
Springer Nature 2021 LATEX template

Effect of Asynchronous Execution and

Imperfect Communication on Max-sum

Belief Propagation

Roie Zivan1, Ben Rachmut1, Omer Perry1 and William Yeoh2

1Industrial Engineering and Management, Ben-Gurion University
of the Negev, David Ben Gurion Blvd, Beer-Sheva, 8410501, Israel.

2Computer Science and Engineering Department, Washington
University in St. Louis, Brookings Drive, Saint Louis, 63130,

Missouri, United States.

Contributing authors: zivanr@bgu.ac.il; rachmut@post.bgu.ac.il;
omerpe@post.bgu.ac.il; wyeoh@wustl.edu;

Abstract

Max-sum is a version of belief propagation that was adapted for solv-
ing distributed constraint optimization problems (DCOPs). It has been
studied theoretically and empirically, extended to versions that improve
solution quality and converge rapidly, and is applicable to multiple
distributed applications. The algorithm was presented both as syn-
chronous and asynchronous algorithms. However, neither the differences
in the performance of the two execution versions nor the implications
of imperfect communication (i.e., massage delay and message loss) on
the two versions have been investigated to the best of our knowledge.
We contribute to the body of knowledge on Max-sum by: (1) Estab-
lishing the theoretical differences between the two execution versions of
the algorithm, focusing on the construction of beliefs; (2) Empirically
evaluating the differences between the solutions generated by the two
versions of the algorithm, with and without message delay or loss; and
(3) Establishing both theoretically and empirically the positive effect
of damping on reducing the differences between the two versions. Our
results indicate that, in contrast to recent published results indicating
that message latency has a drastic (positive) effect on the performance
of distributed local search algorithms, the effect of imperfect communi-
cation on Damped Max-sum (DMS) is minor. The version of Max-sum
that includes both damping and splitting of function nodes converges

1

Springer Nature 2021 LATEX template

2 Asynchronous Execution of Max-sum Belief Propagation

to high quality solutions very fast, even when a large percentage of the
messages sent by agents do not arrive at their destinations. Moreover,
the quality of solutions in the different versions of DMS is dependent
of the number of messages that were received by the agents, regardless
of the amount of time they were delayed or if these messages are only
a portion of the total number of messages that was sent by the agents.

Keywords: Belief Propagation, Distributed Constraints, Distributed
Problem Solving

1 Introduction

Recent advances in computation and communication have resulted in realis-
tic distributed applications in which humans and technology interact and aim
to optimize mutual goals (e.g., IoT applications). A promising multi-agent
approach to solve these types of problems is to model them as distributed
constraint optimization problems (DCOPs), where decision makers are mod-
eled as agents that assign values to their variables. The goal in a DCOP is
to optimize a global objective in a decentralized manner. Unfortunately, the
communication assumptions of the DCOP model are overly simplistic and
often unrealistic: (1) Messages are never lost; (2) Messages have very small
and bounded delays; and (3) Messages arrive in the order that they were
sent. These assumptions do not reflect real-world characteristics, where mes-
sages may be disproportionately delayed, or dropped, due to congestion and
bandwidth limitations.

Recently, a study that investigated the effect of message latency on com-
mon DCOP local search algorithms (e.g., MGM and DSA) has shown that
message delays have a dramatic positive effect on the performance of the
asynchronous versions of these algorithms [1]. Specifically, message latency
generates an exploration effect, which significantly improves the quality of the
solutions found. Nevertheless, this study did not investigate the effect on dis-
tributed incomplete inference algorithms (e.g., Max-sum), even though they
have been shown to be very successful [2, 3].

Max-sum is a version of the belief propagation algorithm [4, 5] that is
used to solve DCOPs. It has been used for solving multi-agent optimization
problems in applications such as sensor networks [6, 7], task allocation for
rescue teams in disaster areas [8], and smart homes [9]. As with most belief
propagation algorithms, Max-sum is known to converge to an optimal solution
when solving problems represented by acyclic graphs. On problems represented
by cyclic graphs, the beliefs may fail to converge, and the resulting assignments
that are considered optimal under those beliefs may be of low quality [10,
11]. This occurs because the cyclic structure results in the propagation of
duplicated information, leading to computation of inaccurate and inconsistent
information [4].

Springer Nature 2021 LATEX template

Asynchronous Execution of Max-sum Belief Propagation 3

To decrease the effect of duplicated information propagation, damping can
be used. It balances the weight of the new calculation performed in each itera-
tion and the weight of calculations performed in previous iterations, resulting
in an increased probability for convergence [3]. Recently, splitting nodes in
the factor graph on which belief propagation operates has been shown to be
an effective method for accelerating the convergence of the algorithm when
combined with damping [3, 12].

Max-sum has been presented both as an asynchronous algorithm and as a
synchronous algorithm [10, 11, 13]. In the synchronous version, agents perform
in iterations. In each iteration, agents send messages to all their neighbors and
wait for the messages sent to them from all their neighbors to arrive before
moving to the next iteration. In the asynchronous version, agents react to
messages as and when they arrive.

To best of our knowledge, the implications of this difference in the execution
of the algorithm on its performance have not been studied to date. Moreover,
when message loss is considered, the synchronous version is not applicable since
an agent may remain idle while it waits for the arrival of a message that was
lost. While message latency does not affect the actions that agents perform
(only delays them) in the synchronous version, intuitively, it is expected to have
a major effect on the performance of the asynchronous version. The reason is
that the beliefs included in messages are used by agents in the construction
of beliefs that they propagate to others and in their assignment selection. In
asynchronous execution, belief construction and assignment selection might be
performed while considering imbalanced and inconsistent information.

In this paper, we make the following contributions:1

1. We investigate the differences in the properties of the two execution versions
of Max-sum, synchronous and asynchronous. More specifically, using back-
track cost trees (BCTs) [15], we investigate the possible differences between
the propagated beliefs in the two versions of Max-sum. Since BCTs, as orig-
inally defined [15], are applicable for the synchronous version only, in order
to perform the analysis, we define a general BCT (GBCT) structure that
is applicable for both modes of execution.

2. We investigate the effect of damping on asynchronous Max-sum. While
there are clear indications (both empirical and theoretical) that damping
improves the performance of the synchronous version of Max-sum [3, 15], to
best of our knowledge, the effect of damping on the asynchronous version
of Max-sum has not been studied prior to our study. We analyze this effect
both theoretically and empirically. Both indicate that damping reduces the
differences between synchronous and asynchronous execution.

3. We investigate the performance of the different versions of the algorithm in
the presence of message latency and message loss. While the beliefs propa-
gated and the computation that agents perform are not affected by message
latency in the synchronous version (only delayed), this is not true for the

1This work is an extension of our published paper in the International Conference on Principles
and Practice of Constraint Programming (CP) 2021 [14].

Springer Nature 2021 LATEX template

4 Asynchronous Execution of Max-sum Belief Propagation

asynchronous version. Once again, our empirical results reveal that damp-
ing reduces the differences. Moreover, the version of Max-sum proposed by
Cohen et al. [3] that includes both damping and splitting maintains its fast
convergence properties and high quality of solutions, even in asynchronous
execution with message delays and when many messages are lost.

Our results include experiments that reveal that the quality of solutions
produced by the different versions of DMS is mainly determined by the number
of messages received by the agents, regardless of the time they were delayed
or the number of messages that were sent. This finding is consistent with our
theoretical results.

The paper is constructed as follows: We start by presenting related work in
Section 2. Section 3 details the relevant background. Our theoretical study on
the effect of asynchronous execution of the Max-sum algorithm is presented in
Section 4 followed by our empirical study in Section 5. Finally, our conclusions
are presented in Section 6.

2 Related Work

Belief propagation was first introduced by Pearl [4] and was intensively stud-
ied before it was adopted by the multi-agent optimization community [16–19].
The version of belief propagation that was adapted to solve DCOPs, the
Max-sum algorithm, was proposed by Farinelli et al. [10]. In that paper, the
algorithm was described in its asynchronous version. Early on, researchers
noticed that when the algorithm fails to converge, it performs poorly and,
thus, they suggested versions that guaranteed convergence [20, 21].

Rogers et al. [20] proposed a manipulation of the factor graph that the
algorithm uses that will guarantee its convergence. The algorithm starts by
eliminating edges from the factor graph until a spanning tree of the original
factor graph remains. Then the Max-sum algorithm is used in order to pro-
duce the optimal solution to the spanning tree factor graph. By accumulating
the maximal additional cost of every removed edge, it is possible to calculate a
bound on the difference between the cost of the optimal solution for the span-
ning tree and the optimal solution for the original factor graph. Hence, this
algorithm is known as Bounded Max-sum. Later studies proposed methods for
selecting the spanning tree that improve the bound [22, 23]. Unfortunately,
while the algorithm offered a bound from the optimum, the cost of the solu-
tion it proposed was insignificantly better than the non-converging standard
version of Max-sum [11].

Zivan and Peled [21] proposed a different manipulation on the factor graph
to trigger convergence. They converted the factor graph to a directed acyclic
graph by selecting an order on all nodes of the graph and allowing messages to
be sent only in this order. This algorithm is guaranteed to converge in linear
time. However, in order to consider all constraints, the order was reversed.
The best outcome was achieved by performing a small number of phases in
alternating directions, and then performing a number of phases that include

Springer Nature 2021 LATEX template

Asynchronous Execution of Max-sum Belief Propagation 5

value propagation. Chen et al. [2] later extended this algorithm to versions
that balance between exploration and exploitation.

