 1, 30).                 
  jointBelief(e, 12).        jointBelief(u, 88).
  belief(e, 0, 0, 0, 10).    belief(e, 0, 0, 1, 90).    
  belief(e, 0, 1, 0, 30).    belief(e, 0, 1, 0, 70).
  belief(u, 0, 0, 0, 30).    belief(u, 0, 0, 1, 70).   
  belief(u, 0, 1, 0, 50).    belief(u, 0, 1, 0, 50). 

Figure 3: Answer Set Program Π1 for Example 1

Encoding Messages: Messages in Phases 2 and 3 (i.e., UTIL2,
UTIL3, VALUE2, and VALUE3 messages) are encoded as ASP
facts. For the UTIL2 and UTIL3 messages, each optimal utility,
along with its corresponding (i) value assignment of the respective
variables and (ii) joint belief (for only UTIL2 messages) is repre-
sented as a fact (see messages MU and MU′ in Figure 2). Upon
receiving a UTIL2 or UTIL3 message, an agent is able to under-
stand the mapping between the values in such facts to the corre-
sponding variables via the information provided by another facts of

the form table_info (see message MU in Figure 2) included also
in that message. Similarly, for VALUE2 and VALUE3 messages,
a solution of a variable (along with its respective joint belief for
VALUE2 messages) is encoded as a fact (see messages MV and
MV ′ in Figure 2).
Agent Controller: The agent controllerCi consists of a set of rules
for communication (sending, receiving, and interpreting messages)
and a set of rules for generating ASP programs that computes mes-
sages in Phases 2 and 3. Due to space constraints, we omit the
detailed code of Ci, but we describe its functionality below.

ASP-ER-DPOP has the same phases as ER-DPOP. In Phase 1,
the controllers Ci construct a pseudo-tree, and information about
the parent, children, and pseudo-parents of ai are added to Πi. In
Phase 2, after receiving UTIL2 (resp. VALUE2) messages as sets
MU (resp. MV ) of facts from children (resp. parent) agent(s), Ci

generates a set SPi (resp. SP ′i ) of rules (see Figure 2(a)), then
computes an answer set of the program Πi ∪ SPi ∪ MU (resp.
Πi ∪SP ′i ∪MV ). Such an answer set is the encoded UTIL2 (resp.
VALUE2) message of agent ai to be sent to its parent (resp. chil-
dren) agent(s). In Phase 3, after receiving UTIL3 (resp. VALUE3)
messages as sets MU′ (resp. MV ′ ) of facts from children (resp.
parent) agent(s), Ci generates a set MPi (resp. MP ′i ) of rules
(see Figure 2(b)), then computes an answer set of the program
Πi ∪MPi ∪MU′ (resp. Πi ∪MP ′i ∪MV ′ ). Such an answer set is
the encoded UTIL3 (resp. VALUE3) message of agent ai to sent to
its parent (resp. children) agent(s). The original ER-DCOP’s solu-
tion for variable owned by ai is included in the VALUE3 message
in this phase.

The controller is written in SICStus Prolog. We use CLASP [9] as
our ASP solver and the SICStus Linda library for communication.

8. EXPERIMENTAL RESULTS
Since there are no other ER-DCOP solvers, a direct comparison
with other systems is not feasible. We implemented another ER-
DCOP solver, referred to as Frodo-ER, which differs from both
ASP-ER-DPOP and GPU-ER-DPOP as follows: Frodo-ER gen-
erates a sequence of |B| DCOP problems MBq

and solves them
sequentially using DPOP in Phase 2. In contrast, ASP-ER-DPOP
and GPU-ER-DPOP solves them simultaneously. Frodo-ER uses a
publicly-available and widely-used implementation of DPOP [17].

