
Caching Schemes for DCOP Search Algorithms∗

William Yeoh
Computer Science

USC
Los Angeles, CA 90089

wyeoh@usc.edu

Pradeep Varakantham
Robotics Institute

CMU
Pittsburgh, PA 15232

pradeepv@cs.cmu.edu

Sven Koenig
Computer Science

USC
Los Angeles, CA 90089
skoenig@usc.edu

ABSTRACT
Distributed Constraint Optimization (DCOP) is useful for
solving agent-coordination problems. Any-space DCOP
search algorithms require only a small amount of memory
but can be sped up by caching information. However, their
current caching schemes do not exploit the cached informa-
tion when deciding which information to preempt from the
cache when a new piece of information needs to be cached.
Our contributions are three-fold: (1) We frame the prob-
lem as an optimization problem. (2) We introduce three
new caching schemes (MaxPriority, MaxEffort and MaxUtil-
ity) that exploit the cached information in a DCOP-specific
way. (3) We evaluate how the resulting speed up depends
on the search strategy of the DCOP search algorithm. Our
experimental results show that, on all tested DCOP prob-
lem classes, our MaxEffort and MaxUtility schemes speed
up ADOPT (which uses best-first search) more than the
other tested caching schemes, while our MaxPriority scheme
speeds up BnB-ADOPT (which uses depth-first branch-and-
bound search) at least as much as the other tested caching
schemes.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI; I.2.8
[Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search

General Terms
Algorithms; Experimentation

Keywords
ADOPT; BnB-ADOPT; Caching; DCOP; Distributed Con-
straint Optimization; Distributed Search Algorithms

∗This research has been partly supported by an NSF award
to Sven Koenig under contract IIS-0350584. The views and
conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the of-
ficial policies, either expressed or implied, of the sponsoring
organizations, agencies, companies or the U.S. government.

Cite as: Caching Schemes for DCOP Search Algorithms, William Yeoh,
Pradeep Varakantham and Sven Koenig, Proc. of 8th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15,
2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Distributed Constraint Optimization (DCOP) problems

are problems where agents need to coordinate with each
other which values they should take on to minimize the sum
of the resulting constraint costs. Many agent-coordination
problems can be expressed as DCOP problems, including the
scheduling of meetings [7], the allocation of targets to sen-
sors in sensor networks [6] and the synchronization of traf-
fic lights [5]. Researchers have developed a variety of com-
plete algorithms to find cost-minimal solutions for DCOP
problems, including ADOPT [11], OptAPO [8], DPOP [12],
NCBB [2], AFB [3] and BnB-ADOPT [14]. Most of these
algorithms make extreme assumptions about the amount of
memory that each agent has available. DCOP search al-
gorithms (like ADOPT) require only a polynomial amount
of memory per agent. DCOP inference algorithms (like
DPOP), on the other hand, require an exponential amount
of memory per agent, which results in significantly smaller
runtimes. Any-space versions of these algorithms bridge the
two extremes by trading off memory requirements and run-
time. Any-space DCOP search algorithms cache informa-
tion units when additional memory is available. Any-space
ADOPT [10] and any-space NCBB [1], for example, require
only a polynomial amount of memory per agent and can
vary their memory requirements by linear factors. Any-
space DCOP inference algorithms use cycle cutsets to limit
the amount of required memory. MB-DPOP [13], for exam-
ple, unfortunately still requires an exponential amount of
memory per agent and can vary its memory requirements
only by exponential factors and thus only in a much more
coarse-grained way.

We therefore build on DCOP search algorithms in this
paper and investigate their caching schemes, in particular
which information unit to preempt from the cache when a
new information unit needs to be cached. We frame this
problem as an optimization problem. We calculate the util-
ity U(I) = P (I)E(I) of an information unit I based on
its likelihood of future use P (I) and the invested search ef-
fort E(I), which is the search effort that has been spent
to acquire it and thus will likely have to be spent again if
it is preempted from the cache. Each agent then greedily
maximizes the sum of the utilities of all cached information
units by preempting an information unit with the smallest
utility. We show how the agents can calculate estimates
P̂ (I) and Ê(I) of P (I) and E(I), respectively, by exploit-
ing the cached information units in a DCOP-specific way.
We evaluate our ideas by classifying caching schemes into
three categories: Caching schemes of Category 1 preempt

x1

x3

x2

x1

x3

x2

for i < j

xi xj Cost
0 0 5
0 1 8
1 0 20
1 1 3

(a) (b) (c)

Figure 1: Example DCOP Problem

an information unit with the smallest P (I). Examples are
the Least-Recently-Used scheme of any-space ADOPT and
the First-In-First-Out scheme of any-space NCBB. Caching
schemes of Category 2 preempt an information unit with
the smallest E(I). Finally, caching schemes of Category 3
combine both principles by preempting an information unit
with the smallest U(I) = P (I)E(I). We introduce a new
caching scheme for each category. TheMaxPriority scheme
of Category 1 uses P̂ (I) to estimate P (I), the MaxEffort

scheme of Category 2 uses Ê(I) to estimate P̂ (I), and the

MaxUtility scheme of Category 3 uses Û(I) = P̂ (I)Ê(I)
to estimate U(I) = P (I)E(I). We compare these caching
schemes experimentally against standard caching schemes
from the operating systems literature, namely the First-
In-First-Out, Last-In-First-Out, Least-Recently-Used and
Least-Frequently Used schemes. We do this in the con-
text of ADOPT and BnB-ADOPT, two DCOP search algo-
rithms with identical memory requirements and communi-
cation frameworks but different search strategies. The Max-
Priority scheme outperforms all other caching schemes from
Category 1 and the MaxEffort scheme outperforms all other
caching schemes from Category 2, demonstrating the bene-
fits of our estimates P̂ (I) and Ê(I) individually. Overall, our
experimental results show that our MaxEffort and MaxUtil-
ity schemes speed up ADOPT (which uses best-first search)
more than the other tested caching schemes, while our Max-
Priority scheme speeds up BnB-ADOPT (which uses depth-
first branch-and-bound search) at least as much as the other
tested caching schemes.