Later, Cohen et al. [3] introduced a version of the algorithm that included
damping, a method for encouraging convergence that was used in other ver-
sions of belief propagation [16], and splitting of function nodes, a method
that was theoretically investigated by Ruozzi and Tatikonda [12]. This version
converged very fast to high quality solutions.

Recently, a number of papers addressed the main limitation of Max-sum,
which is the exponential calculation required by function-nodes in order to
produce the messages they send to neighboring variable nodes [13, 24]. While
these proposed methods evidently reduce the computation effort required for
producing messages by function-nodes, the process is still exponential in the
arity of the constraints. Thus, as in prior work [3, 11], we focus on binary
DCOPs where Max-sum performs efficiently in this work as well.

Max-sum has been used to solve asymmetric DCOPs [25] by having each
agent involved in a constraint hold a function-node representing its personal
costs for that constraint. Thus, for each binary constraint, there were two
representing function-nodes. The study showed that, in contrast to other
DCOP algorithms, Max-sum versions maintain the quality of the solutions
that they produce when applied to asymmetric problems. The main differ-
ence with respect to the splitting method [3] is that, the use of more than
one function-node for a single constraint was intended to represent the given
natural structure of an asymmetric problem [25]. In contrast, in the work by
Cohen et al. [3] (and in this study), it was used as an algorithmic method to
accelerate convergence.

3 Background

In this section we provide background on graphical models, distributed con-
straint optimization problems (DCOPs), the DCOP versions of belief prop-
agation – Max-sum and its variants – and backtrack cost tree (BCT) – the
tool we use to analyze the algorithms’ behavior. While the Max-sum vari-
ants that we discuss are actually solving a min-sum problem [12], we will still
refer to them as “Max-sum” since this name is commonly used in the DCOP
literature [10, 11, 26].

3.1 Graphical Models

Graphical models such as Bayesian networks or constraint networks are a
widely used representation framework for reasoning and solving optimiza-
tion problems. The graph structure is used to capture dependencies between
variables [27]. Our work extends the theory established by Weiss [17] that con-
sidered the Maximum a posteriori (MAP) assignment, which is solved using
the Max-product version of belief propagation.

The relation between MAP and constraint optimization is well estab-
lished [10, 27, 28] and, thus, results that consider Max-product for MAP apply

Springer Nature 2021 LATEX template

6 Asynchronous Execution of Max-sum Belief Propagation

to Max/Min-sum for solving constraint optimization problems, as well as the
other way around [12]. Therefore, without loss of generality, we will focus
on constraint optimization in this paper. Moreover, we will consider the dis-
tributed version of the problem since it is a natural representation for message
passing algorithms. Nevertheless, our results apply to any version of problem
represented by a graphical model and solved by distributed belief propagation.

3.2 Distributed Constraint Optimization Problems

A distributed constraint optimization problem (DCOP) is defined by a tuple
〈A,X ,D,R〉, where:

• A is a finite set of agents {A1, A2, . . . , An}.
• X is a finite set of variables {X1, X2, . . . , Xm}, where each variable is held

by a single agent and an agent may hold more than one variable.
• D is a set of domains {D1, D2, . . . , Dm}, where each domain Di contains

the finite set of values that can be assigned to variable Xi. We denote an
assignment of value x ∈ Di to Xi by an ordered pair 〈Xi, x〉.

• R is a set of relations (constraints), where each constraint Rj ∈ R defines a
non-negative cost for every possible value combination of a set of variables,
and is of the form Rj : Dj1 ×Dj2 × . . .×Djk → R+ ∪ {0}.

A binary constraint refers to exactly two variables and is of the form Rij :
Di×Dj → R+∪{0}.2 For each binary constraint Rij , there is a corresponding
cost table Tij with dimensions |Di| × |Dj | in which the cost in every entry exy
is the cost incurred when x is assigned to Xi and y is assigned to Xj . A binary
DCOP is a DCOP in which all constraints are binary. A partial assignment is
a set of value assignments to variables, in which each variable appears at most
once. vars(PA) is the set of all variables that appear in partial assignment
PA (i.e., vars(PA) = {Xi | ∃x ∈ Di ∧ 〈Xi, x〉 ∈ PA}). A constraint Rj ∈ R
of the form Rj : Dj1 × Dj2 × . . . × Djk → R+ ∪ {0} is applicable to PA if
each of the variables Xj1 , Xj2 , . . . , Xjk is included in vars(PA). The cost of a
partial assignment PA is the sum of all applicable constraints to PA over the
value assignments in PA. A complete assignment (or a solution) is a partial
assignment that includes all the DCOP’s variables (i.e., vars(PA) = X). An
optimal solution is a complete assignment with minimal cost.

For simplicity, we make the common assumption that each agent holds
exactly one variable (i.e., n = m) and we concentrate on binary DCOPs. These
assumptions are common in the DCOP literature [29, 30]. In addition to the
standard motivation for focusing on binary DCOPs, in the case of Max-sum,
it is essential since the runtime complexity of each iteration of Max-sum is
exponential in the arity of the constraints.

2We say that a variable is involved in a constraint if it is one of the variables the constraint
refers to.

Springer Nature 2021 LATEX template

Asynchronous Execution of Max-sum Belief Propagation 7

3.3 The Max-Sum Algorithm

Max-sum operates on a factor graph, which is a bipartite graph in which the
nodes represent variables and constraints [31]. Each variable-node representing
a variable of the original DCOP is connected to all function-nodes representing
constraints that it is involved in. Similarly, a function-node is connected to all
variable-nodes representing variables in the original DCOP that are involved
in it. Variable-nodes and function-nodes are considered “agents” in Max-sum
(i.e., they can send and receive messages and can perform computation).

A message sent to or from variable-node X (for simplicity, we use the same
notation for a variable and the variable-node representing it) is a vector of size
|DX |, including a cost for each value in DX . These costs are also called beliefs.
Before the first iteration, all nodes assume that all messages they previously
received (in iteration 0) are vectors of zeros. A message sent from a variable-
node X to a function-node F in iteration k ≥ 1 is formalized as follows:

QkX→F =
∑

F ′∈FX ,F ′ 6=F

Rk−1F ′→X − α (1)

where QkX→F is the message that variable-node X intends to send to function-
node F in iteration k, FX is the set of function-node neighbors of variable-node
X, and Rk−1F ′→X is the message sent to variable-node X by function-node F ′

in iteration k − 1. α is a constant that is reduced from all beliefs included in
the message (i.e., for each x ∈ DX) in order to prevent the costs carried by
messages throughout the run of the algorithm from growing arbitrarily large.

A message RkF→X sent from a function-node F to a variable-node X in
iteration k includes for each value x ∈ DX :

min
PA−X

cost(〈X,x〉, PA−X) (2)

where PA−X is a possible combination of value assignments to variables
involved in F not including X. The term cost(〈X,x〉, PA−X) represents the
cost of a partial assignment a = {〈X,x〉, PA−X}, which is:

f(a) +
∑

X′∈XF ,X′ 6=X,〈X′,x′〉∈a

(Qk−1X′→F)x′ (3)

where f(a) is the original cost in the constraint represented by F for the partial
assignment a, XF is the set of variable-node neighbors of F , and (Qk−1X′→F)x′

is the cost that was received in the message sent from variable-node X ′ in
iteration k− 1, for the value x′ that is assigned to X ′ in a. X selects its value
assignment x̂ ∈ DX following iteration k as follows:

x̂ = arg min
x∈DX

∑
F∈FX

(RkF→X)x (4)

Springer Nature 2021 LATEX template

8 Asynchronous Execution of Max-sum Belief Propagation

In the synchronous version (Syn Max-sum), in each iteration, an agent
waits to receive all messages sent to it in the previous iteration before per-
forming computation and generating the messages to be sent in the current
iteration [11]. In the asynchronous version (Asy Max-sum), agents react to
messages they receive. Whenever a node receives a message, it performs com-
putation and sends out messages to its neighbors, taking into consideration
the last message received from each of its neighbors [10]. In both versions, the
logic for the actions of the agents are identical, only the trigger for performing
those actions is different.

3.3.1 Damped Max-Sum

Damped Max-sum (DMS) has an additional feature, which is the damping of
the propagated beliefs. In order to add damping to Max-sum, a parameter
λ ∈ [0, 1) is used. Before sending a message in iteration k, a node in the factor
graph (whether it is a variable-node or a function-node) performs calculations

as in standard Max-sum. We use m̂k
i→j to denote the result of the calculation

made by node Ni for the content of a message intended to be sent from Ni to
node Nj in iteration k and mk−1

i→j to denote the message sent by Ni to Nj at

iteration k − 1. Notice that mk
i→j can be either a Q message or a R message.

The message sent by Ni to Nj at iteration k is calculated as follows:

mk
i→j = λmk−1

i→j + (1− λ)m̂k
i→j (5)

Thus, λ expresses the weight given to previously performed calculations with
respect to the most recent calculation performed. Moreover, when λ = 0 the
resulting algorithm is standard Max-sum.