In addition, to compare the actual regret of the solutions of the
UR-DCOP and ER-DCOP models, we implemented Iterative Con-
straint Generation Max-Sum (ICG Max-Sum) [29], a UR-DCOP
solver, using a publicly-available implementation of Max-Sum.3

We compare ASP-ER-DPOP (abbreviated to ASP-ER) and
GPU-ER-DPOP (abbreviated to GPU-ER) against Frodo-ER. All
3https://code.google.com/p/jmaxsum/



Algorithm |X | |Di| |B| p1
8 13 18 23 4 6 8 10 12 5 30 50 70 90 0.4 0.5 0.6 0.7 0.8

ASP-ER 3.1 9.4 44.1 120.8 4.5 8.9 22.2 80.4 121.2 7.8 26.5 32.9 39.2 44.9 5.6 7.6 8.1 8.6 13.7
GPU-ER 0.1 0.2 − − 0.1 0.1 1.2 4.8 15.4 0.2 0.5 0.8 1.1 2.4 0.1 0.1 0.2 0.7 1.7
Frodo-ER 0.3 61.1 − − 1.8 33.6 143.2 − − 42.2 86.5 113.7 117.1 131.5 1.1 4.8 45.1 118.5 196.1

(a)

Algorithm p2
0.4 0.5 0.6 0.7 0.8

ASP-ER 85.8 16.9 7.7 5.8 5.5
GPU-ER 0.2 0.2 0.3 0.2 0.3
Frodo-ER 42.6 42.3 39.6 41.3 41.2

(b)

|B| Better Worse Equal V̄UR−DCOP R̄ER−DCOP

5 45 % 20 % 35 % 17.21 12.31
10 36 % 28 % 36 % 20.08 18.22
15 47 % 20 % 33 % 20.47 14.33

(c)

|B| ICG ASP-ER
5 4.4 2.9
10 50.2 3.0
15 222.9 3.2

(d)

Table 2: Experimental Results of Random Graphs
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Figure 4: Experimental Results of Power Network Problems

algorithms use the same pseudo-tree for fair comparisons. We mea-
sure the runtime of the algorithms using the simulated runtime met-
ric [27]. All experiments are performed on a Quadcore 2.2GHz ma-
chine with 8GB of memory. The GPU device adopted is a GeForce
GTX TITAN with 14 multiprocessors, and a clock rate of 837
MHZ. If an algorithm fails to solve a problem, it is due to mem-
ory limitations. We conduct our experiments on random graphs [6]
(for comparing ASP-ER and GPU-ER against Frodo-ER) and on
comprehensive optimization problems in power networks [11] (for
comparing ASP-ER against Frodo-ER).

Random Graphs: We create an n-node network, whose con-
straint density p1 produces bn (n − 1) p1c edges in total [6]. In
these experiments, we vary the number of variables |X |; the do-
main size |Di|; the constraint density p1; the constraint tightness
p2, defined as the percentage of forbidden value combinations in a
constraint; and the belief space size |B|. For each experiment, we
vary only one parameter and fix the others to their “default” values:
|A| = |X | = 13, |Di| = 6, p1 = p2 = 0.6, |B| = 5. We set
the timeout to 30 minutes. Tables 2(a) and 2(b) show the average
runtimes (in seconds) for the solved instances (out of 30 instances).
An algorithm fails to solve a configuration if it cannot solve at least
15 instances of that configuration.

We observe that ASP-ER is slower than Frodo-ER when the
problem is less complex than the one with the default configuration.
However, ASP-ER is able to solve more problems and is faster than
Frodo-ER when the problem becomes more complex (i.e., increas-
ing |X |, |Di|, p1, p2, or |B|). The reason is that, unlike Frodo-ER
agents, ASP-ER agents are able to prune a significant portion of the
search space thanks to hard constraints. In detail, the search space
does not include infeasible value combinations of the respective
variables, and the size of the search space pruned increases with
the complexity of the instances. The benefit of pruning is clearly
seen at increasing p2, i.e., while the runtimes of Frodo-ER are sim-
ilar, those of ASP-ER decrease significantly as there are more hard
constraints.