2. DCOP PROBLEMS
A DCOP problem is defined by a finite set of agents V =

{x1, x2, ..., xn}; a set of finite domains D = {D1, D2, ..., Dn},
where domain Di is the set of possible values for agent xi ∈
V ; and a set of binary constraints F = {f1, f2, ..., fm}, where
each constraint fi : Di1 × Di2 → R

+ ∪∞ specifies its non-
negative constraint cost as a function of the values of the
two different agents xi1 , xi2 ∈ V that share the constraint.
Each agent is responsible for assigning itself (= taking on)
values from its domain. The agents coordinate these value
assignments by exchanging messages. A solution is an agent-
value assignment for a subset of agents. Its cost is the sum of
the constraint costs of all constraints shared by agents with
known values. A solution is called complete if and only if it
is an agent-value assignment for all agents. The objective is
to determine a cost-minimal complete solution.

DCOP problems are commonly visualized as constraint
graphs whose vertices are the agents and whose edges are
the constraints. Most DCOP search algorithms operate on
pseudo-trees. A pseudo-tree is a spanning tree of the con-
straint graph with the property that no two vertices in differ-
ent subtrees of the spanning tree are connected by an edge
in the constraint graph. Figure 1(a) shows the constraint

h i onmlkj

a

cb

gfed

x1

x3

x2

(a)

15 21 94331451933

0

00

32085

x1

x3

x2

(b)

Figure 2: Search Tree

graph of an example DCOP problem with three agents that
can each take on the values 0 or 1, Figure 1(b) shows one pos-
sible pseudo-tree (the dotted line is an edge of the constraint
graph that is not part of the pseudo-tree), and Figure 1(c)
shows the constraint costs.

3. ADOPT AND BnB-ADOPT
We now provide a brief overview of ADOPT and BnB-

ADOPT, both of which transform the constraint graph to
a pseudo-tree in a pre-processing step and then search for a
cost-minimal complete solution. They have identical mem-
ory requirements and communication frameworks. How-
ever, ADOPT uses best-first search while BnB-ADOPT uses
depth-first branch-and-bound search. Complete descriptions
can be found in [11, 14].

3.1 Search Trees
The operation of ADOPT and BnB-ADOPT can be vi-

sualized with AND/OR search trees [9] due to their ability
to capture independent subproblems of a DCOP problem.
The constraint graph of our example DCOP problem is fully
connected and thus has no independent subproblems. We
therefore use regular search trees and terminology from A*
[4] instead. Each level of a search tree corresponds to an
agent. For our example DCOP problem, the level of depth
1 corresponds to agent x1. A left branch that enters a level
means that the corresponding agent takes on the value 0. A
right branch means that the corresponding agent takes on
the value 1. A node in the search tree thus corresponds to
a solution. For our example DCOP problem, the solution
of node e is (x1 = 0, x2 = 1), where we use the identifiers
shown in Figure 2(a) to refer to nodes. The numbers inside
the nodes in Figure 2(b) are the costs of the solutions of the
nodes and are thus equal to the f-values of the nodes for an
A* search with zero heuristics.

3.2 Search Strategy of ADOPT
The execution trace shown in Figure 3 visualizes the

search strategy of ADOPT on the example DCOP prob-
lem. We assume for our explanation that the agents op-
erate sequentially and communication is instantaneous be-
cause these simplifying assumptions allow us to explain the
search strategy of ADOPT easily. The grey nodes of the
search trees are the currently expanded node and its ances-
tors. The root node is always grey. Each agent takes on
the value in the solution that corresponds to the grey node
in its level and maintains upper and lower bounds for all
children of the grey node in the level above it. For our ex-
ample DCOP problem, agent x2 takes on value 1 in Step 4
and maintains upper and lower bounds for nodes f and g.
The numbers in the nodes are the lower bounds. Crosses
show lower bounds that are not maintained due to memory
limitations. Each agent initializes the lower bounds of the
nodes that it maintains with the f-values and then repeat-

X X XXXXXX

0

00

XXXX

ub = infinity

Step 1

X X XXXXXX

0

05

XX85

ub = infinity

Step 2

X X XXXXXX

3

35

320XX

ub = infinity

Step 3

X X 943XXXX

5

95

920XX

ub = infinity

Step 4

X X XXXXXX

5

95

XX85

ub = infinity

Step 5

15 21 XXXXXX

8

98

XX815

ub = infinity

Step 6

X X XXXX1933

9

915

XX1915

ub = infinity

Step 7

X X XXXXXX

9

915

320XX

ub = infinity

Step 8

X X 943XXXX

9

915

920XX

ub = infinity

Step 9

X X 943XXXX

9

915

920XX

ub = 9

Step 10

Figure 3: Execution Trace of ADOPT with the Default Amount of Memory

X X XXXXXX

0

00

XXXX

ub = infinity

Step 1

X X XXXXXX

0

05

XX85

ub = infinity

Step 2

15 21 XXXXXX

0

08

XX815

ub = infinity

Step 3

15 21 XXXXXX

0

08

XX815

ub = 15

Step 4

X X XXXX1933

0

015

XX1915

ub = 15

Step 5

X X XXXXXX

3

315

320XX

ub = 15

Step 6

X X 943XXXX

9

915

920XX

ub = 15

Step 7

X X 943XXXX

9

915

920XX

ub = 9

Step 8

Figure 4: Execution Trace of BnB-ADOPT with the Default Amount of Memory

edly sets them to the minimum of the lower bounds of the
children of the nodes. The lower bound of the root node is
updated in the same way and is thus a lower bound on the
cost of a cost-minimal complete solution. We show only the
upper bound ub of the root node, which is repeatedly set to
the smallest cost of all complete solutions found so far. The
upper bound of the root node is thus an upper bound on the
cost of a cost-minimal complete solution.