We use Syn DMS and Asy DMS to denote the synchronous and asyn-
chronous versions of DMS, respectively, in this paper.

3.3.2 Asynchronous Execution

All the definitions used for describing Max-sum (and DMS) above use the iter-
ation number k. It was used to describe how a message is generated, using the
information received by the factor graph node in the previous iteration (k−1).
In asynchronous execution, their are no iterations, and agents perform compu-
tation steps whenever they receive messages. Thus, in asynchronous execution,
the information that a node Ni uses to generate a message at time t is the
information included in the last message received from each of its neighbors
prior to t, regardless of when it was sent by the neighbors. If no message has
been received from a particular neighbor yet, Ni uses a vector of zeros in its
computation for that neighbor.

Notice, that in the presence of message delays, a node Ni may receive
messages from its neighbor not in the order they were sent. This is true for both
the synchronous and the asynchronous versions of the algorithm. Nevertheless,
the agents use the messages in the order in which they were received. In order

Springer Nature 2021 LATEX template

Asynchronous Execution of Max-sum Belief Propagation 9

Fig. 1 An acyclic DCOP factor graph (on the left) and its equivalent SCFG (on the right).

to avoid this phenomenon, we implemented a time-stamp method that allows
the agents receiving messages to consider the information they include in the
order that they were sent. However, the results were not significantly different
from the results obtained when this method was not used. Thus, we do not
report these results in our empirical study.

3.3.3 Max-Sum with Split Constraint Factor Graphs

When Max-sum is applied to an asymmetric problem, the representing factor
graph has each (binary) constraint represented by two function-nodes, one for
each part of the constraint held by one of the involved agents. Each function-
node is connected to both variable-nodes representing the variables involved in
the constraint [32]. Figure 1 presents two equivalent factor graphs that include
two variable-nodes, each with two values in its domain, and a single binary
constraint. On the left, the factor graph represents a (symmetric) DCOP
including a single constraint between variables X1 and X2; hence, it includes
a single function node representing this constraint. On the right, the equiva-
lent factor graph representing the equivalent asymmetric DCOP is depicted.
It includes two function-nodes representing the parts of the constraint held by
the two agents involved in the asymmetric constraint. Thus, the cost table in
each function-node includes the asymmetric costs that the agent holding this
function-node incurs. In this example, function-node F ′12 is held by agent A1,
while F ′21 is held by A2. The factor graphs are equivalent since the sum of the
two cost tables held by the function-nodes representing the constraints in the
factor graph on the right, is equal to the cost table of the single function-node
representing this constraint in the factor graph on the left (see [25] for details).
Such split constraint factor graphs (SCFGs) can be used as an enhancement
method for Max-sum [3, 12]. This is achieved by splitting each constraint that
was represented by a single function-node in the original factor graph into two
function-nodes. The SCFG is equivalent to the original factor graph if the sum
of the cost tables of the two function-nodes representing each constraint in the
SCFG is equal to the cost table of the single function-node representing the
same constraint in the original factor graph. By tuning the similarity between

Springer Nature 2021 LATEX template

10 Asynchronous Execution of Max-sum Belief Propagation

X1

F12

F13

X2

X3

F23

X4

F24F25

X5

F45

0

R(X1=a;X3=b)

0

R(X4=c;X5=d)

R(X1=a;X3=b) R(X4=c;X5=d)

F13

X1=x

F12

X2

F23 F25 F24

X3 X4

F45F13 F45

X4

0

X5

X1 X5

X3

R(X4=c;X5=d)

R(X4=c;X5=d)

R(X3=b;X2=e) +
R(X1=a;X3=b)

R(X5=d;X2=e) +
R(X4=c;X5=d)

R(X4=c;X2=e) +
R(X4=c;X5=d)

R(X3=b;X2=e) + R(X1=a;X3=b) +
R(X4=c;X2=e) + R(X4=c;X5=d) +
R(X5=d;X2=e) + R(X4=c;X5=d)

R(X1=x;X2=e) +
R(X3=b;X2=e) + R(X1=a;X3=b) +
R(X4=c;X2=e) + R(X4=c;X5=d) +
R(X5=d;X2=e) + R(X4=c;X5=d)

(a) (b)

Fig. 2 (a) A lemniscate factor-graph. (b) An example of a BCT for a belief in the message
sent from X1 to the function-node F13 at time t = 6 in the lemniscate depicted on the left
hand side.

the two function-nodes representing the same constraint one can determine
the level of asymmetry in the SCFG. The use of symmetric SCFGs was shown
to trigger very fast convergence to high quality solutions. However, generat-
ing mild asymmetry, postpones convergence and generates some exploration,
which results in improved solution quality [3].

3.3.4 Non-Concurrent Logic Operations

In order to evaluate the runtime performance of distributed algorithms per-
forming in a distributed environment, independent of the implementation
details, there is a need to establish which of the operations performed by
agents could not have been performed concurrently. Thus, the runtime perfor-
mance of the algorithm is the longest non-concurrent sequence of operations
that the algorithm performed. This method was first proposed for the evalua-
tion of asynchronous distributed algorithms for solving distributed constraint
satisfaction problems (DisCSPs) [33]. As the basic logic operations of DisCSP
algorithms are constraint checks, researchers have measured their runtimes in
terms of non-concurrent constraint checks (NCCCs) [33]. To better compare
different logic operations in other classes of algorithms, researchers generalized
NCCCs to non-concurrent logic operations (NCLOs) [34]. We adopt NCLOs
in this study.

Springer Nature 2021 LATEX template

Asynchronous Execution of Max-sum Belief Propagation 11

3.4 Backtrack Cost Trees

For analyzing the behavior of Max-sum on factor graphs with an arbitrary
(finite) number of cycles, Zivan et al. [15] proposed the use of a backtrack
cost tree (BCT). It allows one to trace, for each belief, the entries in the
cost tables held by function-nodes that were used to compose this belief. In
other words, the components of the assignment’s cost. Their analysis included
insights regarding the construction of beliefs from costs incurred by constraints.
Thus, for every pair of constrained variables Xi and Xj , for each x ∈ Di,
x′ ∈ Dj , the cost incurred by the constraint for assigning x to Xi and x′ to
Xj was denoted as R(Xi = x,Xj = x′). Formally, a BCT is defined as follows:

Definition 1 (Backtrack Cost Tree (BCT)) A BCT is defined for a belief that
appears either in a message sent from variable Xi at time t to a function node
connecting it to a variable Xj or in a message sent from that function node to variable
Xi. The belief is on the cost of assigning some value x ∈ Di to variable Xi. Without
loss of generality, we will elaborate on the first among these two and denote it as
BCT ti=x→j .

The belief, as constructed by the Max-sum algorithm, is a sum of various com-
ponents and the tree is composed from them. At the root is the decision to assign
some value to a variable (e.g., assigning some x ∈ Di to Xi) and the directed edges
from its children in the tree include the beliefs that were summed in order to gener-
ate the cost (the belief) for this assignment. These edges lead to nodes representing
the neighboring nodes from which Xi received messages in time t− 1. Each of those
nodes is connected to the nodes from which they received messages at time t − 2,
with the edges containing the beliefs that passed to it and their sum ended up in its
message. The tree leaves are all at time 0 (see Figure 2(b)).

For a single-cycle factor graph, the BCT for every belief is a chain. Fac-
tor graphs with multiple cycles include variable-nodes with more than two
neighbors and, thus, the BCTs of their beliefs include nodes with multiple
children.

A BCT starts from an end point (e.g., the root of the BCT as presented
in Figure 2(b)), which is the belief (cost) of assigning to Xi some value x
from its domain Di, as sent to a neighboring node (in our example it is the
assignment of x ∈ D1 to X1. The values from which that belief was calculated
can then be backtracked to the messages and costs due to all the individual
constraints that were summed up to create that belief. An example of such a
tree for a belief generated when Max-sum solves the factor-graph depicted in
Figure 2(a) is depicted in Figure 2(b).

For each BCT, there is an implied assignment tree that consists of the value
assignments that the variables at each time-point of the tree would need to be
assigned in order to incur the costs included in the BCT. The value assignment
selected by a variable at time t is the one with the minimal sum of beliefs sent
to the corresponding variable-node at iteration t−1. The tree for this minimal

Springer Nature 2021 LATEX template

12 Asynchronous Execution of Max-sum Belief Propagation

sum of beliefs will be denoted by BCT ti , as it does not depend on any specific
belief that appears in a message to another variable.

3.5 Convergence Properties

Belief propagation converges in linear time to an optimal solution when the
problem’s corresponding factor graph is acyclic [4]. For a single-cycle factor
graph, we know that if belief propagation converges, then it is to an optimal
solution [17, 18]. Moreover, when the algorithm does not converge, it periodi-
cally changes its set of assignments. In order to explain this behavior, Forney
et al. [18] show the similarity in the performance of the algorithm on a cycle to
its performance on a chain, whose nodes are similar to the nodes in the cycle,
but whose length is equal to the number of iterations performed by the algo-
rithm. One can consider a sequence of messages starting at the first node of the
chain and heading towards its other end. Each message carries beliefs accumu-
lated from costs added by function-nodes. Each function-node adds a cost to
each belief, which is the constraint value of a pair of value assignments to its
neighboring variable-nodes. Each such sequence of cost accumulation (route)
must at some point become periodic, and the minimal belief would be gener-
ated by the minimal periodic route. If this periodic route is consistent (i.e., the
set of assignments implied by the costs contain a single value assignment for
each variable), then the algorithm converges. Otherwise, it does not.

