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ABSTRACT
Fringe-Saving A* is an incremental version of A* that re-
peatedly finds shortest paths from a fixed start cell to a
fixed goal cell in a known gridworld in case the traversabil-
ity of cells changes over time. It restores the content of
the OPEN and CLOSED lists of A* at the point in time
when an A* search for the current search problem could de-
viate from the A* search for the previous search problem.
Thus, Fringe-Saving A* reuses the beginning of the previ-
ous A* search that is identical to the current A* search.
In this paper, we generalize the correctness proof of Fringe-
Saving A* to cover the case where the goal cell changes over
time in addition to the traversability of cells. We then ap-
ply Fringe-Saving A* to the problem of moving an agent
along a shortest path from its current cell to a fixed desti-
nation cell in a known gridworld, where the shortest path is
replanned whenever the traversability of cells changes. Un-
fortunately, our experimental results show that the resulting
Dynamic Fringe-Saving A* algorithm tends to be dominated
by either repeated A* searches or D* Lite (a state-of-the-art
incremental version of A*).1
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1This paper is an updated version of our original paper. We
updated the experimental results after we noticed a problem
in the implementation of our experiments: We performed
the experiments in gridworlds of size 1000 x 1000. After
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we intended to block a certain number of randomly chosen
unblocked cells and unblock the same number of randomly
chosen blocked cells. We had ported code to a different
operating system and, in the process, changed the random
number generator. The new random number generator used
to determine these cells generated random numbers in the
range from 0 to 32,767 only, which is too small to choose
among all cells. We apologize for this very embarassing pro-
gramming mistake.
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1. INTRODUCTION
Search is about finding shortest paths, say from a fixed

start cell to a fixed goal cell in a known gridworld. One has
to search repeatedly if the traversability of cells changes over
time. In this case, incremental search algorithms reuse infor-
mation from previous searches to speed up the current search
and hence are often able to find shortest paths much faster
than is possible by searching from scratch [4]. There are
three different classes of incremental versions of A*. Search
algorithms from Class 1 start an A* search at the point
where the current A* search deviates from the previous one.
An example is Fringe Saving A* (FSA*) [7], which is related
to iA* by Peter Yap (unpublished). Search algorithms from
Class 2 update the h-values from the previous A* search
during the current A* search to make them more informed
[1]. An example is Generalized Adaptive A* [8]. Search al-
gorithms from Class 3 update the g-values from the previous
A* search during the current A* search to correct them when
necessary, which can be interpreted as transforming the A*
search tree of the previous A* search to the A* search tree
of the current A* search. An example is Lifelong Planning
A* (LPA*) [3]. In this paper, we are interested in finding
shortest paths for series of similar search problems from a
fixed start cell to a goal cell in a known gridworld in case the
goal cell changes over time in addition to the traversability
of cells. Generalized Adaptive A* from Class 2 can han-
dle such series of similar search problems, and LPA* from
Class 3 has been extended to D* Lite [2] to handle them.
However, no search algorithm from Class 1 is known to han-
dle them. We therefore show in this paper that FSA* can
handle them as well because its restored CLOSED list con-
tains those cells expanded in all previous A* searches whose
g-values and parent pointers are still guaranteed to be cor-
rect. We then apply it to the problem of moving an agent
along a shortest path from its current cell to a fixed desti-
nation cell in a known gridworld, where the shortest path is



replanned whenever the traversability of cells changes. Un-
fortunately, our experimental results show that the resulting
Dynamic Fringe-Saving A* algorithm tends to be dominated
by either repeated A* searches or D* Lite (a state-of-the-art
incremental version of A*).

2. SEARCH PROBLEMS AND NOTATION
Consider a finite gridworld with blocked and unblocked

cells. S denotes the set of unblocked cells. Succ(s) ⊆ S de-
notes the set of unblocked neighbors of cell s ∈ S. The cost
of moving from an unblocked cell to an unblocked neighbor is
one. The cost of moving between any other pair of cells is ∞.
FSA* finds shortest paths from a fixed start cell sstart ∈ S
to a fixed goal cell sgoal ∈ S whenever the traversability
of cells changes over time, always knowing which cells are
currently blocked. We describe A* before we describe FSA*
since FSA* uses A*.

3. A*
A* is arguably the most popular search algorithm in ar-

tificial intelligence. We describe the version of A* shown in
Figure 1 that is similar to the version of A* used by FSA*.

3.1 Values
A* maintains five values for every cell s: (1) The h-

value h(s) is an approximation of the distance from cell s
to the goal cell. We require the h-values to be consistent
[6]. (2) The g-value g(s) is the length of the shortest path
from the start cell to cell s found so far. (3) The f-value
f(s) := g(s) + h(s) is an estimate of the length of a short-
est path from the start cell via cell s to the goal cell. (4)
The parent pointer Parent(s) points to the parent of cell
s in the A* search tree. The parent pointers are used to
extract the path after the A* search terminates. (5) The
expansion order ExpandedId(s) specifies that A* expanded
the cell ExpandedId(s)th, where ExpandedId(sstart) = 0 and
ExpandedId(s) = ∞ for unexpanded cells s (not shown in
the pseudocode)

3.2 OPEN and CLOSED Lists
A* maintains two data structures: (1) The OPEN list is

a priority queue that contains all cells to be considered for
expansion. OPEN.Insert(s) inserts cell s into the OPEN
list if it is not already contained in it; and OPEN.Pop()
removes a cell with the smallest f-value from the OPEN list
and returns it. (2) The CLOSED list is a set that contains
all cells that have already been expanded.