ADOPT expands nodes in a depth-first search order. Af-
ter it has expanded a node, it always expands the child of
the node with the smallest lower bound and backtracks when
the lower bounds of all unexpanded children of the node are
larger than the lower bound of the root node. The resulting
order of expansions is identical to a best-first search order
if one considers only nodes that ADOPT expands for the
first time. ADOPT terminates when the upper and lower
bounds of the root node are equal, indicating that it has
found a cost-minimal complete solution. ADOPT is forced
to re-expand nodes due to its best-first search strategy since
agents have to purge some of their upper and lower bounds
due to their memory limitations. For our example DCOP
problem, ADOPT first expands node g in Step 4 and then
re-expands it in Step 9. Overall, it expands nodes in the
order a, b, c, g, b∗, d, e, c∗, g∗ and o. It re-expands the
nodes with asterisks.

3.3 Search Strategy of BnB-ADOPT
The execution trace shown in Figure 4 visualizes the

search strategy of BnB-ADOPT on the example DCOP
problem under the same assumptions as for ADOPT. BnB-
ADOPT operates in the same way as ADOPT except that
it expands nodes in a depth-first branch-and-bound search
order. After it has expanded a node, it always expands the

child of the node with the smallest lower bound and back-
tracks when the lower bounds of all unexpanded children of
the node are larger than the upper bound of the root node.
Overall, it expands nodes in the order a, b, d, h, e, c, g and
o. It expands some nodes that ADOPT does not expand,
such as node h, but never re-expands nodes.

4. CACHING
Agents can use available memory to cache upper and lower

bounds and then reuse them when they need them again,
which avoids search effort. For example, the execution trace
shown in Figure 5 visualizes the search strategy of ADOPT,
as before, except that all agents now have a sufficient amount
of memory to maintain all upper and lower bounds. ADOPT
terminates three steps earlier since it no longer needs to re-
expand nodes.

4.1 Cache Design
Each agent of ADOPT and BnB-ADOPT maintains upper

and lower bounds for all children of the grey node in the level
of the search tree above it. The solution of the grey node in
the level above it is called the current context of the agent.
(We say that the agent visits a context if this context is the
current context of the agent.) Thus, the current context of
an agent is an agent-value assignment for all of its ancestors
in the pseudo-tree. Each agent thus maintains upper and
lower bounds for each combination of its current context
and all values from its domain. For our example DCOP
problem, agent x3 in Step 4 maintains a lower bound of
43 for its current context (x1 = 1, x2 = 1) and its value 0
and a lower bound of 9 for its current context and its value
1. The agents exchange VALUE and COST messages to
determine their current contexts and update the upper and

X X XXXXXX

0

00

XXXX

ub = infinity

Step 1

X X XXXXXX

0

05

XX85

ub = infinity

Step 2

X X XXXXXX

3

35

32085

ub = infinity

Step 3

X X 943XXXX

5

95

92085

ub = infinity

Step 4

15 21 943XXXX

8

98

920815

ub = infinity

Step 5

15 21 943XX1933

9

915

9201915

ub = infinity

Step 6

15 21 943XX1933

9

915

9201915

ub = 9

Step 7

Figure 5: Execution Trace of ADOPT with the Maximum Amount of Memory

lower bounds that they maintain.
We bundle the current context of an agent and all up-

per and lower bounds that it maintains into an information
unit. Formally, an information unit I of agent xi ∈ V is
given by the tuple 〈LBI , UBI , XI〉, where XI is a context
of the agent and LBI and UBI are tuples of lower bounds
LBI(d) and upper bounds UBI(d), one for each value d ∈ Di

from its domain. Each agent of ADOPT and BnB-ADOPT
caches only one information unit, namely for its current con-
text. We now generalize ADOPT and BnB-ADOPT by al-
lowing agents to cache more than one information unit. An
agent always uses the information unit with its current con-
text. We assume that an agent can cache a given number
of information units. If the agent receives upper and lower
bounds via COST messages for a context that is equal to
the context of a cached information unit, then it updates
the bounds of that information unit. If the agent receives
upper and lower bounds for a context that is not equal to
the context of any cached information unit and the cache
is not yet full, then it creates a new information unit and
caches the context and bounds in that information unit. If
the agent receives upper and lower bounds for a context
that is not equal to the context of any cached information
unit and the cache is full, then it ignores the bounds, with
one exception: If the agent receives upper and lower bounds
for a context and then switches its current context to that
context, then it needs to cache them since an agent always
has to cache the information unit with its current context.
A caching scheme then decides which information unit to
preempt from the cache.

4.2 Caching Problem
We frame the problem of which information unit to pre-

empt from the cache as an optimization problem. We cal-
culate the utility

U(I) := P (I)E(I)

of an information unit I based on its likelihood of future
use P (I) and the invested search effort E(I). Each agent
then greedily maximizes the sum of the utilities of all cached
information units by preempting an information unit with
the smallest utility.