Recently, these insights were generalized such that similar statements can
be made when the algorithm is solving factor graphs with multiple cycles.
Specifically (using BCTs), Zivan et al. [15] proved that, as in the single cycle
case, on every finite factor graph, Max-sum at some point in time starts to
repeatedly follow a path that minimizes its beliefs.

4 Effect of Asynchronous Execution

In order to analyze the differences in performance of the synchronous ver-
sion of Max-sum (Syn Max-sum) and the asynchronous version of Max-sum
(Asy Max-sum), one must investigate the differences in the structure of the
BCTs of beliefs sent by the algorithms’ nodes. However, in Section 3.4, BCTs
were defined with respect to synchronous execution, referring to messages
sent in a specific time. Thus, there is a need for a more general definition
that will apply to both synchronous and asynchronous execution, as well as
environments that include message latency and message loss.

Definition 2 (General BCT (GBCT)) A GBCT is defined for a belief that appears
either in a message sent from variable Xi to a function node connecting it to a
variable Xj or in a message sent from that function node to variable Xi. The belief is
on the cost of assigning some value x ∈ Di to variable Xi. Without loss of generality
(as we did above), we will elaborate on the first among these two and denote it as
GBCT ti=x→j .

Springer Nature 2021 LATEX template

Asynchronous Execution of Max-sum Belief Propagation 13

As in a standard BCT, at the root of a GBCT is the decision to assign some
value to a variable (e.g., assigning some x ∈ Di to Xi) and the directed edges from
its children in the tree include the beliefs that were sent to Xi, which were summed
in order to generate the cost (the belief) for this assignment. Similar to a BCT, the
definition is recursive and applies to every cost sent by a node in the tree that was
summed in order to generate the belief at the root of the tree. For every node Xj ,
that sent a message with a belief x′ ∈ Dj , the cost on an edge connecting it to a
child is the belief carried by the last message received by Xj from that child, before
Xj sent the message with the belief for x′.

In contrast to the definition of the standard BCT, in GBCT, we do not
know when the messages were sent or received. All we know is the content
of the messages that were received. Specifically, the last message that was
received by Xi from each of its neighbors (except for the neighbor to whom
b is sent), before generating the message with the belief b for the assignment
〈x,Xi〉, is the one that is considered in the GBCT. Each of the nodes sending
these messages is the parent in the tree of the nodes sending messages to it.
For example, assume that Fij sent a message m to Xi with a cost for value x
and that this cost corresponds to the assignment of x′ ∈ Dj . Further assume
that m was the last message that Xi received from Fij before producing b.
Thus, Fij is the child of the node Xi in the GBCT and Xj is the child of Fij .
The cost on the edge between Fij and Xi is the belief corresponding to x in
m. Fij is the parent of Xj and the cost on the edge between them is the cost
included in the last message received by Fij before it produced the belief that
was sent in m.

In Syn Max-sum, the height of a BCT for a belief included in a message
sent at iteration t is t and, for each node in the tree, the heights of the sub-
trees rooted by each of its children nodes are equal. On the other hand, in
Asy Max-sum, messages can have different delays and, thus, each sub-tree in
a GBCT can have a different height.

Our first theoretical property addresses the results proved by Zivan et
al. [15] regarding the convergence of Syn Max-sum. More specifically, we prove
that the property that was proved in Lemma 1 in [15], and was used to prove
the main theorem of that study (i.e., the main theorem in [15]), is not guaran-
teed when Max-sum operates asynchronously in an environment that includes
message delays.

Proposition 1 In the presence of message delays, Asy Max-sum is not guaranteed
to converge to a minimal repeated route.

Proof: The structure of the GBCTs of the beliefs that are exchanged by agents
depends on the arrival times of messages from which they are composed. Each
GBCT (and, as a result, its corresponding belief) is an outcome of a specific
combination of message arrivals, depending on whether messages were lost or
delayed and by how much. These consequences result in different orders of

Springer Nature 2021 LATEX template

14 Asynchronous Execution of Max-sum Belief Propagation

X1 X2 X3

5 2

0 3
X1

X2

a

a

b

b

F12

0 4

5 1
X1

X2

a

a

b

b

F21

0 1

4 2
X2

X3

a

a

b

b

F23

1 3

4 2
X2

X3

a

a

b

b

F32

Fig. 3 Example of how message delays affect convergence.

message arrivals and the number of such combinations is exponential in the
maximal number of messages that the beliefs they carry can be included in the
GBCT. Moreover, due to message losses and delays, a specific minimal route
of beliefs is not guaranteed to repeat itself. Thus, even if the algorithm reaches
a minimal route, it may not repeat it. �

In order to provide an intuitive explanation to Proposition 1, we present
an example in Figure 3, which includes a leminiscate factor graph with three
variable nodes and two function nodes. When performing Max-sum where
messages arrive instantaneously, the algorithm oscillates between solutions:
〈X1 = a,X2 = a,X3 = a〉, 〈X1 = b,X2 = a,X3 = a〉, 〈X1 = b,X2 = a,X3 =
b〉, 〈X1 = b,X2 = b,X3 = b〉, 〈X1 = a,X2 = b,X3 = b〉, 〈X1 = a,X2 =
a,X3 = b〉, 〈X1 = a,X2 = a,X3 = a〉.... If messages from function nodes F12

and F21 to variable node X2 are delayed while messages from other nodes
arrive instantaneously, then the algorithm performing on the cycle including
X2, F23, X3 and F32 will converge to the solution 〈X2 = a,X3 = a〉3 and X1

will maintain its current assignment. When the messages from function nodes
F12 and F21 will finally arrive and the communication limitation is resolved,
the algorithm will oscillate once again.

Therefore, Proposition 1 seems to put an end to the natural wish that the
convergence properties of Syn Max-sum can be established for Asy Max-sum
as well. However, the differences between the executions of the two versions
of the algorithm can be minimized. More specifically, the effect caused by
sub-trees of the GBCTs having different heights in Asy Max-sum can be
significantly reduced through the use of damping.

Let layerk denote the set of nodes of a GBCT with depth k (distance from
the root) and GBCTk denote the layers of the GBCT with depth k or less. We

say that a layerk is effective if and only if there exists a number k̂ ≥ k, such
that the belief calculated by GBCTk̂ is different than the belief calculated by

3This is because this assignment results in a normalized cost that is lower than any alternative
oscillating path. See [18, 35] for details.

Springer Nature 2021 LATEX template

Asynchronous Execution of Max-sum Belief Propagation 15

GBCTk−1. For each GBCT G, we say that its effective GBCT G′ is GBCTk′

such that layerk′ is effective and, for any layerk that is effective in B, k′ ≥ k.
In the proofs of the following properties, we assume that the messages

have bounded delays and a probability of message loss that is small enough
to prevent starvation (i.e., there is no agent Ai and number of non-concurrent
steps ns′,4 such that following ns′, Ai does not receive messages anymore), and
there is a limit e for the number of consecutive messages that can be lost on a
communication link (i.e., that are sent from an agent Ai to another agent Aj).

Lemma 1 When asynchronous DMS (Asy DMS) is performed with a large enough
damping factor,5 there exists a finite number of non-concurrent steps of the algorithm
ns1, such that in the steps following it, for every two beliefs included in the same
message, if layerk in each of the corresponding GBCTs is effective, then the number
of nodes in layerk of both GBCTs are equal.

Proof: A node in the GBCT represents a node in the factor-graph, and its
children are the nodes from which it received messages. Assume that in two
GBCTs of beliefs sent in the same message, there exists an effective layer k in
which one GBCT has a smaller number of nodes than the other. That means
that the factor-graph nodes represented by nodes in layerk−1 did not receive
messages from all their neighbors yet. However, since the delays are bounded
and so is the number of messages that are lost, their must exist a time when
messages from all neighbors will arrive. Following that time the size of the
layerk in both GBCTs will be equal until the end of the run of the algorithm. �

An immediate corollary from Lemma 1 is that in Asy DMS (using a large
enough damping factor), following ns1, the effective GBCTs of all beliefs
included in each message have the same number of nodes. This reduces the pos-
sible differences between beliefs that can be generated by each node. Moreover,
for the case that the algorithm does converge, the effect of the asynchronous
performance vanishes, as we prove below.

Proposition 2 When Asy DMS is using a large enough damping factor, if after
performing ns2 > ns1 (ns1 as described in Lemma 1) non-concurrent steps, it reaches
a minimal consistent route (i.e., all nodes perform k sequential asynchronous steps
in which the value assignments corresponding to the minimal route are selected), then
it will repeatedly follow this route (i.e., it has converged).

Proof: As established above, following ns1, the effective GBCTs for beliefs
included in the same message have the same number of nodes (in each layer and
altogether) regardless of message delays. When the algorithm reaches a min-
imal consistent route, the beliefs corresponding to this minimal route involve

4We consider a step to be an action that starts when a node in the graph received some messages
(at least one), performed computation, and ends when it sent some messages (at least one).

5For an analysis on the size of the damping factor required, with respect to the largest number
of neighbors (degree) that a node in the factor graph has, see the work by Zivan et al. [15].