3.3 Algorithm
A* repeats the following procedure until the OPEN list

is empty (Line 20) or it has expanded the goal cell (Line
13): It removes a cell s with the smallest f-value from the
OPEN list (Line 08), inserts the cell into the CLOSED list
(Line 09), sets its expansion order (Line 10) and expands it
by performing the following operations for each unblocked
neighbor s′ ∈ Succ(s) of cell s: If cell s′ is not in the OPEN
or CLOSED lists or g(s)+1 < g(s′), then A* generates the
cell by assigning g(s′) := g(s)+1, setting the parent pointer
of cell s′ to cell s, and then inserting cell s′ into the OPEN
list (Lines 17-19).

3.4 Properties

function ComputeShortestPath()
{01} m := 0;
{02} g(sstart) := 0;
{03} Parent(sstart) := NULL;
{04} OPEN := ∅;
{05} OPEN.Insert(sstart);{06} CLOSED := ∅;
{07} While OPEN �= ∅
{08} s := OPEN.Pop();
{09} CLOSED := CLOSED ∪ {s};
{10} ExpandedId(s) := m;
{11} m := m + 1;
{12} If s = sgoal
{13} Return “path found”;
{14} Else
{15} Forall s′ ∈ Succ(s)
{16} If ((s′ /∈ OPEN And s′ /∈ CLOSED) Or g(s) + 1 < g(s′))
{17} g(s′) := g(s) + 1;
{18} Parent(s′) := s;
{19} OPEN.Insert(s′);
{20} Return “no path found”;

Figure 1: Pseudocode of A*

A* has the following properties [6].

• A* Property 1: The sequence of f-values of the
expanded cells is monotonically non-decreasing.

• A* Property 2: A* terminates.

• A* Property 3: The g-value and parent pointer
of any cell are correct when it is expanded and then
do not change any longer, that is, the g-value of an
expanded cell is equal to the distance from the start cell
to the cell and a shortest path from the start cell to the
cell can be identified in reverse by following the parent
pointers from the cell to the start cell. We consider the
goal cell expanded after the A* search terminates on
Line 13 since the goal cell has this property then, which
implies that A* finds a shortest path from the start cell to
the goal cell if it terminates because it expands the goal cell.

• A* Property 4: No path exists from the start
cell to the goal cell if A* terminates because the OPEN list
is empty.

4. FSA*
Assume that the traversability of some cells changes af-

ter an A* search. We refer to the A* search before the
traversability change as previous A* search and to the A*
search after the traversability change as current A* search.
The current A* search initially expands the same cells in
the same order as the previous A* search. FSA* restores
the state of the previous A* search (given by the content of
its OPEN and CLOSED lists and the g-values and parent
pointers of the cells contained in them) at the point in time
when the current A* search could deviate from the previous
A* search, that is, when the current A* search encounters
a cell whose traversability changed. FSA* then starts an
A* search at that point in time rather than performing it
from scratch. Thus, it reuses the beginning of the previous
A* search that is identical to the current A* search. The
complete pseudocode of FSA* is given in [7]. We illustrate
its operation with an example. Consider an A* search in the
four-neighbor gridworld with start cell E6 and goal cell E2
shown in Figure 2(a). We break ties among cells with the
same smallest f-value in favor of a cell with the largest g-
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Figure 2: Example Search Problem with Fixed Goal Cell

value. Every generated cell contains its g-value in the upper
left corner, its h-value (here: Manhattan distance to the goal
cell) in the upper right corner and its f-value in the lower left
corner. The outgoing arrow shows its parent pointer. Every
expanded cell also contains its expansion order in the lower
right corner. Assume that cell C3 becomes blocked after the
A* search. FSA* then executes the following steps.

4.1 Step 1: Restoration of the CLOSED List
FSA* first restores the CLOSED list. Assume for now

that, as for our example, only one cell s′ changed its
traversability. FSA* determines a value for m so that
the current A* search expands at least every cell s with
ExpandedId(s) < m in the same order as the previous A*
search.

• If cell s′ became blocked, then the current A* search
expands at least every cell s with ExpandedId(s) <
ExpandedId(s′) in the same order as the previous A* search.
Thus, FSA* sets

m := m(s′) := ExpandedId(s′). (1)

For our example, cell C3 became blocked and
m := ExpandedId(C3) = 11.

• If the start cell became unblocked, then the cur-
rent A* search needs to be run from scratch. If
cell s′ �= sstart became unblocked, then the cur-
rent A* search expands at least every cell s with
ExpandedId(s) < 1 + min

s′′∈Succ(s′) ExpandedId(s′′) in

the same order as the previous A* search. Thus, FSA* sets

m := m(s′) := 1 + min
s′′∈Succ(s′)

ExpandedId(s′′). (2)

If several cells s′ ∈ S′ ⊆ S changed their traversability,
then the current A* search expands at least every cell s with
ExpandedId(s) < mins′∈S′ m(s′) in the same order as the
previous A* search. Thus, FSA* sets m := mins′∈S′ m(s′).
The restored CLOSED list then contains every cell s with
ExpandedId(s) < m. FSA* thus determines the restored
CLOSED list by setting the value of m, which tends to be
much faster than having to expand all cells in the restored
CLOSED list again. The g-values and parent pointers of the
cells in the restored CLOSED list are still correct. For our
example, the restored CLOSED list contains the first ten
cells expanded by the previous A* search, namely cells E6,

E5, E4, F4, D4, F5, D5, F6, D6 and C4, which are shown
in grey in Figure 2(b).