4.2.1 Likelihood of Future Use: P(I)
The likelihood of future use P (I) measures the probabil-

ity that the context of information unit I will again become
the current context. The likelihood of future use P (I) cor-
responds to the probability that the node in the search tree
whose solution corresponds to the context of information
unit I will be re-expanded. It is important to use the like-
lihood of future use to measure the utility of an informa-
tion unit because it is pointless to cache an information unit

whose context will never again become the current context.
It is affected by two factors:

• Asynchronous Execution: The agents of ADOPT
and BnB-ADOPT can visit intermediate contexts for
a short period of time when their current context
changes because they operate asynchronously and
communication can be delayed. Assume, for example,
that the current context of agent x3 is (x1 = 0, x2 = 0)
and its next context would be (x1 = 1, x2 = 1) if the
agents operated sequentially and communication were
instantaneous. The VALUE message from agent x1

about its new value 1 can arrive at agent x3 before the
VALUE message from agent x2 about its new value
1. Then, agent x3 visits context (x1 = 0, x2 = 1)
for a short period of time. The more agent-value as-
signments a context has in common with the current
context of the agent, the larger the likelihood of future
use is.

• Search Strategy: If the agents of BnB-ADOPT op-
erated sequentially, then they would not re-visit con-
texts due to its depth-first branch-and-bound search
strategy. On the other hand, the agents of ADOPT
would still re-visit contexts due to its best-first search
strategy.

4.2.2 Invested Search Effort: E(I)
Existing caching schemes for DCOP search algorithms use

only the likelihood of future use to measure the utility of an
information unit. It is also important to use the invested
search effort (= search effort that has been spent to acquire
the information unit and thus will likely have to be spent
again if it is preempted from the cache but its context gets
revisited) to measure the utility of an information unit be-
cause it might be better to preempt an information unit from
the cache whose likelihood of reuse is 100 percent but whose
invested search effort is almost zero than an information
unit whose likelihood of future use is only 50 percent but
whose invested search effort is large. The invested search
effort E(I) corresponds to the number of nodes expanded
and re-expanded in the subtree of the search tree rooted
at the node whose solution corresponds to the context of
information unit I .

4.3 Caching Schemes
We classify caching schemes into three categories:

• Category 1: Caching schemes that preempt an in-
formation unit I with the smallest likelihood of future
use P (I). We introduce a new MaxPriority scheme for
this category.

• Category 2: Caching schemes that preempt an infor-
mation unit I with the smallest invested search effort

E(I). We introduce a new MaxEffort scheme for this
category.

• Category 3: Caching schemes that preempt an in-
formation unit I with the smallest utility U(I) =
P (I)E(I). We introduce a new MaxUtility scheme for
this category.

4.3.1 Benchmark Schemes
We use page replacement schemes for virtual memory

management from the operating systems literature as bench-
mark schemes.

In particular, we use First-In-First-Out (FIFO) and Least-
Recently-Used (LRU) as benchmark schemes of Category
1, which are similar to existing caching schemes for DCOP
search algorithms. For example, any-space NCBB uses a
version of the FIFO scheme and any-space ADOPT uses a
version of the LRU scheme. The FIFO scheme preempts the
information unit that has been in the cache for the longest
time, and the LRU scheme preempts the information unit
that has not been used or updated for the longest time. Both
caching schemes use the intuition that an information unit
that has been cached, used or updated recently will likely
be used again.

Similarly, we use Last-In-First-Out (LIFO) and Least-
Frequently-Used (LFU) as benchmark schemes of Category
2. The LIFO scheme preempts the information unit that
has been in the cache for the shortest time, and the LFU
scheme preempts the information unit that has been used or
updated the least number of times. Both caching schemes
use the intuition that a large search effort has been invested
in an information unit that has been in the cache for a long
time (which assumes similar update frequencies for all infor-
mation units) or that has been used or updated frequently
(which assumes a similar ratio of use and update frequencies
for all information units).

4.3.2 MaxPriority Scheme
The MaxPriority scheme attempts to preempt the infor-

mation unit I with the smallest likelihood of future use P (I).
The likelihood of future use of an information unit is affected
by both the asynchronous execution and the search strategy
of a DCOP search algorithm. It is currently unknown how to
best estimate the likelihood of future use due to the search
strategy. The MaxPriority scheme thus estimates only the
likelihood of future use due to the asynchronous execution.
The more agent-value assignments the context of the infor-
mation unit has in common with the current context of the
agent, the larger the likelihood of future use due to the asyn-
chronous execution is.

The MaxPriority scheme, however, uses additional knowl-
edge of the operation of ADOPT and BnB-ADOPT in the
form of the lower bounds, namely that each agent takes on
the value with the smallest lower bound in the information
unit with its current context. We now discuss how the Max-
Priority scheme estimates the likelihood of future use of an
information unit I of agent x: Let x1 . . . xk be the ancestors
of agent x in the pseudo-tree, ordered in increasing order
of their depth in the pseudo-tree. Consider any ancestor xl

and assume that estimates of the lower bounds in the infor-
mation unit of ancestor xl with the current context of the
ancestor are available. Let I(xl) be the index of the lower
bound of the value of ancestor xl in the context of infor-
mation unit I in decreasing order of all lower bounds, with

Graph Coloring Problems

0.0

0.1

0.2

0.3

0.4

0.0-
0.1

0.1-
0.2

0.2-
0.3

0.3-
0.4

0.4-
0.5

0.5-
0.6

0.6-
0.7

0.7-
0.8

0.8-
0.9

0.9-
1.0

Normalized PriorityEst (I)

P
(I

)

ADOPT BnB-ADOPT

Figure 6: Correlation of P̂ (I) and P (I)

one exception: I(xl) is infinity if the value of ancestor xl

in the context of information unit I is equal to the value
of ancestor xl in the current context of agent x. For exam-
ple, assume that ancestor xl can take on four values, namely
0, 1, 2 and 3. Assume that the following estimates of the
lower bounds in information unit I ′ of the ancestor with the
current context of the ancestor are available: LBI′