Springer Nature 2021 LATEX template

16 Asynchronous Execution of Max-sum Belief Propagation

only one value in each domain, and the belief corresponding to it is minimal
in each message. Additional nodes added to the GBCTs of the beliefs corre-
sponding to the assignments in the minimal route represent costs in the entries
of the cost tables of function-nodes that are part of the minimal route. Hence,
they will not change its minimal property or the choice of the minimal route
assignments (i.e., for every ns > ns2, the effective GBCTnsi will be identical).
Similarly, the addition of nodes to GBCTs of beliefs corresponding to assign-
ments that are not included in the minimal route represent costs that belong
to routes with larger overall costs. �

Proposition 2 has a major importance to our discussion. Both the asyn-
chronous and the synchronous versions of DMS will converge when they reach a
consistent minimal path. In other words, the differences between them can exist
only when the minimal path is inconsistent. In such a case, the synchronous
version will repeat the minimal inconsistent route while the asynchronous
version may leave it and explore other routes.

5 Experimental Evaluation

In order to evaluate the implications of asynchronous execution (compared
to synchronous execution) and imperfect communication on the different ver-
sions of Max-sum, we used an asynchronous simulator, in which agents are
implemented by Java threads. It includes a mailing agent that simulates the
delays of messages as suggested by Zivan and Meisels [33]. Using this type of
simulator allows us to implement any type of message delay pattern. Other
simulators, such as ns-3 [36, 37], offer a number of communication patterns
from which one can select. However, we prefer the use of the simpler simulator
proposed by Zivan and Meisels [33], which allows complete flexibility in the
design of the message delay patterns and it allows us to measure runtimes in
implementation-agnostic units. Thus, the results are presented as a function
of the number of non-concurrent logic operations (NCLOs). The atomic logic
operations in these algorithms are the evaluation of the cost of a combination
of two assignments (i.e., an access to the cost table of a function-node). Each
agent performed the computation for the function-nodes that were assigned
to it. We used a greedy heuristic to evenly assign function-nodes to agents
and, thus, increase concurrency. In order to simulate message delays, for each
message sent between nodes managed by different agents, a delay in terms of
NCLOs was selected, and the message was delivered to the receiving agent after
that agent had the opportunity to perform this number of logic operations.

We evaluated the algorithms on problems with 50 agents, which are often
too large for complete DCOP algorithms to solve, and across four different
types of DCOPs, described below. Each type of problem exhibits a differ-
ent level of structure in the constraint graph topology and in the constraint
functions. All problems were formulated as minimization problems.

• Random Graph Problems: These problems are random constraint graph
topologies with density p1 = {0.1, 0.6}. They include variables with 10 values

Springer Nature 2021 LATEX template

Asynchronous Execution of Max-sum Belief Propagation 17

in each domain. The cost tables held by function-nodes include costs that
were selected uniformly between 100 and 200. This range was chosen because
when the range is closer to zero, beliefs may be very small and the effect
of damping is less effective. Both the constraint graph and the constraint
functions in these problems are unstructured.

• Graph Coloring Problems: These problems are random constraint graph
topologies in which each variable has a number of values (i.e., colors) that it
can take, and all constraints are “not-equal” cost functions, where an equal
assignment of neighbors in the graph incurs a random cost between 100 and
200 and non-equal value assignments incur zero cost. Such random graph
coloring problems are commonly used in DCOP formulations of resource
allocation problems. We set the density to p1 = 0.05 and set the number of
values in each domain to 3 [3, 10, 38].

• Scale-free Network Problems: These problems are generated using the
model by Barabási and Albert [39]. An initial set of 10 agents was randomly
selected and connected. Additional agents were added sequentially and con-
nected to 3 other agents with a probability proportional to the number of
links that the existing agents already had. The cost of each joint assignment
between constrained variables was selected uniformly between 100 and 200.
Each variable had 10 values in its domain. The constraint graph is somewhat
structured but the constraint functions are unstructured. Similar problems
were previously used to evaluate DCOP algorithms by Kiekintveld et al. [40].

• Overlapped Solar System Problems: The overlapped solar system is a
realistic problem, inspired by the Constant Speed Propagation Delay Model
implemented in the ns-3 simulator [36, 37]. The graph topology is inspired
by scale-free networks. An initial set of 5 agents are randomly selected to be
the centers of the solar systems, and they are connected. Each of these agents
Aci is assigned two coordinates that are drawn from a continuous uniform
distribution: xci ∼ U(0, 1) and yci ∼ U(0, 1). All other agents (i.e., stars in
the solar systems) are randomly assigned to one of the solar systems. The
index c represents the solar system to which the agent is assigned, and it
is equal to the index of the center agent of the solar system (i.e., if Aci is
the center of a solar system, then i = c). The coordinates for an assigned
agent (Acj where j 6= c) are drawn from a Normal distribution as follows:
xcj ∼ N(µ = xci , σ = 0.05) and ycj ∼ N(µ = yci , σ = 0.05) based on the
location of the center of the solar system that it was added to.
The probability that two arbitrary agents Ai and Aj will be neighbors is

defined by pij = (1 − distanceij
maxDistance)β where distanceij is the Euclidean dis-

tance between agents Ai and Aj , maxDistance is the Euclidean distance
between agent Ai and the location of the farthest agent, and β expresses
the dependency of the probability that both agents will be neighbors on
their distance one from the other (in our experiments we used β = 3). For
each pair of agents, a random probability pr ∈ [0, 1] was generated, and two
agents were considered as neighbors if pr < pij . Costs between connected
agents were selected uniformly between 100 and 200.

Springer Nature 2021 LATEX template

18 Asynchronous Execution of Max-sum Belief Propagation

No Delay Delay

S
ynchronous

A
synchronous

0 1 2 3 0 1 2 3

14000

15000

16000

17000

18000

14000

15000

16000

17000

18000

NCLO x 107

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

14000

15000

16000

17000

18000

0 1 2 3 4 5

NCLO x 105

Cost

Setting

Asynchronous + Delay
Asynchronous + No Delay
Synchronous + Delay
Synchronous + No Delay

(a) (b)
Fig. 4 (a) Solution quality as a function of NCLOs of Max-sum versions, with and without
message delays, solving sparse random graph problems with p1 = 0.1. (b) A closer look at
the solution quality of DMS SCFG versions on these problems.

While the structure of these problems is similar to scale-free networks, the
addition of the geographic locations of nodes allows one to set the size of
message delays and the probability of a message loss with respect to physical
distance as specified below in Section 5.1.

In each experiment, we randomly generated 50 different problem instances.
The results presented in the graphs are an average of those 50 runs. In order
to demonstrate the convergence of the algorithms, we present the sum of costs
of the constraints involved in the assignment that would have been selected by
each algorithm every 100k NCLOs. We also performed t-tests to evaluate the
significance of differences between all presented results.

5.1 Communication Scenarios

For random graph problems, graph coloring problems, and scale-free net-
work problems, we used four types of communication scenarios: (1) Perfect
communication; (2) Message latency selected from a uniform distribution
tde ∼ U(0, 10k) NCLOs; (3) Message loss determined by p ∼ U(0, 1) such that
a message is not delivered if p < ple, where ple = [0.3, 0.5, 0.7, 0.9] is a param-
eter denoting the probability for message loss; and, (4) Scenarios including
both message latency and message loss.

For overlapped solar system problems, we set tde and ple as follows: tde
was drawn from a Poisson distribution d ∼ Pois(Γ · distanceij), where Γ is a
constant and distanceij is the distance between the locations of the agents Ai
and Aj . This is also in contrast to the constant speed propagation delay model
implemented in ns-3, where the delays that were calculated as a function of the
distance between the geographic locations of the nodes were fixed and never
changed [36, 37]. Regarding message loss, we define the probability ple that
a message sent on edge e between agents Ai and Aj is delivered as follows:

Springer Nature 2021 LATEX template

Asynchronous Execution of Max-sum Belief Propagation 19

No Delay Delay

S
ynchronous

A
synchronous

0 1 2 3 0 1 2 3

100000

102500

105000

107500

100000

102500

105000

107500

NCLO x 107

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

No Delay Delay

S
ynchronous

A
synchronous

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0

1000

2000

3000

0

1000

2000

3000

NCLO x 107

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

(a) (b)
Fig. 5 Solution quality as a function of NCLOs of Max-sum versions, with and without
message delays, solving (a) dense random graph problems with p1 = 0.6 and (b) graph
coloring problems.

No Delay Delay

S
ynchronous

A
synchronous

0 1 2 3 0 1 2 3

20000

21000

22000

23000

24000

20000

21000

22000

23000

24000

NCLO x 107

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

No Delay Delay

S
ynchronous

A
synchronous

0 1 2 3 0 1 2 3

56000

58000

60000

62000

56000

58000

60000

62000

NCLO x 107

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

(a) (b)
Fig. 6 Solution quality as a function of NCLOs of Max-sum versions, with and without
message delays, solving (a) scale-free network problems and (b) overlapped solar system
problems.

ple =
distanceij

maxDistanceij
, where maxDistanceij is the distance of the furthest agent

from Ai or Aj .