4.2 Step 2: Early Termination of Iteration
FSA* checks whether it can skip replanning. If the goal

cell is in the restored CLOSED list, then FSA* skips replan-
ning because the shortest path from the start cell to the goal
cell found by the previous A* search remains a shortest path.
If the start cell is blocked, then FSA* skips replanning be-
cause there is no path from the start cell to the goal cell. If
the start cell is unblocked and not in the restored CLOSED
list, then FSA* performs an A* search from scratch. Oth-
erwise, FSA* proceeds to prepare for replanning. For our
example, the start cell is in the restored CLOSED list but
the goal cell is not.

4.3 Step 3: Restoration of the OPEN List
FSA* restores the OPEN list at the point in time when the

previous A* search had expanded the cells in the restored
CLOSED list. The OPEN list (= fringe, which gives FSA*
its name) at this point in time contains the unblocked cells
that are not in the restored CLOSED list but are neighbors
of one of more cells in the restored CLOSED list. FSA*
does not necessarily restore all of the OPEN list but only
the relevant part of the OPEN list. The relevant part of
the OPEN list contains those cells in the OPEN list that
are not separated from the goal cell by cells in the restored
CLOSED list. First, FSA* identifies an anchor cell among
the cells that are not in the restored CLOSED list but are
neighbors of one or more cells in the restored CLOSED list.
It follows a shortest path from the goal cell to the start cell
under the assumption that all cells are unblocked until it is
about to move from a cell not in the restored CLOSED list
to a cell in the restored CLOSED list. The current cell then
is the anchor cell. For our example, cell E3 is the anchor
cell, as shown in Figure 2(b). Second, FSA* identifies the
cells that belong to the restored OPEN list. The cells in the
restored CLOSED list form a contiguous area since they are
all reachable from the start cell. FSA* follows the outside
perimeter of this contiguous area, starting with the anchor
cell, and inserts all unblocked cells that are neighbors of one
or more cells in the restored CLOSED list into the restored
OPEN list. FSA* thus restores the OPEN list by following
the outside perimeter of the restored CLOSED list, which
tends to be faster than having to expand all cells in the
restored CLOSED list again. For our example, FSA* follows
the grey arrows shown in Figure 2(b). The restored OPEN
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Figure 4: A* Search Trees

list contains cells B4, C5 and C6. The g-values and parent
pointers of cells in the restored OPEN list are not necessarily
correct. For each cell in the restored OPEN list that just
became unblocked or whose parent pointer points to a cell
that is not in the restored CLOSED list, FSA* therefore
finds a neighbor of the cell in the restored CLOSED list
with a smallest g-value. It then sets the g-value of the cell
in the restored OPEN list to the g-value of that neighbor
plus one and the parent pointer of the cell in the restored
OPEN list to that neighbor. For our example, the g-values
and parent pointers of all cells in the restored OPEN list are
correct right away.

4.4 Step 4: Starting A*
FSA* finally replans by starting an A* search with the

restored OPEN and CLOSED lists. The expansion order of
the first cell s expanded by the A* search is ExpandedId(s) =
m. For our example, the A* search reuses the ten cells in
the restored CLOSED list and expands eight cells, as shown
in Figure 2(c). A current A* search, on the other hand,
would expand eighteen cells, including the ten cells reused
by FSA*, as shown in Figure 2(d).

5. RE-INTERPRETING FSA*
FSA* finds shortest paths for series of search problems

from a fixed start cell to a fixed goal cell in a known grid-
world in case the traversability of cells changes over time.
It restores the OPEN and CLOSED lists of the previous
A* search at the point in time when the current A* search
could deviate from it. For our example, we assumed that
cell C3 becomes blocked and discussed the steps that FSA*
executes. Figure 4(a) illustrates the relationships graphi-
cally. The previous A* search tree is A-E-G-A. Then, the
traversability of a cell changes, as denoted by the cross. The
current A* search tree is A-B-D-F-C-A. It is guaranteed to
contain all of the previous A* search tree up to the change in
traversability, which is A-B-C-A. This part therefore forms
the restored CLOSED list, shown in grey. However, we are
interested in finding shortest paths from a fixed start cell
to a goal cell in a known gridworld in case the goal cell
changes over time in addition to the traversability of cells.
For our example, we assume now that cell C2 becomes the
goal cell in addition to cell C3 becoming blocked, as shown
in Figure 3(b). If FSA* executes the same steps as before,
it no longer restores the OPEN and CLOSED lists of the
previous A* search at the point in time when the current
A* search could deviate from it. For example, the restored
CLOSED list contains the cells E6, E5, E4, F4, D4, F5,
D5, F6, D6 and C4 as before (listed in the order in which
the previous A* search expanded them), shown in Figure