We also observe that GPU-ER is consistently faster than Frodo-
ER and ASP-ER. Its use of SIMT-based parallelism is very effec-
tive at computing the independent utility vectors (or UTIL3 en-
tries), which results in large speedup. However, as for Frodo-ER, it
cannot scale to problems as large as those solved by ASP-ER (the
settings with |X | ∈ {18, 23}). This is due to the basic GPU-ER
strategy adopted, which does not prune the search space based on
hard constraints, resulting in analogous memory requirements as
those of Frodo-ER.

We notice that, in Table 2(a), Frodo-ER reaches a timeout for
|Di|> 8 while both ASP-ER and GPU-ER can solve such experi-
ments. This is due to that the size of the UTIL tables increases sub-
stantially when the domain size increases (Property 2), and ASP-
ER and GPU-ER can scale to |Di|=12 (due to the effect of pruning
in ASP-ER, and to the exploited thread-parallelism in GPU-ER),
while Frodo-ER operates sequentially on such tables.

Power Network Problems: In this domain [11], each agent repre-
sents a node with consumption, generation, and transmission pref-
erences, and a global cost function. Constraints include the power
balance and no power loss principles, the generation and consump-
tion limits, and the capacity of the power line between nodes. How-
ever, in reality, there is loss in power transmissions, and a stochastic
constraint utility function is suited for representing this loss. The
loss depends on how much power is transferred and on external
factors (e.g., ambient temperature and the quality of power lines).
If there are no losses, the objective is to minimize the global cost
function. In the presence of losses, the objective is to minimize the
regret of the achieved global cost function over different possible
losses.

We use three network topologies, defined using the IEEE Dis-
tribution Test Feeder 2014 standards, and vary the domain size of
the generation, load, and transmission variables of each agent from
3 to 15. We use three levels of losses (|Sj | = 3) corresponding
to the loss of 10%, 30%, and 60% of the power transferred, and
|B| = 3. Figure 4 shows the runtime of ASP-ER and Frodo-ER



in milliseconds. The results in Figure 4 are consistent with those
shown earlier.

Despite ER-DPOP having space-exponential message sizes, we
believe that it is scalable in solving real application domains
(e.g., in the power network domain with a 124 Bus topology, we
can solve problems with |X | = 748 and |F| = 497). We also
observe that ASP-ER has better scalability in the power network
problems than in random graphs because the power network prob-
lems exhibit more structure than random graphs, and their under-
lying constraint graphs have small induced width and, thus, small
separator sets.
Comparison Between UR-DCOP and ER-DCOP Models: In
addition, we compare the solution quality of ER-DCOP and UR-
DCOP models in terms of actual regret. After generating UR-
DCOP instances, we augment a probability for each joint belief
according to a normal distribution, as: PB∼N ( |B|

2
, |B|

5
). For each

instance, the two solutions—one is with respect to the UR-DCOP
model, and the other is with respect to the ER-DCOP model—are
computed. The actual regrets of those solutions are achieved by
(i) picking a joint belief in the belief space based on the distribution
PB, and (ii) calculating the actual regret of each of those solutions
relative to the picked joint belief.

In this experiment, we generate 1000 instances for each con-
figuration with |A| = |X | = 8, |Di| = 3, p1 = 0.5, p2 = 0,
and |B| ∈ {5, 10, 15}. Table 2(c) compares the quality of ER-
DCOP and UR-DCOP solutions over 1000 instances where “bet-
ter”, “worse”, and “equal” columns indicate the number of times,
in percentage, that the regret of the ER-DCOP solution is less than,
greater than, and equal to the regret of the UR-DCOP solution of
the same instance, respectively. It also reports the average regret of
UR-DCOP (V̄UR−DCOP ) and ER-DCOP (R̄ER−DCOP ) solutions
over those 1000 instances. Table 2(d) shows the average runtimes
(in seconds) for ICG Max-Sum (abbreviated to ICG) and ASP-ER
to solve those instances.4 The ER-DCOP model yield solutions
with smaller average regret than the UR-DCOP model when the
probabilities of joint beliefs have a normal distribution. We also
notice that ER-DCOP solutions can be worse than UR-DCOP so-
lutions. This happens whenever a joint belief associated to a low
probability, yet producing a high regret, actually happens. Further-
more, ASP-ER is consistently faster than ICG, due to the presence
of cycles in the constraint graphs, which affect the convergence
time of ICG (which is based on Max-Sum).