5.2 Impact of Message Delays

Figure 4(a) presents the quality of solutions produced by the different ver-
sions of Max-sum when solving sparse random graph problems with density
p1 = 0.1. Similar to most of the figures presented in this section, Figure 4(a)

Springer Nature 2021 LATEX template

20 Asynchronous Execution of Max-sum Belief Propagation

No Delay Delay

S
ynchronous

A
synchronous

0 1 2 3 0 1 2 3

14000

14500

15000

15500

16000

14000

14500

15000

15500

16000

NCLO x 107

Cost

λ

0.5
0.7
0.9

No Delay Delay

S
ynchronous

A
synchronous

0 1 2 3 0 1 2 3

100000

102500

105000

107500

100000

102500

105000

107500

NCLO x 107

Cost

λ

0.5
0.7
0.9

(a) (b)
Fig. 7 Solution quality as a function of NCLOs of DMS with different λ values, with and
without message delays, solving random graph problems with (a) p1 = 0.1 and (b) p1 = 0.6.

No Delay Delay

G
raph C

olor
S

cale−
F

ree
S

olar S
ystem

U
niform

 01
U

niform
 06

Max−sum DMS DMS−SCFG Max−sum DMS DMS−SCFG

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Algorithm

Id
le

 N
C

LO
 R

at
io

Version

Synchronous
Asynchronous

Fig. 8 Ratio between the number of NCLOs in which agents were idle and the total number
of NCLOs for all algorithms and all execution modes.

includes four graphs presenting results of the algorithms when performing syn-
chronously, asynchronously, with message delays, and without. The versions of
the algorithm presented are Max-sum, DMS with λ = 0.9, and DMS SCFG.
DMS SCFG is the damped Max-sum (DMS) algorithm with split constraint
factor graphs (SCFGs). We used the 0.4-0.6 version of DMS SCFG, which was
found to perform best by Cohen et al. [3].

Springer Nature 2021 LATEX template

Asynchronous Execution of Max-sum Belief Propagation 21

Asy Max-sum (with and without message delays) traversed solutions with
higher costs on average compared to Syn Max-sum. The results of the different
runs of the algorithms were scattered and, thus, the differences from the syn-
chronous versions were not found to be statistically significant. Asy DMS, on
the other hand, performed similarly to Syn DMS, with and without message
delays (as expected following Lemma 1, its corollary, and Proposition 2).

Another observation is that all versions of DMS SCFG converged very
fast compared to the other versions of the algorithm. Figure 4(b) provides a
closer look that allows one to better compare their convergence rates. Both
the synchronous and asynchronous versions converge at the same rate in envi-
ronments that do not include message delays. Clearly, message delays affect
the synchronous version more than the asynchronous version of the algorithm.
Nevertheless, in all execution modes, the algorithm converges very fast to
solutions with the same quality. The algorithm’s fast convergence has been
reported for the synchronous version [3]. The fact that the asynchronous ver-
sion maintains the properties of the algorithm can be explained by Lemma 1,
its corollary, and Proposition 2, that is, the damping of messages results in
an effective GBCT of the asynchronous version that is similar to the effective
BCT of the synchronous version.

Figure 5(a) presents results for the same algorithms solving dense random
graph problems with density p1 = 0.6. While the results seem similar to the
results presented in Figure 4(a), there were smaller differences between the
Max-sum versions. On these problems, the DMS versions in scenarios that did
not include message delays found high quality (lower cost) solutions faster and
converged.

Figure 5(b) presents the results of the algorithms solving graph coloring
problems. It is apparent that the exploration performed by Max-sum and DMS
is less effective on these problems and, thus, the advantage of DMS SCFG is
prominent. Moreover, in the presence of message delays, standard Max-sum
improves its performance. We assume that delays break the very structured
execution on this type of problems and has a positive exploration effect. This
effect is diminished when damping is used, for reasons and properties similar
to the ones established in Section 4.

The results of the algorithms when solving scale-free network problems
and overlapping solar system problems are presented in Figure 6. They are
similar to the results presented in Figure 5(a). The differences between the
performance of Asy Max-sum and Syn Max-sum were found to be significant
when solving scale-free network problems, regardless of whether the scenarios
solved included message delays. No significant differences were found between
the synchronous and asynchronous versions when solving overlapped solar sys-
tem problems. It seems that, for these problems, the structure of the problem
affects the algorithms behavior more than the pattern of the message latency.

In our second set of experiments, we evaluated the importance of the
selection of the damping factor in DMS, with respect to the differences in

Springer Nature 2021 LATEX template

22 Asynchronous Execution of Max-sum Belief Propagation

the performance of the different modes of execution (synchronous and asyn-
chronous) in scenarios with different latency patterns. Figure 7 presents the
results of the algorithm with three different values of the damping parameter
(i.e., λ = 0.5, λ = 0.7 and λ = 0.9) solving random uniform problems that are
(a) sparse and (b) dense. As expected, following the properties established in
Lemma 1 and its corollary, asynchronous execution affects the performance of
all versions of DMS when it does not converge. However, it is apparent that
the version with λ = 0.9 is less affected by message delays in the asynchronous
execution (as expected). Similar results were obtained for all types of problems
and were omitted to avoid redundancy.

In order to compare the effect that message delays have on the agents per-
forming synchronously and asynchronously, we measured the average number
of NCLOs in which agents were idle in each mode of execution of the algorithm.
The results are presented in Figure 8. It includes, for each algorithm, in each
mode of execution, the average ratio of the number of NCLOs in which the
agents were idle (i.e., waiting for messages to arrive) and the total number of
NCLOs the algorithm executed. For all problem types, it is apparent that the
agents spent less time idle when operating asynchronously compared to when
they operate synchronously. This difference between the performance of the
two versions was most apparent in DMS SCFG. Nevertheless, for this version
of the algorithm, while there is a difference in the time the agents spent idle,
the quality of solutions was the most similar between the asynchronous and the
synchronous versions among all algorithms, as well as their convergence times.

It is interesting to note that when the synchronous version of the algorithm
is performing and messages are not delayed, there is still a significant portion
of time that the agents spend idle. This seems to be the effect of having
nodes of the factor graph with different number of neighbors. The amount of
computation that agents perform in each iteration corresponds to this number,
which also affects the number of function-nodes assigned to them. It is most
apparent in problems where there is a large difference between the number of
neighbors of different nodes in the graph (e.g., in scale-free network problems).
In such problems, more idle time is reported. Specifically in the case of SCFGs,
the number of neighbors is increased by the algorithm (following the initial
split) and, thus, the difference between the computation performed by different
agents grows and with it the time they spend idle.

5.3 Impact of Message Loss

In this subsection, we present results that demonstrate the resilience of the
versions of Max-sum to message loss. Each experiment included the three
versions of the algorithm (i.e., Max-sum, DMS, and DMS SCFG (parameters
set as in the previous section)) solving the same problems in synchronous
execution, asynchronous execution, and asynchronous execution with different
probability for message loss.

Figures 9(a) and 9(b) present the results for sparse random graph prob-
lems with density p1 = 0.1 and dense random graph problems with density

Springer Nature 2021 LATEX template

Asynchronous Execution of Max-sum Belief Propagation 23

0.5 0.7 0.9

0−SY 0−ASY 0.3

0 1 2 3 0 1 2 3 0 1 2 3

15000

16000

15000

16000

NCLO x 10^7

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

0.5 0.7 0.9

0−SY 0−ASY 0.3

0 1 2 3 0 1 2 3 0 1 2 3

100000

102500

105000

107500

100000

102500

105000

107500

NCLO x 10^7

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

(a) (b)
Fig. 9 Solution quality as a function of NCLOs of Max-sum versions, with and without
message loss, solving (a) sparse random graph problems with p1 = 0.1 and (b) dense prob-
lems p1 = 0.6.

0.5 0.7 0.9

0−SY 0−ASY 0.3

0 2 4 6 0 2 4 6 0 2 4 6

0

500

1000

1500

0

500

1000

1500

NCLO x 10^6

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

0.5 0.7 0.9

0−SY 0−ASY 0.3

0 1 2 3 0 1 2 3 0 1 2 3

20000

21000

22000

23000

24000

20000

21000

22000

23000

24000

NCLO x 10^7

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

(a) (b)
Fig. 10 Solution quality as a function of NCLOs of Max-sum versions, with and without
message loss, solving (a) graph coloring problems and (b) scale-free network problems.

p1 = 0.6, respectively. The results demonstrate that the largest differences
between the performance of Max-sum and DMS are for the asynchronous ver-
sion with no message loss. When the probability for message loss increases,
the performance of Max-sum improves, while the performance of DMS deteri-
orates. For standard Max-sum, message loss slows the effect of the exponential
explosion of the information sent in the bottom layers of the GBCT. DMS, on
the other hand, suffers from message loss since as long as new messages from

Springer Nature 2021 LATEX template

24 Asynchronous Execution of Max-sum Belief Propagation

7500 10000

0 5000

0 5 10 15 20 0 5 10 15 20

14000

15000

16000

17000

18000

14000

15000

16000

17000

18000

NCLO x 10^5

Cost

Algorithm

MaxSum_SY
MaxSum_ASY

Message Loss Probability

0
0.5
0.7
0.9

7500 10000

0 5000

0 5 10 15 20 0 5 10 15 20

14000

15000

16000

17000

18000

14000

15000

16000

17000

18000

NCLO x 10^5

Cost

Message Loss Probability

0
0.5
0.7
0.9

Algorithm

DMS_SY
DMS_ASY

(a) (b)
Fig. 11 Solution quality as a function of NCLOs of (a) Max-sum and (b) DMS, solving
random sparse problems in environments with different communication patterns.

neighbors are not received, agents use in their calculation the last messages
that were not received, while new messages that were received arrive instantly.
Thus, there is a large chance for GBCTs with different heights (i.e., agents
process information with different levels of damping). Finally, the performance
of DMS SCFG is consistent for all levels of message loss. This algorithm does
not only produce the best results but it also shows high robustness to imper-
fect communication. On the dense problems, it is clear that the DMS version
converges to better results than DMS SCFG when the probability for message
loss is low. For larger probabilities, as in the case of the sparse problems, DMS
deteriorates.