3(b), but the current A* search does not expand cells F4,
F5 and F6 and expands the remaining cells in the different
order E6, E5, E4, D4, C4, D5 and D6, as shown in Figure
3(d). Fortunately, it is unnecessary to change FSA* because
its restored CLOSED list contains those cells expanded in
all previous A* searches whose g-values and parent pointers
are still guaranteed to be correct. They can thus be reused
by the current A* search. This property continues to hold
when the goal cell changes since the correctness of the g-
values and parent pointers does not depend on the goal cell.
The current A* search might not reuse all of the cells in the
restored CLOSED list but future A* searches might. Figure
4(b) illustrates these relationships graphically. The previ-
ous A* search tree is H-L-N-H. Then, the goal cell changes
in addition to the traversability of a cell, as denoted by the
cross. The current A* search tree is H-M-O-K-H. It does not
contain all of the previous A* search tree up to the change in
traversability, which is H-I-J-H. However, it contains part of
it. The other part can become again important in the future,
for example, if the goal cell changes back to the previous one.
Both parts therefore form the restored CLOSED list, shown
in grey. FSA* finally replans by starting an A* search with
the restored OPEN and CLOSED lists. For our example,
this A* search reuses the ten cells in the restored CLOSED
list and expands six cells, as shown in Figure 3(c). The cur-
rent A* search, on the other hand, would expand thirteen
cells, including seven of the ten cells reused by FSA*, as
shown in Figure 3(d).

5.1 Correctness Proof
We now generalize the correctness proof of FSA* to cover

the case where the goal cell changes over time in addition to
the traversability of cells. The correctness proof of FSA* in
case the goal cell remains fixed is simple since one can argue
that FSA* restores the state of the previous A* search at
the point in time when the current A* search could deviate
from it and then apply the correctness proof of A*. This
argument does not apply in case the goal cell changes over
time since the restored CLOSED list might contain cells
that are never in the CLOSED list of the current A* search
and those cells that are in both CLOSED lists and are thus
expanded by both the previous and current A* search can
be expanded in different orders.

Theorem 1. Assume that the goal cell is not in the re-
stored CLOSED list, that the start cell is in the restored
CLOSED list, g(sstart) = sd(sstart) = 0 and, for every
cell s �= sstart in the restored CLOSED list, Parent(s)
is in the restored CLOSED list, ExpandedId(Parent(s)) <
ExpandedId(s) and g(s) = g(Parent(s)) + 1 = sd(s), where
sd(s) is the distance from the start cell to cell s. Then, the
current A* search with the restored CLOSED and OPEN
lists finds a shortest path from the start cell to the goal cell
if a path exists and otherwise reports that no path exists.
Furthermore, g(sstart) = sd(sstart) = 0 and, for every cell
s �= sstart in the CLOSED list after the current A* search,
Parent(s) is in the CLOSED list, ExpandedId(Parent(s)) <
ExpandedId(s) and g(s) = g(Parent(s)) + 1 = sd(s).

Proof Sketch: The standard A* correctness proof
applies almost unchanged to the A* search performed by
FSA*. We give an abbreviated version of such a proof here.

• A* always expands a cell s with the smallest f-value
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Figure 3: Example Search Problem with Changing Goal Cell

in the OPEN list and then replaces it in the OPEN list
with zero or more of its unblocked neighbors s′ ∈ Succ(s).
These neighbors become the children of cell s in the A*
search tree. A* sets Parent(s′) = s (where cell s is now in
the CLOSED list) and g(s′) = g(s)+1 = g(Parent(s′))+1.
The f-values of these neighbors are no smaller than the
f-value of cell s since the h-values are consistent. Thus,
the f-values along any branch of the A* search tree are
monotonically nondecreasing (Monotonicity Property 1).
Furthermore, the f-value of all cells in the resulting OPEN
list (including the cell that will be expanded next) are no
smaller than the f-value of cell s. Thus, the sequence of f-
values of the expanded cells is monotonically non-decreasing
(Monotonicity Property 2).

• Assume that A* expands a cell s with f-value
f(s) = g(s) + h(s) and later expands it again with f-
value f ′(s) = g′(s) + h(s). Then, f(s) ≤ f ′(s) according to
Monotonicity Property 2 and thus g(s) ≤ g′(s). Thus, A*
expands a cell only once since it cannot decrease its g-value
further.

• Assume that A* expands a cell s for the first time
with f-value f(s) = g(s) + h(s) and that sd(s) < g(s).
Then, there exists a path of length sd(s) from the start
cell to cell s. The f-value of cell s on this path is
f ′(s) = sd(s) + h(s). The f-values of all cells on this path
are no larger than f ′(s) according to Monotonicity Property
1, where f ′(s) < f(s). At least one of them is always in
the OPEN list (starting with the restored OPEN list) since
every path from the start cell to the goal cell passes through
the restored OPEN list. A* always expands a cell with the
smallest f-value in the OPEN list and thus expands all cells
on the path before it expands cell s with f-value f(s). Thus,
it expands cell s for the first time with f-value f ′(s), which
is a contradiction. Thus, A* expands a cell s for the first
time with f-value f(s) = sd(s) + h(s). When A* expands
cell s, the cell satisfies that g(s) = g(Parent(s))+1 = sd(s)
and Parent(s) is already in the CLOSED list, which implies
that ExpandedId(Parent(s)) < ExpandedId(s).