(0) = 8,

LBI′
(1) = 12, LBI′

(2) = 10 and LBI′
(3) = 6. If the value

of the ancestor in the current context of agent x is 0, then
it is most likely that the ancestor still takes on this value.
Since each agent takes on the value with the smallest lower
bound in the information unit with its current context, the
value that the ancestor currently takes on is in increasing
order of likelihood: 1, 2, 3 and 0. The lower bounds are

in decreasing order: LBI′
(1) = 12 (index 0), LBI′

(2) = 10

(index 1), LBI′
(0) = 8 (index 2) and LBI′

(3) = 6 (index
3). Thus, the index of the lower bound of value 3 is 3,
the index of the lower bound of value 2 is 1, and the in-
dex of the lower bound of value 1 is 0. The index of the
lower bound of value 0 is changed to infinity because it is
the the value of the ancestor in the current context of agent
x. Thus, the larger the index is, the more likely it is that
the ancestor currently takes on this value. Now consider the
tuple (I(x1), . . . , I(xk)) for each information unit I cached
by agent x. The MaxPriority scheme preempts the infor-
mation unit whose tuple is lexicographically smallest among
these information units. More generally, it uses the index of
the tuple of an information unit I in the increasing lexico-
graphic order of the tuples of all information units cached
by the agent as estimate P̂ (I) of P (I). P̂ (I) is not meant
to approximate P (I) but be proportional to it.

To evaluate how well P̂ (I) and P (I) are correlated for
ADOPT and BnB-ADOPT, we use the same experimental
formulation and setup as [7, 14] and conduct experiments on
graph coloring problems with 10 vertices, density 2 and do-
main cardinality 5. The caches of all agents are sufficiently
large to store all information units. For each information
unit I of each agent x directly before the agent changes its
current context, we divide P̂ (I) by the number of cached
information units at that point in time minus one to nor-
malize it into the interval from 0 to 1, shown as Normalized
PriorityEst(I) in Figure 6, and then classify it into one of
10 buckets that cover the interval evenly. We then calculate
the frequency for each bucket of the event that the contexts
of its information units became the current contexts of their
agents after the context switch, shown as P (I) in Figure 6.
The Pearson’s coefficient shows indeed a strong correlation
of P̂ (I) and P (I) with ρ > 0.85.

4.3.3 MaxEffort Scheme
The MaxEffort scheme attempts to preempt the informa-

tion unit I with the smallest invested search effort E(I). It
estimates the invested search effort of an information unit
by using knowledge of the operation of ADOPT and BnB-
ADOPT in the form of the upper and lower bounds, namely
that the lower bounds will increase over time and the upper
bounds will decrease over time. Thus, the difference between
the upper and lower bounds of an information unit decreases
as more search effort is invested in it. We now discuss how
the MaxEffort scheme estimates the invested search effort of
an information unit I of agent xi: The MaxEffort scheme
calculates the average difference AD(I) between the upper
bounds UBI(d) and lower bounds LBI(d) of the informa-
tion unit over all values d ∈ Di from the domain of agent xi:

AD(I) :=
∑

d∈Di
(UBI (d)−LBI (d))

|Di| . The MaxEffort scheme

preempts the information unit whose average difference is
largest among all cached information units. More generally,
it uses Ê(I) := AD(I ′) − AD(I) as estimate Ê(I) of E(I),
where I ′ is the information unit of agent xi with the largest
average difference. Ê(I) is not meant to approximate E(I)
but be proportional to it.

To evaluate how well Ê(I) and E(I) are correlated for
ADOPT and BnB-ADOPT, we use the same experimen-
tal formulation and setup as described for the MaxPriority
scheme. For the information unit I with the current context
of each agent x directly after the agent changed its current
context, we divide Ê(I) by the largest such estimate over all
information units cached by agent x at that point in time to
normalize it into the interval from 0 to 1, shown as Normal-
ized EffortEst(I) in Figure 7, and then classify it into one of
10 buckets that cover the interval evenly. We then calculate
the average for each bucket of the number of cycles [11] that
the contexts of its information units had already been the
current contexts of their agents before the context switches
and divide each average by the largest average over all buck-
ets to normalize it into the interval from 0 to 1, shown as
E(I) in Figure 7. The Pearson’s coefficient shows indeed a

strong correlation of Ê(I) and E(I) with ρ > 0.85.

4.3.4 MaxUtility Scheme
The MaxUtility scheme attempts to preempt the informa-

tion unit I with the smallest value of U(I) = P (I)E(I). It

uses Û(I) := P̂ (I)Ê(I) as estimate Û(I) of U(I). It cal-

culates P̂ (I) like the MaxPriority scheme and Ê(I) like the
MaxEffort scheme.

4.4 Analysis of the Caching Schemes
We measure the memory complexity in the number of

floating point numbers. The memory size of a context
is O(|V |). The memory size of an information unit is
O(maxDom + |V |) since it stores a context and one upper
and lower bound for each possible value, where maxDom :=
maxDi∈D |Di| is the largest domain cardinality over all

agents. An agent can try to cache O(maxDom|V |) infor-
mation units at the same time, namely one for each of
the O(maxDom|V |) possible contexts. Thus, the maximum
cache size and thus memory complexity of caching per agent
is O((maxDom+|V |)maxDom|V |) = O(maxDom|V |) since an
agent maintains only one cache.