9. DISCUSSION
ER-DCOPs is closely related to UR-DCOPs [29] as both extend
DCOPs to deal with stochastic utilities. It is therefore worth to
discuss their main differences. The main difference lies in that ER-
DCOP removes the independence assumption between the belief
of a random variable and the values of decision variables. We ob-
serve that ER-DCOPs can be used to model UR-DCOP instances
by considering, in every joint belief, the conditional probabilities of
a random variable given different value assignments of the respec-
tive variables are identical (i.e., bj(rj |xfj ) = bj(rj |x′fj ) where
xfj and x′fj are two arbitrary different value assignments of vari-
ables in scp(fj)). In this sense, ER-DCOPs are more expressive
than UR-DCOPs. The second main difference between UR-DCOP
and ER-DCOP is the notion of a solution in each framework. While
UR-DCOPs minimize the worst-case loss, ER-DCOPs aim to min-
imize the expected regret. Although we believe that each approach
4Although ICG Max-Sum does not solve UR-DCOPs optimally [29], we
use it as it is the only known UR-DCOP solver. The UR-DCOP results in
Table 2(c) are computed using an optimal centralized solver.

has its own merit, we note that ER-DCOPs might yield better re-
sults in term of actual regrets as shown in our experiments.

In general, abstract distributed optimization problems can be for-
mulated as n-player coordination games. Thus, Bayesian Games
(BGs) and Potential Games (PGs) may be used to model same sce-
narios as ER-DCOP. However, for BGs, the common prior belief is
independent from the joint actions of the respective players (e.g.,
Harsanyi’s [13] and Aumann’s [2] models). Thus, as beliefs of
random variables can be dependent to the decision variables in ER-
DCOP, representing ER-DCOPs using BGs is not a straightforward
matter. Moreover, for PGs, key differences between DCOPs and
PGs are as follows: (i) DCOPs assume that the agents are cooper-
ative while agents may be competitive in PGs; (ii) DCOPs aim at
finding a (global) optimal solution for the potential function, while
PGs aim at finding an equilibrium outcome, which correspond to
a local optima of the potential function; and (iii) DCOPs require a
distributed solution approach while PGs do not have such a strict re-
quirement (though solution approaches like best response can also
be thought of as distributed approaches).

Finally, we observe that researchers have also used Graphical
Models (GMs) to model conditional independence/dependencies
between variables in combinatorial optimization problems
(e.g., [21]). GMs and ER-DCOPs are different as: (i) ER-DCOP’s
random variables exhibit different probabilities for each joint
belief, while in typical GMs, this cannot be straightforwardly
applied, and (ii) GMs are typically used to capture the conditional
dependence between random variables, while ER-DCOPs repre-
sent conditional dependence between decision variables that are
controlled by agents and random variables that are beyond the
direct control of agents.

10. CONCLUSIONS
In this paper, we proposed ER-DCOPs to model DCOPs with
uncertainty in constraint utilities. Differently from another ap-
proaches, it allows to represent the beliefs about exogenous fac-
tors, which possibly depend on the decision variables, and it fo-
cuses on minimizing the expected regret. To solve ER-DCOPs, we
proposed a distributed algorithm, called ER-DPOP, which is com-
plete and requires a linear number of messages in the number of
agents in the problem. In addition, we presented two implementa-
tions for ER-DPOP: One which harnesses the parallelism offered
by GPUs to speed up the process of solving ER-DCOPs, and an-
other which uses ASP and exploits logic programming-based infer-
ence rules to prune the solution search space. Such approaches take
advantage from two orthogonal means of exploiting the ER-DCOP
structure. Our experimental evaluation shows that ER-DCOP solu-
tions outperform corresponding UR-DCOP solutions in terms of
the actual regret, and that both ER-DPOP implementations out-
perform a straightforward repeated application of state-of-the-art
DCOP solver (i.e., DPOP) in terms of better scalability and run-
time.
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