• Assume that A* never expands the goal cell although
there exists a path from the start cell to the goal cell. Since
A* never expands the goal cell, the sequence of g-values of
the expanded cells and thus also the sequence of f-values
of the expanded cells goes towards infinity. The f-value
of the goal cell on a shortest path from the start cell to

the goal cell is f(sgoal) = sd(sgoal) and thus finite since
there exists a path from the start cell to the goal cell. The
f-values of all cells on the path are no larger than f(sgoal)
according to Monotonicity Property 1 and thus finite. At
least one of them is always in the OPEN list, for the reason
given above. A* always expands a cell with the smallest
f-value in the OPEN list and thus expands all cells on the
path eventually. Thus, it expands the goal cell, which is
a contraction. Thus, A* eventually expands the goal cell
if there exists a path from the start cell to the goal cell.
Then, A* terminates.
• Assume that there does not exist a path from the start
cell to the goal cell. The number of cells is finite. A* inserts
every cell at most once into the OPEN list. It expands
every cell in the OPEN list and removes it from the OPEN
list in the process. Thus, if A* does not terminate earlier
because it expands the goal cell, it eventually terminates
because its OPEN list is empty and correctly reports that
no path from the start cell to the goal cell exists.

Theorem 2. Assume that g(sstart) = sd(sstart) =
0 and, for every cell s �= sstart in the CLOSED
list of the previous A* search, Parent(s) is in the
CLOSED list, ExpandedId(Parent(s)) < ExpandedId(s) and
g(s) = g(Parent(s)) + 1 = sd(s). Then, g(sstart) =
sd(sstart) = 0 and, for every cell s �= sstart in the re-
stored CLOSED list, Parent(s) is in the restored CLOSED
list, ExpandedId(Parent(s)) < ExpandedId(s) and g(s) =
g(Parent(s)) + 1 = sd(s).

Proof Sketch: The restored CLOSED list con-
tains exactly the cells s in the CLOSED list with
ExpandedId(s) < m, where FSA* sets m as described in
Section 4.1. Initially, the g-values and parent pointers of all
cells in the CLOSED list are correct according to Theorem
1. A change of the goal cell does not affect their correctness
but a change in traversability might.

• Assume that the cost of moving from a cell s′′ to
its neighbor s′ increases. If cell s′′ is in the CLOSED
list with Parent(s′) = s′′ then the g-values and parent
pointers of cell s′ and its descendants in the A* search
tree, that is formed by the cells in the CLOSED list and
their parent pointers, can become incorrect because there
might now exist a shorter path from the start cell to cell
s′ or its descendants that does not pass through s′′ and
s′. Thus, the g-values and parent pointers of some cells s



in the CLOSED list with ExpandedId(s) ≥ ExpandedId(s′)
can become incorrect. The g-values and parent pointers of
all other cells in the CLOSED list remain correct since the
current shortest paths from the start cell to them do not
pass through s′′ and s′.

If the start cell becomes blocked, then FSA* skips
replanning. Assume that a different cell s′ in the CLOSED
list becomes blocked. Then, the cost of moving into s′

can increase from one to infinity. The g-values and parent
pointers of s′ and its descendants in the A* search tree
can become incorrect according to the argument above
since the parent of cell s′ is in the CLOSED list. Thus,
the g-values and parent pointers of some cells s in the
CLOSED list with ExpandedId(s) ≥ ExpandedId(s′) can
become incorrect. Similarly, the cost of moving out of s′

can increase from one to infinity. Consider any unblocked
neighbor s′′ of cell s′ with Parent(s′′) = s′. The g-values
and parent pointers of cell s′′ and its descendants in the A*
search tree can become incorrect according to the argument
above since cell s′ is in the CLOSED list. Thus, the g-values
and parent pointers of some cells s in the CLOSED list
with ExpandedId(s) ≥ ExpandedId(s′′) > ExpandedId(s′)
can become incorrect. Thus, in both cases, the g-values
and parent pointers of some cells s in the CLOSED list
with ExpandedId(s) ≥ ExpandedId(s′) can become incorrect.

• Assume that the cost of moving from a cell s′′ to
its neighbor s′ decreases. If cell s′′ is in the CLOSED
list then the g-values and parent pointers of cells s in the
CLOSED list with ExpandedId(s) ≥ 1+ExpandedId(s′′) can
become incorrect because there might now exist a shorter
path from the start cell to cell s that passes through s′′ and
s′.

If the start cell becomes unblocked, then FSA* performs
an A* search from scratch. Assume that a different cell s′

in the CLOSED list becomes unblocked. Then, the cost of
moving into s′ can decrease from infinity to one. Consider
any unblocked neighbor s′′ of cell s′ that is in the CLOSED
list. The g-values and parent pointers of cells s in the
CLOSED list with ExpandedId(s) ≥ 1 + ExpandedId(s′′)
can become incorrect according to the argument above
since cell s′′ is in the CLOSED list. Thus, the g-values and
parent pointers of some cells s in the CLOSED list with
ExpandedId(s) ≥ 1 + min

s′′∈Succ(s′) ExpandedId(s′′) can

become incorrect. Similarly, the cost of moving out of s′

can decrease from infinity to one. The g-values and parent
pointers of cells s in the CLOSED list with ExpandedId(s) ≥
1 + ExpandedId(s′) > 1 + min

s′′∈Succ(s′) ExpandedId(s′′)
can become incorrect according to the argument above
since cell s′ is in the CLOSED list. (The last inequality
holds since the parent of cell s′ is one of its unblocked
neighbors.) Thus, in both cases, the g-values and par-
ent pointers of some cells s in the CLOSED list with
ExpandedId(s) ≥ 1 + min

s′′∈Succ(s′) ExpandedId(s′′) can

become incorrect.

FSA* sets m so that all cells s in the CLOSED list
whose g-values and parent pointers could have become
incorrect are excluded from the restored CLOSED list.