We measure the message complexity in the number of
floating point numbers as well. The message complexity of
ADOPT and BnB-ADOPT is O(|V |). None of the caching
schemes increase this message complexity, except for the

Graph Coloring Problems

0.0

0.1

0.2

0.3

0.0-
0.1

0.1-
0.2

0.2-
0.3

0.3-
0.4

0.4-
0.5

0.5-
0.6

0.6-
0.7

0.7-
0.8

0.8-
0.9

0.9-
1.0

Normalized EffortEst (I)

E
(I

)

ADOPT BnB-ADOPT

Figure 7: Correlation of Ê(I) and E(I)

MaxPriority and MaxUtility schemes. An agent that uses
these caching schemes needs to know, for all of its ancestors,
the indices of the lower bounds for all of their values in their
information units with their current contexts. VALUE mes-
sages therefore need to include these indices for the sending
agent, and COST messages need to include these indices
for all ancestors of the sending agent. There are O(|V |)
ancestors, each one of which has O(maxDom) values and
thus indices. The message complexity therefore increases to
O(|V | + maxDom|V |) = O(maxDom|V |).

5. EXPERIMENTAL RESULTS
We now compare the caching schemes experimentally. We

use the same experimental formulation and setup as [7, 14]
and conduct experiments with three DCOP problem classes,
namely graph coloring problems with 10 vertices, density 2
and domain cardinality 5; sensor network problems with 12
targets and domain cardinality 5; and meeting scheduling
problems with 10 meetings and domain cardinality 5. We
average the experimental results over 50 DCOP problem
instances. We vary the DCOP search algorithm, caching
scheme and cache size of each agent. All agents always have
the same cache factor [1]. The cache factor of an agent is
the ratio of (the number of information units that fit into
its cache - 1) and (the number of its possible contexts -
1). Agents that can cache only one information unit thus
have cache factor zero, and agents that can cache all infor-
mation units have cache factor one or larger. We measure
the resulting runtime of ADOPT and BnB-ADOPT in time
slices, called cycles, where smaller numbers of cycles indi-
cate smaller runtimes [11]. In each cycle, all agents receive
and process all of their incoming messages and send all out-
going messages. A new cycle starts immediately after the
last agent sends its outgoing messages in the current cycle.

Table 1 shows the runtime on graph coloring problems,
sensor network problems and meeting scheduling problems.
The runtime decreases for each combination of DCOP search
algorithm and caching scheme as the cache factor increases,
as expected. The smallest runtime for each cache factor
is shown in italics. The runtime of all caching schemes is
identical for each DCOP search algorithm if the cache fac-
tor is zero (because all information units need to be pre-
empted) or one (because no information units need to be
preempted). The speed up from caching is much larger for
ADOPT than BnB-ADOPT. The caching schemes of Cate-
gory 2 (LIFO, LFU, MaxEffort) result in a smaller runtime
than the ones of Category 1 (FIFO, LRU, MaxPriority) for
ADOPT and vice versa for BnB-ADOPT. However, the re-
lationships within each category are similar for ADOPT and
BnB-ADOPT. For Category 1, the resulting runtime is non-
decreasing in the order: MaxPriority scheme, LRU scheme

ADOPT BnB-ADOPT
Cache Factor 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FIFO 165107 143354 120950 92474 67138 49658 32557 19820 9868 6686 4836 2538 2381 2366 2364 2363 2359 2357 2357 2355 2348 2347
LRU 165107 142868 120459 90613 63210 46094 26880 17942 8679 6405 4836 2538 2376 2365 2364 2362 2360 2357 2355 2351 2348 2347
MaxPriority 165107 126769 90063 64192 36916 25728 14445 10649 6882 5890 4836 2538 2373 2365 2362 2360 2357 2355 2351 2349 2348 2347

LIFO 165107 96220 57872 39833 24579 18579 11945 9674 6911 6035 4836 2538 2462 2432 2409 2392 2383 2365 2355 2350 2347 2347
LFU 165107 91355 56192 38592 23648 17958 11536 9371 6767 5973 4836 2538 2474 2445 2417 2399 2386 2366 2355 2350 2347 2347
MaxEffort 165107 70660 41190 28321 17757 13842 9666 8240 6310 5723 4836 2538 2426 2389 2375 2365 2358 2353 2350 2348 2347 2347

MaxUtility 165107 70599 40911 28407 17482 14015 9691 8342 6324 5788 4836 2538 2426 2389 2374 2365 2358 2353 2350 2348 2347 2347

Number of Cycles for Graph Coloring Problems

ADOPT BnB-ADOPT
Cache Factor 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FIFO 47087 39669 21310 13586 8932 6075 4209 3523 2946 2793 2451 1249 1202 1178 1177 1177 1177 1177 1177 1177 1177 1177
LRU 47087 39746 21414 12107 6556 4937 3828 3437 2902 2725 2451 1249 1204 1177 1177 1177 1177 1177 1177 1177 1177 1177
MaxPriority 47087 28289 16000 10524 6298 4850 3632 3231 2786 2626 2451 1249 1198 1178 1177 1177 1177 1177 1177 1177 1177 1177

LIFO 47087 28289 16000 10524 6298 4850 3632 3231 2786 2626 2451 1249 1228 1212 1202 1195 1189 1183 1179 1177 1177 1177
LFU 47087 27589 15767 10435 6270 4865 3605 3252 2760 2627 2451 1249 1229 1212 1202 1195 1189 1183 1179 1177 1177 1177
MaxEffort 47087 17522 9364 6606 4567 4058 3375 3206 2785 2626 2451 1249 1221 1204 1195 1186 1181 1179 1178 1177 1177 1177

MaxUtility 47087 18054 9731 6994 4761 4237 3524 3305 2874 2755 2451 1249 1220 1204 1195 1186 1181 1179 1178 1177 1177 1177