Figures 10(a) and 10(b) present the results of the three versions of the
algorithms when solving graph coloring problems and scale-free network prob-
lems, respectively, in environments in which there are different probabilities
for message loss. It is clear that, in the case of graph coloring problems, the
effect of message loss on both Max-sum and DMS is positive (in general).
Except for the highest probability of message loss, on which DMS suffers some
deterioration, both algorithms perform similarly when messages are lost. It is
also apparent that they reach their best performance very fast and unlike the
results on the other benchmarks, do not show further improvement or dete-
rioration throughout the algorithm’s run. On scale-free network problems on
the other hand, the algorithms perform more similar to their performance on
random uniform problems. However, the effect of message loss on DMS when
solving these problems is less apparent.

The results of the algorithms on the solar system problems were similar to
the results on scale-free network problems, and we omit them in order to avoid
redundancy.

Springer Nature 2021 LATEX template

Asynchronous Execution of Max-sum Belief Propagation 25

7500 10000

0 5000

0 5 10 15 20 0 5 10 15 20

14250

14500

14750

15000

14250

14500

14750

15000

NCLO x 10^5

Cost

Message Loss Probability

0
0.5
0.7
0.9

Algorithm

DMS_SCFG_SY
DMS_SCFG_ASY

Fig. 12 Solution quality as a function of NCLOs of DMS SCFG, for different solving sparse
random graph problems with p1 = 0.1 in environments with different communication pat-
terns.

7500 10000

0 5000

8 12 16 20 8 12 16 20

16000

17000

18000

16000

17000

18000

Log_2(Message counter)

C
os

t

Algorithm

MaxSum_SY
MaxSum_ASY

Message Loss Probability

0
0.5
0.7
0.9

Fig. 13 Solution quality as function of the number of messages received by agents (logarith-
mic scale), of Max-sum solving sparse random graph problems with p1 = 0.1, in environments
with different communication patterns.

5.4 Impact of Both Message Delay and Loss

This section includes results of the three versions of the algorithm, solving
problems in environments that include both message delay and possible mes-
sage loss. Figures 11(a) and 11(b) present results for sparse uniform random
problems solved by Max-sum and DMS, respectively. The different colored
lines represent different probabilities for message loss, while each sub-graph
represents a different upper bound for delays. Clearly, the magnitude of delays

Springer Nature 2021 LATEX template

26 Asynchronous Execution of Max-sum Belief Propagation

7500 10000

0 5000

8 12 16 20 8 12 16 20

15000

16000

17000

18000

15000

16000

17000

18000

Log_2(Message counter)

C
o

st

Message Loss Probability

0
0.5
0.7
0.9

Algorithm

DMS_SY
DMS_ASY

7500 10000

0 5000

8 12 16 20 8 12 16 20

14000

15000

16000

17000

18000

14000

15000

16000

17000

18000

Log_2(Message counter)
C

os
t

Message Loss Probability

0
0.5
0.7
0.9

Algorithm

DMS_SCFG_SY
DMS_SCFG_ASY

(a) (b)
Fig. 14 Solution quality as function of the number of messages received by agents (loga-
rithmic scale), of (a) DMS and (b) DMS SCFG solving sparse random graph problems with
p1 = 0.1, in environments with different communication patterns.

did not affect both algorithms, while the loss of messages had a reverse effect
(as observed in the Figure 9), improving the performance of Max-sum and
deteriorating DMS’s performance.

Figure 12 presents the results of DMS SCFG solving sparse random prob-
lems in these mixed communication scenarios. Again, the robustness of this
algorithm to imperfect communication is apparent. The results for the algo-
rithms solving the other problem types in mixed communication scenarios were
similar, and we omit them to avoid redundancy.

In our last set of experiments, we evaluated the solution quality, as a func-
tion of the number of messages received by agents, regardless of the time the
messages were delayed or the portion of messages that were lost. Figure 13
presents the results of Max-sum when solving sparse random uniform prob-
lems in scenarios with different communication patterns. It is clear from the
presented graphs in the figure that message delays have a very minor effect on
the performance of Max-sum. On the other hand, message loss has a major
effect, and as we observed in the results presented above, a smaller probability
for a message to arrive triggers higher quality.

Figure 14(a) presents the results of DMS in the same scenarios. In contrast
to Max-sum, all versions of DMS produce solutions with similar quality when
enough messages arrive. This is consistent with Lemma 1 and its corollary,
in which we established the relationship between the quality of the solution
of Asy DMS and the structure of its effective GBCT. Figure 14(b) presents
another indication for this property for DMS SCFG. Once again we omit the
similar results for the other benchmarks to avoid redundancy.

Springer Nature 2021 LATEX template

Asynchronous Execution of Max-sum Belief Propagation 27

5.5 Discussion

The advantage of DMS over standard Max-sum when solving graphs with mul-
tiple cycles has been reported empirically [3] and explained theoretically [15].
In Max-sum, costs that are aggregated in the beginning of the run are dupli-
cated in every node of the graph that has more than two neighbors and, thus,
they are taken into consideration an exponential number of times in the calcu-
lation of beliefs and in the assignment selection. Damping reduces the weight
of these costs in the belief calculation until it becomes negligible. A similar
phenomenon reduces the differences between the performance of Syn DMS and
Asy DMS. As we established in the corollary of Lemma 1, when using a large
enough damping factor, the effect of GBCTs with different heights is elim-
inated in DMS and, thus, after enough NCLOs are performed, the effective
GBCTs of the beliefs in each message have the same number of nodes. The
results comparing DMS with different damping factors demonstrate the need
to use a large damping factor in order to achieve robustness to message delays.
This empirical evidence strengthens the property established by Lemma 1 and
its corollary, that if the damping factor used is not large enough, then the
effect of the lower layers of the GBCTs, which may have different structure
and a different number of nodes, on the generation of beliefs by the nodes is
not eliminated. Thus, message delays have a greater effect on the algorithm’s
performance when the damping factor used is small.

When examining the algorithms in scenarios where there is a positive
probability for message loss, there is an opposite effect on Asy Max-sum and
Asy DMS. Message loss improves the performance of the former algorithm,
but delays the convergence to a high quality solution of the latter algorithm, as
we described above. Finally, Asy DMS SCFG maintains its fast convergence
properties and high quality of solutions from its synchronous version. It is also
robust to message latency and to message loss.

6 Conclusions

In this paper, we filled the gap in the Max-sum literature on the differences
between the synchronous and asynchronous executions of the algorithm in
distributed environments and their impact. Our theoretical analyses revealed
that, unlike its synchronous counterpart, the asynchronous version of Max-sum
in the presence of message latency can cause the propagation of inconsistent
beliefs, resulting in the loss of guaranteed properties (Proposition 1). However,
not all is lost as one can use damping to minimize this effect and, subsequently,
ensure that when asynchronous DMS finds a consistent minimal route, it will
converge, as does the synchronous version (Proposition 2). Our experimental
results show that when the algorithm is further optimized through split con-
straint factor graphs, it converges very fast to high-quality solutions even in the
presence of message delays and when most of the messages are lost. Moreover,
our experimental results indicate that the quality of the solutions produced by
the different versions of DMS depend on the amount of information (number

Springer Nature 2021 LATEX template

28 Asynchronous Execution of Max-sum Belief Propagation

of messages) received by the agents. These results are consistent with our the-
oretical results that indicate that enough information needs to be received in
order for the effective GBCTs of the beliefs to be complete and, thus, similar.

Taken together, these results extend significantly our understanding of
Max-sum in distributed environments with more realistic communication
assumptions and enable a more effective use of Max-sum by real-world
practitioners.

Declarations

• Ethical approval: Not applicable.
• Competing interests: Not applicable.
• Authors’ contributions: This paper is a result of a number of years of

investigation of both the Max-sum algorithm and the performance of dis-
tributed algorithms in scenarios with imperfect communication. The idea to
investigate the performance of distributed algorithms in such environments
was suggested by William Yeoh and Roie Zivan, and this research is part of
a BSF granted project that they are the two PIs of. Most of the writing of
the paper was done by Roie Zivan. The experimental work was done by Ben
Rachmut and Omer Perri. Ben Rachmut wrote most of the experimental
section. William Yeoh reviewed the results and the writing, and suggested
improvements.

• Funding: This research is partially supported by US-Israel Binational
Science Foundation (BSF) grant #2018081 and US National Science Foun-
dation (NSF) grant #1838364.

• Availability of data and materials: The simulation’s code is available
at https://github.com/benrachmut/CADCOP 2022 new.