Thus, by induction, g(sstart) = sd(sstart) and, for every
cell s �= sstart in the CLOSED list (no matter whether it was
in the restored CLOSED list or expanded by the A* search),

procedure UpdateMazeTraversability()
{01’} TmpBlockId := ExpandedId(sgoal) + 1;

{02’} Forall cells s whose traversability has changed
{03’} If (s is blocked)
{04’} If (CellReusable(s))
{05’} If (ExpandedId(s) < TmpBlockId)
{06’} TmpBlockId := ExpandedId(s);
{07’} Else
{08’} Parent(s) := NULL;
{09’} Forall s′ ∈ Succ(s)
{10’} If (CellReusable(s′))
{11’} If (ExpandedId(s′) + 1 < TmpBlockId)
{12’} TmpBlockId := ExpandedId(s′) + 1;
{13’} If (TmpBlockId ≤ ExpandedId(sgoal))

{14’} Forall i = 1 . . . Iteration
{15’} If (TmpBlockId < BlockId(i))
{16’} BlockId(i) := TmpBlockId;
{17’} m := BlockId(Iteration);

Figure 5: Pseudocode Fragment of FSA*

Parent(s) is in the CLOSED list, ExpandedId(Parent(s)) <
ExpandedId(s) and g(s) = g(Parent(s)) + 1 = sd(s). Thus,
the g-value of every cell in the CLOSED list is equal to the
distance from the start cell to the cell and a shortest path
from the start cell to the cell can be identified in reverse by
following the parent pointers from the cell to the start cell.

6. APPLYING FSA*
Our insights into FSA* allow us to apply FSA* to agent

navigation problems, namely the problem of moving an
agent on a shortest path from its current cell to a fixed desti-
nation cell in a known gridworld, where the shortest path is
replanned whenever the traversability of cells changes. This
problem is similar to the problem of moving a game charac-
ter in a real-time strategy game to a fixed destination while
the world changes, for example, bridges and fences are built
by other game characters. It is also similar to the prob-
lem of moving a robot in unknown terrain via a presumed
unblocked path to a fixed destination cell, which is called
planning with the freespace assumption and has been ex-
tensively studied in robotics [5]. In these cases, the current
cell of the agent changes over time while the destination cell
remains fixed. FSA* therefore determines a shortest path
from the current cell of the agent to the fixed destination
cell by searching from the destination cell to the current
cell of the agent. The agent then follows the parent point-
ers from its current cell to the fixed destination cell until
it either reaches the destination cell or the traversability of
cells changes. In the latter case, FSA* determines another
shortest path from the the current cell of the agent to the
fixed destination cell, and the process repeats. Our example
from Figures 2 and 3 is consistent with an agent moving on a
shortest path from its current cell E2 to the fixed destination
cell E6 and then replanning the shortest path when cell C3
becomes blocked after it reaches cell C2. FSA* can be op-
timized slightly for agent navigation problems, resulting in
Dynamic FSA*, since the goal cell does not change arbitrar-
ily but rather follows the parent pointers from the current
cell of the agent to cells with smaller and smaller expansion
orders. Assume that the current cell of the agent is sgoal

when the traversability of cells changes and FSA* would or-
dinarily perform its bookkeeping operations to exclude the
cells s with ExpandedId(s) ≥ m from the restored CLOSED
list. Assume further that, in case ExpandedId(sgoal) < m,
the agent continues to follow the shortest path from its cur-
rent cell to the destination cell without the bookkeeping op-



(a) = A* searches per agent navigation problem
(b) = cell expansions per A* search

(c) = number of cells in the restored OPEN list
(d) = processing time for all traversability changes (in micro seconds)

(e) = runtime per A* search (in micro seconds)
(f) = normalized runtime per A* search (Dynamic FSA* = 1.0)

Four-Neighbor Gridworld Eight-Neighbor Gridworld
(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

p = 0.001
A* (optimized) 668 1994 (28.7) N/A 0 797 1.76 451 329 (13.8) N/A 0 158 1.42
A* (unoptimized) 668 10273 (29.6) N/A 0 3822 8.42 451 3132 (32.1) N/A 0 1391 12.53
D* Lite 668 56 (3.2) N/A 1 46 0.10 451 27 (4.6) N/A 1 34 0.31
Dynamic FSA* 667 1042 (27.1) 97 0 454 1.00 450 189 (0.9) 32 0 111 1.00

p = 0.01
A* (optimized) 669 9815 (40.0) N/A 0 3698 1.17 451 2720 (33.6) N/A 0 1253 1.22
A* (unoptimized) 669 10882 (40.6) N/A 0 4054 1.28 451 3442 (33.1) N/A 0 1535 1.49
D* Lite 669 194 (3.9) N/A 16 161 0.05 451 74 (6.5) N/A 32 111 0.11
Dynamic FSA* 668 7522 (28.6) 481 1 3161 1.00 450 1904 (8.9) 263 6 1031 1.00

p = 0.1
A* (optimized) 665 12268 (46.7) N/A 0 4594 0.96 453 4167 (36.5) N/A 0 1936 0.93
A* (unoptimized) 665 12311 (49.2) N/A 0 4628 0.97 453 4209 (36.4) N/A 0 1940 0.93
D* Lite 665 1468 (7.5) N/A 179 1295 0.27 452 501 (15.3) N/A 307 866 0.41
Dynamic FSA* 664 11796 (36.5) 378 12 4795 1.00 452 3869 (18.1) 358 83 2088 1.00