Number of Cycles for Sensor Network Problems

ADOPT BnB-ADOPT
Cache Factor 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FIFO 31080 27707 21596 14824 8858 6229 4332 3720 3056 2863 2486 1240 1172 1128 1129 1125 1123 1120 1118 1117 1116 1116
LRU 31080 27903 20237 13555 7224 5423 4012 3556 2939 2727 2486 1240 1172 1128 1127 1124 1122 1120 1117 1117 1116 1116
MaxPriority 31080 21231 14826 10609 6286 5125 3929 3407 2870 2656 2486 1240 1164 1128 1123 1120 1119 1118 1117 1117 1116 1116

LIFO 31080 21231 14826 10609 6286 5125 3929 3407 2870 2656 2486 1240 1213 1197 1170 1151 1140 1128 1120 1117 1116 1116
LFU 31080 21234 14789 10620 6301 5075 3920 3410 2862 2655 2486 1240 1213 1197 1170 1151 1140 1128 1120 1117 1116 1116
MaxEffort 31080 16727 9526 6860 4769 4039 3325 3141 2790 2674 2486 1240 1196 1166 1144 1131 1123 1117 1116 1116 1116 1116

MaxUtility 31080 16807 9783 7062 4949 4182 3471 3265 2880 2754 2486 1240 1197 1166 1144 1131 1123 1117 1116 1116 1116 1116

Number of Cycles for Meeting Scheduling Problems

Table 1: Runtimes

and FIFO scheme. Thus, the MaxPriority scheme is a good
caching scheme for Category 1. For Category 2, it is non-
decreasing in the order: MaxEffort scheme, LIFO scheme
and LFU scheme. Thus, the MaxEffort scheme is a good
caching scheme for Category 2. The resulting runtime is
about the same for the MaxUtility and MaxEffort schemes.
Overall, the MaxEffort and MaxUtility schemes speed up
ADOPT more than the other tested caching schemes, while
our MaxPriority scheme speeds up BnB-ADOPT at least as
much as the other tested caching schemes.

We now explain some of these observations. Table 2 shows
the number of unique and repeated contexts per agent on
graph coloring problems. (The trends are similar for the
other two DCOP problem classes.) Assume that an agent
records its context whenever its current context changes.
The number of unique contexts is the number of differ-
ent contexts recorded. The number of repeated contexts
is the total number of contexts recorded minus the num-
ber of unique contexts. The sum of both numbers is corre-
lated with the runtime of a DCOP search algorithm. The
number of unique contexts depends mainly on the search
strategy of the DCOP search algorithm. The number of re-
peated contexts decreases for each combination of DCOP
search algorithm and caching scheme as the cache factor
increases. However, the decrease is by up to one order of
magnitude larger for ADOPT than BnB-ADOPT, which is
also reflected in the resulting runtimes. If the agents of BnB-
ADOPT operated sequentially, then they would not re-visit
contexts. Thus, caching would not speed up BnB-ADOPT.
Since the agents operate asynchronously, caching can speed
up BnB-ADOPT slightly because agents can visit interme-
diate contexts for a short period of time when their current
context changes. The search effort invested in the informa-
tion units with the intermediate contexts is thus small. The
search effort invested in the other information units is often
large but they do not need to be cached because their con-
texts do not need to be re-visited. On the other hand, if the
agents of ADOPT operated sequentially, then they would

still re-visit contexts due to its best-first search strategy.
Caching thus speeds up ADOPT a lot. The search effort
invested in the information units with these contexts varies.
It is therefore important to select a good caching scheme
carefully, as the resulting runtimes show. Caching schemes
of Category 1 are not well suited for ADOPT, as the result-
ing runtimes show, since their estimates of the likelihood of
future use take into account only that the agents re-visit
contexts due to the asynchronous execution of ADOPT but
not that they also re-visit contexts due to its best-first search
strategy. Caching schemes of Category 2 are not well suited
for BnB-ADOPT, as the resulting runtimes show, since the
contexts of the information units with the largest invested
search effort do not need need to be re-visited. Ideally, the
MaxUtility scheme should result in smaller runtimes than
the other caching schemes since an ideal caching scheme
minimizes the search effort of a DCOP search algorithm
by accurately estimating both the likelihood of future use
P (I) of an information unit I and the invested search effort

E(I). However, while our estimate P̂ (I) is correlated with

P (I) and our estimate Ê(I) is correlated with E(I), these
correlations are not linear, as shown in Figures 6 and 7.
Thus, the information unit with the smallest value of P̂ (I)

(which gets preempted by the MaxPriority scheme) or Ê(I)
(which gets preempted by the MaxEffort scheme) is often
also the information unit with the smallest value of P (I) or
E(I), respectively. However, the information unit with the

smallest value of Û(I) = P̂ (I)Ê(I) (which gets preempted
by the MaxUtility scheme) is often not the information unit
with the smallest value of U(I) = P (I)E(I). It is therefore
important to investigate these correlations further and de-
termine how one can use them to improve on the MaxUtility
scheme.

6. CONCLUSIONS
Any-space DCOP search algorithms require only a small

amount of memory but can be sped up by caching infor-

ADOPT BnB-ADOPT
Cache Factor 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FIFO 53566 48369 41745 33433 24676 19098 12823 8438 4476 3253 2377 419 412 410 409 409 409 409 409 409 409 409
LRU 53566 48228 41529 32611 23062 17520 10647 7616 4044 3169 2377 419 412 409 409 409 409 409 409 409 409 409
MaxPriority 53566 43532 32253 24083 14499 10632 6301 4924 3343 2973 2377 419 412 409 410 409 409 409 409 409 409 409
LIFO 53566 34833 22598 16478 10759 8536 5696 4784 3461 3081 2377 419 416 413 412 411 410 410 409 409 409 409
LFU 53566 33609 22199 16150 10402 8270 5522 4661 3382 3035 2377 419 414 413 412 411 410 410 409 409 409 409
MaxEffort 53566 27953 17669 12843 8402 6807 4835 4214 3197 2908 2377 419 413 411 411 411 410 410 410 409 409 409
MaxUtility 53566 28048 17704 12977 8364 6949 4910 4301 3243 2989 2377 419 413 411 411 411 410 410 410 409 409 409