References

[1] Rachmut, B., Zivan, R., Yeoh, W.: Latency-aware local search for
distributed constraint optimization. In: Proceedings of the 20th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems, pp.
1019–1027 (2021)

[2] Chen, Z., Deng, Y., Wu, T., He, Z.: A class of iterative refined max-
sum algorithms via non-consecutive value propagation strategies. Auton.
Agents Multi Agent Syst. 32(6), 822–860 (2018)

[3] Cohen, L., Galiki, R., Zivan, R.: Governing convergence of max-sum on
dcops through damping and splitting. Artificial Intelligence Journal (AIJ)
279 (2020)

[4] Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, San Francisco, California (1988)

https://github.com/benrachmut/CADCOP_2022_new

Springer Nature 2021 LATEX template

Asynchronous Execution of Max-sum Belief Propagation 29

[5] Yanover, C., Meltzer, T., Weiss, Y.: Linear programming relaxations and
belief propagation - an empirical study. Journal of Machine Learning
Research 7, 1887–1907 (2006)

[6] Teacy, W.T.L., Farinelli, A., Grabham, N.J., Padhy, P., Rogers, A., Jen-
nings, N.R.: Max-sum decentralized coordination for sensor systems. In:
Proceeding of the 7th International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), pp. 1697–1698 (2008)

[7] Stranders, R., Farinelli, A., Rogers, A., Jennings, N.R.: Decentralised
coordination of mobile sensors using the max-sum algorithm. In: Proceed-
ings of the 21st International Joint Conference on Artificial Intelligence,
(IJCAI), pp. 299–304 (2009)

[8] Ramchurn, S.D., Farinelli, A., Macarthur, K.S., Jennings, N.R.: Decen-
tralized coordination in robocup rescue. Computer J. 53(9), 1447–1461
(2010)

[9] Rust, P., Picard, G., Ramparany, F.: Using message-passing DCOP
algorithms to solve energy-efficient smart environment configuration prob-
lems. In: Proceedings of the 25th International Joint Conference on
Artificial Intelligence, (IJCAI), pp. 468–474 (2016)

[10] Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordi-
nation of low-power embedded devices using the max-sum algorithm. In:
Proceeding of the 7th International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), pp. 639–646 (2008)

[11] Zivan, R., Parash, T., Cohen, L., Peled, H., Okamoto, S.: Balancing
exploration and exploitation in incomplete min/max-sum inference for
distributed constraint optimization. Journal of Autonomous Agents and
Multi-Agent Systems (JAAMAS) 31(5), 1165–1207 (2017)

[12] Ruozzi, N., Tatikonda, S.: Message-passing algorithms: Reparameteriza-
tions and splittings. IEEE Trans. Information Theory 59(9), 5860–5881
(2013)

[13] Deng, Y., An, B.: Speeding up incomplete gdl-based algorithms for multi-
agent optimization with dense local utilities. In: Proceedings of the 29th
International Joint Conference on Artificial Intelligence, (IJCAI), pp. 31–
38 (2020)

[14] Zivan, R., Perry, O., Rachmut, B., Yeoh, W.: The effect of asynchronous
execution and message latency on max-sum. In: 27th International Con-
ference on Principles and Practice of Constraint Programming (CP 2021)
(2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik

Springer Nature 2021 LATEX template

30 Asynchronous Execution of Max-sum Belief Propagation

[15] Zivan, R., Lev, O., Galiki, R.: Beyond trees: Analysis and convergence of
belief propagation in graphs with multiple cycles. In: Proceedings of the
34th International Conference of the Association for the Advancement of
Artificial Intelligence (AAAI), pp. 7333–7340 (2020)

[16] Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for
approximate inference: An empirical study. In: UAI ’99: Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm,
Sweden, July 30 - August 1, 1999, pp. 467–475 (1999)

[17] Weiss, Y.: Correctness of local probability propagation in graphical
models with loops. Neural Computation 12(1), 1–41 (2000)

[18] Forney, G.D., Kschischang, F.R., Marcus, B., Tuncel, S.: Iterative decod-
ing of tail-biting trellises and connections with symbolic dynamics. In:
Marcus, B., Rosenthal, J. (eds.) Codes, Systems, and Graphical Models,
pp. 239–264 (2001)

[19] Pretti, M.: A message-passing algorithm with damping. Journal of
Statistical Mechanics: Theory and Experiment 11, 11008 (2005)

[20] Rogers, A., Farinelli, A., Stranders, R., Jennings, N.R.: Bounded approx-
imate decentralized coordination via the max-sum algorithm. Artificial
Intelligence 175(2), 730–759 (2011)

[21] Zivan, R., Peled, H.: Max/min-sum distributed constraint optimization
through value propagation on an alternating DAG. In: AAMAS, pp. 265–
272 (2012)

[22] Rollon, E., Larrosa, J.: Improved bounded max-sum for distributed
constraint optimization. In: CP, pp. 624–632 (2012)

[23] Rollon, E., Larrosa, J.: Decomposing utility functions in bounded max-
sum for distributed constraint optimization. In: Principles and Practice
of Constraint Programming - 20th International Conference, CP 2014,
Lyon, France, September 8-12, 2014. Proceedings, pp. 646–654 (2014)

[24] Khan, M.M., Tran-Thanh, L., Ramchurn, S.D., Jennings, N.R.: Speed-
ing up gdl-based message passing algorithms for large-scale dcops. The
Computer Journal 61(11), 1639–1666 (2018)

[25] Zivan, R., Parash, T., Naveh, Y.: Applying max-sum to asymmetric dis-
tributed constraint optimization. In: Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, pp. 432–439 (2015)

Springer Nature 2021 LATEX template

Asynchronous Execution of Max-sum Belief Propagation 31

[26] Farinelli, A., Rogers, A., Jennings, N.R.: Agent-based decentralised coor-
dination for sensor networks using the max-sum algorithm. Journal
of Autonomous Agents and Multi-Agent Systems (JAAMAS) 28(3),
337–380 (2014)

[27] Marinescu, R., Dechter, R.: AND/OR branch-and-bound search for com-
binatorial optimization in graphical models. Artif. Intell. 173(16-17),
1457–1491 (2009)

[28] Nguyen, D.T., Yeoh, W., Lau, H.C., Zivan, R.: Distributed Gibbs:
A linear-space sampling-based DCOP algorithm. Journal of Artificial
Intelligence Resesrch 64, 705–748 (2019)

[29] Petcu, A., Faltings, B.: A scalable method for multiagent constraint opti-
mization. In: Proceedings of the 21st International Joint Conference on
Artificial Intelligence, (IJCAI), pp. 266–271 (2005)

[30] Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: An asynchronous branch-
and-bound DCOP algorithm. Journal of Artificial Intelligence Research
38, 85–133 (2010)

[31] Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-
product algorithm. IEEE Transactions on Information Theory 47:2, 181–
208 (2001)

[32] Zivan, R., Parash, T., Cohen-Lavi, L., Naveh, Y.: Applying max-sum
to asymmetric distributed constraint optimization problems. Journal of
Autonomous Agents and Multi Agent Systems (JAAMAS) 34(1), 13
(2020)

[33] Zivan, R., Meisels, A.: Message delay and discsp search algorithms. Annals
of Mathematics and Artificial Intelligence (AMAI) 46, 415–439 (2006)

[34] Netzer, A., Grubshtein, A., Meisels, A.: Concurrent forward bounding
for distributed constraint optimization problems. Artificial Intelligence
Journal (AIJ) 193, 186–216 (2012)

[35] Cohen, E., Zivan, R., Lev, O.: Separate but equal: Equality in belief
propagation for single cycle graphs. In: Proceedings of the 36th Interna-
tional Conference of the Association for the Advancement of Artificial
Intelligence (AAAI) (2023)

[36] Mayuga-Marcillo, L., Urquiza-Aguiar, L., Paredes-Paredes, M.: Wireless
Channel 802.11 in NS-3 (2018)

[37] Amewuda, A.B., Katsriku, F.A., Abdulai, J.-D.: Implementation and
evaluation of wlan 802.11ac for residential networks in ns-3. Journal of

Springer Nature 2021 LATEX template

32 Asynchronous Execution of Max-sum Belief Propagation

Computer Networks and Communications 2018 (2018)

[38] Zhang, W., Xing, Z., Wang, G., Wittenburg, L.: Distributed stochastic
search and distributed breakout: properties, comparishon and applica-
tions to constraints optimization problems in sensor networks. Artificial
Intelligence 161:1-2, 55–88 (2005)

[39] Barabási, A.-L., Albert, R.: Emergence of scaling in random networks.
Science 286(5439), 509–512 (1999)

[40] Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms
for approximate distributed constraint optimization with quality bounds.
In: AAMAS, pp. 133–140 (2010)

	Introduction
	Related Work
	Background
	Graphical Models
	Distributed Constraint Optimization Problems
	The Max-Sum Algorithm
	Damped Max-Sum
	Asynchronous Execution
	Max-Sum with Split Constraint Factor Graphs
	Non-Concurrent Logic Operations

	Backtrack Cost Trees
	Convergence Properties

	Effect of Asynchronous Execution
	Experimental Evaluation
	Communication Scenarios
	Impact of Message Delays
	Impact of Message Loss
	Impact of Both Message Delay and Loss
	Discussion

	Conclusions