p = 0.5
A* (optimized) 629 13941 (66.2) N/A 0 5262 0.95 461 4925 (38.4) N/A 0 2299 0.77
A* (unoptimized) 629 13945 (68.1) N/A 0 5273 0.95 457 4962 (37.9) N/A 0 2295 0.77
D* Lite 626 5782 (15.3) N/A 808 5276 0.95 457 1843 (28.5) N/A 1488 3491 1.17
Dynamic FSA* 629 13840 (55.7) 150 63 5532 1.00 456 4914 (22.9) 172 385 2973 1.00

p = 1
A* (optimized) 574 15012 (103.5) N/A 0 5666 0.95 461 4925 (38.4) N/A 0 2287 0.70
A* (unoptimized) 574 15013 (105.1) N/A 0 5678 0.96 461 4925 (38.4) N/A 0 2299 0.71
D* Lite 580 9334 (21.4) N/A 1506 8813 1.48 461 3011 (36.7) N/A 2819 6063 1.87
Dynamic FSA* 577 15063 (96.7) 89 128 5945 1.00 461 4910 (22.8) 101 763 3247 1.00

p = 2
A* (optimized) 483 16696 (147.9) N/A 0 6312 0.96 459 5146 (39.5) N/A 0 2401 0.60
A* (unoptimized) 483 16696 (149.6) N/A 0 6332 0.96 459 5146 (39.5) N/A 0 2405 0.60
D* Lite 474 14468 (32.3) N/A 2869 14409 2.18 459 4121 (41.8) N/A 5618 10052 2.50
Dynamic FSA* 475 16985 (151.4) 52 280 6595 1.00 458 5142 (24.0) 57 1414 4025 1.00

p = 3
A* (optimized) 393 18556 (227.0) N/A 0 7050 0.99 468 5309 (41.3) N/A 0 2489 0.51
A* (unoptimized) 393 18556 (228.6) N/A 0 7340 1.03 468 5306 (41.2) N/A 0 2474 0.50
D* Lite 412 18134 (40.3) N/A 4240 18940 2.66 467 4884 (45.1) N/A 8209 13449 2.73
Dynamic FSA* 402 18610 (232.8) 38 421 7114 1.00 467 5324 (24.6) 41 2229 4923 1.00

p = 4
A* (optimized) 342 19749 (309.2) N/A 0 7493 0.97 474 5276 (40.4) N/A 0 2467 0.45
A* (unoptimized) 342 19749 (306.6) N/A 0 7519 0.98 474 5276 (40.4) N/A 0 2480 0.46
D* Lite 345 21531 (50.3) N/A 5359 22352 2.90 474 5282 (45.8) N/A 10903 16570 3.05
Dynamic FSA* 335 19844 (288.8) 31 553 7697 1.00 473 5301 (24.3) 32 2734 5433 1.00

p = 5
A* (optimized) 298 20988 (389.4) N/A 0 7977 0.99 470 5335 (40.4) N/A 0 2497 0.41
A* (unoptimized) 298 20988 (386.5) N/A 0 7559 0.94 470 5335 (40.4) N/A 0 2496 0.41
D* Lite 299 23777 (60.2) N/A 6881 26792 3.33 471 5808 (51.8) N/A 13416 19662 3.23
Dynamic FSA* 306 20737 (364.3) 26 856 8046 1.00 468 5370 (24.8) 27 3377 6086 1.00

p = 10
A* (optimized) 188 26350 (713.0) N/A 0 10075 1.00 481 5508 (44.5) N/A 0 2590 0.30
A* (unoptimized) 188 26350 (706.8) N/A 0 9660 0.95 481 5508 (44.5) N/A 0 2581 0.29
D* Lite 182 34531 (106.1) N/A 14151 44827 4.43 483 6875 (55.6) N/A 25764 33246 3.79
Dynamic FSA* 182 27062 (684.2) 17 1423 10125 1.00 482 5502 (25.1) 16 5961 8763 1.00

Table 1: Experimental Results

erations. Then, the agent either reaches its destination with-
out any replanning or, at some point in time, the current cell
of the agent is s′goal when the traversability of cells changes
so that the current cell of the agent is not reusable. In the
latter case, FSA* now performs its bookkeeping operations
to exclude the cells s with ExpandedId(s) ≥ m′ from the re-
stored CLOSED list, which automatically excludes the cells
s with ExpandedId(s) ≥ m since m′ ≤ ExpandedId(s′goal) ≤
ExpandedId(sgoal) < m. For completeness, Figure 5 shows a
fragment of the pseudocode of FSA* from [7], which is de-
scribed in detail there. Line 13’ is new and implements the
optimization. This optimization then allows the further op-
timization to change Line 01’ from “TmpBlockId := ∞;” to
“TmpBlockId := ExpandedId(sgoal) + 1;” which avoids some
of the assignments on Lines 06’ and 12’ from being executed.