Number of Repeated Contexts for Graph Coloring Problems

ADOPT BnB-ADOPT
Cache Factor 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FIFO 271 279 282 284 284 285 284 284 277 269 254 198 202 202 202 202 202 202 202 202 202 202
LRU 271 279 282 284 284 286 283 282 274 268 254 198 202 202 202 202 202 202 202 202 202 202
MaxPriority 271 281 284 286 284 283 278 275 267 263 254 198 202 202 202 202 202 202 202 202 202 202
LIFO 271 273 274 275 272 272 268 267 263 262 254 198 200 200 201 201 201 202 202 202 202 202
LFU 271 273 274 275 273 273 268 267 263 262 254 198 199 199 200 200 201 201 202 202 202 202
MaxEffort 271 276 279 281 280 279 274 273 266 263 254 198 200 200 201 202 202 202 202 202 202 202
MaxUtility 271 276 280 281 281 279 275 273 267 264 254 198 200 201 201 202 202 202 202 202 202 202

Number of Unique Contexts for Graph Coloring Problems

Table 2: Repeated and Unique Contexts

mation. However, their current caching schemes did not
exploit the cached information units when deciding which
information unit to preempt from the cache when a new in-
formation unit needs to be cached. We framed the problem
of which information unit to preempt from the cache as an
optimization problem, where each agent greedily maximizes
the sum of the utilities of all cached information units by
preempting an information unit with the smallest utility.
Existing caching schemes used only the likelihood of future
use P (I) to measure the utility of an information unit I . We
suggested to also use the invested search effort E(I). We

showed how caching schemes can calculate estimates P̂ (I)

and Ê(I) of P (I) and E(I), respectively, by exploiting the
cached information units in a DCOP-specific way. We intro-
duced three new caching schemes. The MaxPriority scheme
uses the lower bounds to calculate P̂ (I). The MaxEffort

scheme uses the upper and lower bounds to calculate Ê(I).
Finally, the MaxUtility scheme combines the MaxPriority
and MaxEffort schemes to calculate Û(I) = P̂ (I)Ê(I).

Our experimental results show that, on all tested DCOP
problem classes, our MaxEffort and MaxUtility schemes
speed up ADOPT more than the other tested caching
schemes, while our MaxPriority scheme speeds up BnB-
ADOPT at least as much as the other tested caching
schemes. The speed up from caching is much larger
for ADOPT than BnB-ADOPT since ADOPT re-expands
nodes of the search tree due to its best-first search strat-
egy if agents had to preempt information units due to their
memory limitations. It is future work to improve our esti-
mates of the utilities of information units and apply our
caching schemes to additional DCOP search algorithms,
which should be possible since they also maintain upper
and lower bounds on the cost of a cost-minimal complete
solution.

7. REFERENCES
[1] A. Chechetka and K. Sycara. An any-space algorithm

for distributed constraint optimization. In Proceedings
of the AAAI Spring Symposium on Distributed Plan
and Schedule Management, pages 33–40, 2006.

[2] A. Chechetka and K. Sycara. No-commitment branch
and bound search for distributed constraint
optimization. In Proceedings of AAMAS, pages
1427–1429, 2006.

[3] A. Gershman, A. Meisels, and R. Zivan. Asynchronous
forward-bounding for distributed constraints
optimization. In Proceedings of ECAI, pages 103–107,
2006.

[4] P. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and
Cybernetics, SSC4(2):100–107, 1968.

[5] R. Junges and A. Bazzan. Evaluating the performance
of DCOP algorithms in a real world, dynamic problem.
In Proceedings of AAMAS, pages 599–606, 2008.

[6] V. Lesser, C. Ortiz, and M. Tambe, editors.
Distributed Sensor Networks: A Multiagent
Perspective. Kluwer, 2003.

[7] R. Maheswaran, M. Tambe, E. Bowring, J. Pearce,
and P. Varakantham. Taking DCOP to the real world:
Efficient complete solutions for distributed event
scheduling. In Proceedings of AAMAS, pages 310–317,
2004.

[8] R. Mailler and V. Lesser. Solving distributed
constraint optimization problems using cooperative
mediation. In Proceedings of AAMAS, pages 438–445,
2004.

[9] R. Marinescu and R. Dechter. AND/OR
branch-and-bound for graphical models. In
Proceedings of IJCAI, pages 224–229, 2005.

[10] T. Matsui, H. Matsuo, and A. Iwata. Efficient
methods for asynchronous distributed constraint
optimization algorithm. In Proceedings of Artificial
Intelligence and Applications, pages 727–732, 2005.

[11] P. Modi, W.-M. Shen, M. Tambe, and M. Yokoo.
ADOPT: Asynchronous distributed constraint
optimization with quality guarantees. Artificial
Intelligence, 161(1-2):149–180, 2005.

[12] A. Petcu and B. Faltings. A scalable method for
multiagent constraint optimization. In Proceedings of
IJCAI, pages 1413–1420, 2005.

[13] A. Petcu and B. Faltings. MB-DPOP: A new
memory-bounded algorithm for distributed
optimization. In Proceedings of IJCAI, pages
1452–1457, 2007.

[14] W. Yeoh, A. Felner, and S. Koenig. BnB-ADOPT: An
asynchronous branch-and-bound DCOP algorithm. In
Proceedings of AAMAS, pages 591–598, 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts false
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