7. EXPERIMENTAL EVALUATION
We evaluated Dynamic FSA* on agent navigation prob-

lems. We solved 500 agent navigation problems in known
gridworlds of size 1000×1000 with 250,000 randomly chosen
blocked cells on a Pentium D 3.0 GHz PC with 2 GByte of
RAM. The current cell of the agent and the destination cell
were randomly chosen. After each move of the agent from
its current cell to a neighbor, a number of randomly chosen
unblocked cells that corresponds to p/2 percent of all cells
were blocked and a number of randomly chosen blocked cells
that corresponds to p/2 percent of all cells were unblocked,
so that the total number of blocked cells remained the same.
We then determined a new shortest path from the current
cell of the agent to the destination cell (knowing about all
blockage changes) and repeated the process. We considered
an agent navigation problem to be solved once the agent
reached the destination cell or there were no paths from the
current cell of the agent to the destination cell.

7.1 Search Algorithms
We compared Dynamic FSA* experimentally to D* Lite



[2] and two versions of repeated A* searches. One version
of A*, called A* (unoptimized), always performed an A*
search. The other version of A*, called A* (optimized), only
performed an A* search if at least one blockage change was
in the previous search tree. (We counted it as an A* search
with no cell expansions if it did not perform an A* search.)
We excluded Generalized Adaptive A* from the comparison
because it has already been shown to be slower than D* Lite
on a variety of agent navigation problems with fixed destina-
tions [8]. D* Lite is the application of LPA* to agent naviga-
tion problems, similar to how Dynamic FSA* is the applica-
tion of FSA* to agent navigation problems. D* Lite and Dy-
namic FSA* have in common that the root of the A* search
tree and thus the start cell must remain fixed while the goal
cell can change over time. Thus, they both search from the
destination cell to the current cell of the agent, which is why
we compare them. D* Lite runs fast if the A* search tree
of the previous A* search is similar to the one of the cur-
rent A* search, which is typically the case if the number of
traversability changes is small and they occur close to the
goal cell. The three search algorithms differ in their runtime
per cell expansion. D* Lite uses modified A* searches and
expands cells more slowly than A*. Dynamic FSA* uses un-
modified A* searches and thus expands cells about as fast as
A*. The three search algorithms also differ in their process-
ing time of each traversability change. A* does not performs
any processing. D* Lite updates the g-values of all neighbors
of the cell whose traversability changed to the minimum of
the g-values of their neighbors plus one, which can require b2

operations on b-neighbor gridworlds. Dynamic FSA* evalu-
ates Equations 1 and 2 to determine the value of m, which
can require b operations on b-neighbor gridworlds. We thus
varied b (by using four-neighbor and eight-neighbor grid-
worlds) and p in the experiments. We used the Manhattan
distances (= the sum of the absolute differences of the x
and y coordinates of a cell and the goal cell) as h-values in
four-neighbor gridworlds and the maximum of the absolute
differences of the x and y coordinates of a cell and the goal
cell as h-values in eight-neighbor gridworlds. In both cases,
the cost of moving from an unblocked cell to an unblocked
neighbor was one. In general, the runtime of search algo-
rithms depends on the hardware, compiler and implemen-
tation, including the data structures, tie-breaking strategies
and coding tricks used. However, there is currently no better
methodology available for comparing the runtimes of search
algorithms that work according to very different principles
other than to implement them and measure their runtime.
We implemented the three search algorithms in a very simi-
lar way for fairness. For example, all of them didn’t use code
optimizations, used binary heaps to implement the OPEN
list and broke ties among cells with the same smallest f-value
in favor of a cell with the largest g-value, which is considered
to be a good tie-breaking strategy.

7.2 Results and Interpretation
Table 1 reports one measure for the difficulty of agent nav-

igation problems, namely the number of A* searches until
an agent navigation problem was solved (a). This num-
ber is similar for all three search algorithms since they all
find shortest paths. The table reports several measures for
the efficiency of the search algorithms. First, it reports the
number of cell expansions per A* search (b) with the stan-
dard deviation of the mean in parentheses to demonstrate

the statistical significance of our results. Second, it reports
the number of cells in the restored OPEN list of Dynamic
FSA* before it starts an A* search (c). Third, it reports
the runtime needed to process all traversability changes be-
fore an A* search (d). Fourth, it reports the runtime per
A* search (e), which includes the runtime needed to pro-
cess all traversability changes before the A* search but not
the runtime needed to choose the cells that change their
traversability. Finally, it reports the normalized runtime per
A* search (f) as the ratio of the runtime per A* search and
the runtime per A* search of Dynamic FSA*. The small-
est (unnormalized and normalized) runtimes per A* search
are shown in italics. The table shows that D* Lite is best
for small values of p. A* (unoptimized or optimized) be-
comes best as the value of p grows. Dynamic FSA* is al-
ways dominated by one of the other search algorithms. We
were able to construct isolated cases where Dynamic FSA*
is best, namely when blockage changes occur only around
the agent, but even then the runtime of Dynamic FSA* is
no more than four percent smaller than the runtime of the
next best search algorithm.

8. CONCLUSIONS
Fringe-Saving A* (FSA*) is an incremental version of A*

that repeatedly finds shortest paths from a fixed start cell to
a fixed goal cell in a known gridworld in case the traversabil-
ity of cells changes over time. In this paper, we generalized
the correctness proof of FSA* to cover the case where the
goal cell changes over time in addition to the traversabil-
ity of cells. We then applied it to the problem of moving
an agent along a shortest path from its current cell to a
fixed destination cell in a known gridworld, where the short-
est path is replanned whenever necessary due to changes in
the traversability of cells. Unfortunately, our experimen-
tal results show that the resulting Dynamic Fringe-Saving
A* algorithm tends to be dominated by either repeated A*
searches or D* Lite (a state-of-the-art incremental version
of A*).
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