
Multi-Agent Pathfinding
with Real-Time Heuristic Search

Devon Sigurdson∗, Vadim Bulitko∗, William Yeoh†, Carlos Hernández‡ and Sven Koenig§
∗ Computing Science, University of Alberta

Email: {dbsigurd,buliko}@ualberta.ca
† Computer Science and Engineering, Washington University in St. Louis

Email: wyeoh@wustl.edu
‡ Ciencia de la Ingenieria, Universidad Andres Bello

Email: carlos.hernandez.u@unab.cl
§ Computer Science, University of Southern California

Email: skoenig@usc.edu

Abstract—Multi-agent pathfinding, namely finding collision-
free paths for several agents from their given start locations
to their given goal locations on a known stationary map, is
an important task for non-player characters in video games.
A variety of heuristic search algorithms have been developed
for this task. Non-real-time algorithms, such as Flow Annotated
Replanning (FAR), first find complete paths for all agents and
then move the agents along these paths. However, their searches
are often too expensive. Real-time algorithms have the ability to
produce the next moves for all agents without finding complete
paths for them and thus allow the agents to move in real
time. Real-time heuristic search algorithms have so far typically
been developed for single-agent pathfinding. We, on the other
hand, present a real-time heuristic search algorithm for multi-
agent pathfinding, called Bounded Multi-Agent A* (BMAA*),
that works as follows: Every agent runs an individual real-
time heuristic search that updates heuristic values assigned to
locations and treats the other agents as (moving) obstacles.
Agents do not coordinate with each other, in particular, they
neither share their paths nor heuristic values. We show how
BMAA* can be enhanced by adding FAR-style flow annotations
and allowing agents to push other agents temporarily off their
goal locations, when necessary. In our experiments, BMAA* has
higher completion rates and lower completion times than FAR.

I. INTRODUCTION

Pathfinding is a core task in many video games, for ex-
ample, to allow non-player characters (NPCs) to move to
given goal locations on a known stationary map. A* [1] is
a classic algorithm for single-agent pathfinding. The artificial
intelligence algorithms in video games, however, often need to
find collision-free paths for several agents to their given goal
locations. Figure 1 illustrates multi-agent pathfinding (MAPF)
[2] on a map from the Dragon Age: Origins video game [3],
where NPCs (green dots) have to move to their given goal
locations (red dots).

The constraints on MAPF algorithms depend on the ap-
plication. For example, real-time strategy games, such as
StarCraft [4], require the NPCs to move simultaneously in real
time, which limits the amount of time available to compute
the next moves for all NPCs before they need to start moving.
Video games can generate maps procedurally to create new

game levels on the fly, which makes it impossible to preprocess
the maps. Players can often re-task NPCs at will or the
map can change, rendering their previously calculated paths
obsolete on a moment’s notice. Finally, game settings can limit
the amount of coordination allowed among characters in the
game (such as sharing their paths or heuristic values), and
some characters might not even be under the complete control
of the system (because they are on an opposing team).

These constraints motivated our development of Bounded
Multi-Agent A* (BMAA*) — a MAPF algorithm that operates
in real time, loses only a small amount of search in case
players re-task NPCs or the map changes and neither requires
explicit inter-agent coordination, complete control of all NPCs
nor preprocessing of maps. BMAA* works as follows: Every
agent treats the other agents as (moving) obstacles, runs an
individual real-time heuristic search that searches the map
around its current location within a given lookahead to select
the next move and updates heuristic values assigned to loca-
tions to avoid getting stuck. We show how BMAA* can be
enhanced by, first, adding flow annotations from the MAPF
algorithm FAR [5] (that impose move directions similar to
one-way streets) and, second, allowing agents to push other
agents temporarily off their goal locations, when necessary, if
agents are allowed to send each other move requests. In our
experiments, BMAA* has higher completion rates and smaller
completion times than FAR, thus demonstrating the promise
of real-time heuristic search for MAPF.

II. PROBLEM FORMULATION

A MAPF problem is defined by a pair (G,A). G =
(N,E, c) is an undirected weighted graph of nodes N con-
nected via edges E ⊆ N × N . The costs c(e) of all edges
e ∈ E are strictly positive with the following exceptions:
There exists an edge for every node that connects the node
to itself, allowing the agent to always wait in its current node.
The costs of these edges are zero. A = {a1, . . . , an} is a set of
agents. Each agent ai ∈ A is specified by the pair (ni

start, n
i
goal)

of its start node ni
start and goal node ni

goal. We use graphs that



Fig. 1: NPCs on a Dragon Age: Origins map [3].

correspond to rectangular 8-neighbor grids, as is common for
video games. The nodes correspond to the cells not blocked
by stationary obstacles. The nodes of two neighboring cells
are connected with an edge. The costs of these edges are one
for cardinal neighbors and

√
2 for diagonal neighbors.

Time advances in discrete steps. Every agent always occu-
pies exactly one node at every time step. We use ni

curr ∈ N to
refer to the current node of agent ai. The agent determines a
prefix P of a path from its current node to its goal node and
sends it to a central NPC controller. P (n) is the successor
node of node n on the path. The central NPC controller then
moves the agent from node ni

curr to node P (ni
curr) with the

following exceptions: The agent waits in its current node if
P (ni

curr) is undefined or the agent would collide with another
agent. Two agents collide iff they swap nodes or move to the
same node from one time step to the next one.

We use the following performance measures: The comple-
tion rate is the percentage of agents that are in their goal
locations when the runtime limit has been reached [5], [6]. The
completion time for an agent is the time step when that agent
last reached its goal location. If an agent leaves its goal and
does not return the completion time is undefined. Finally, the
travel distance of an agent is the sum of the costs of the edges
traversed by that agent. We consider the mean of all agents’
travel distance and the mean of all agents’ completion time
as the performance measures in our MAPF problems. These
performance measures cannot be optimized simultaneously.
Their desired trade-off can be game specific. We choose to
maximize the completion rate (because players will notice if
NPCs do not reach their goal locations) but report on the other
two performance measures as well.

III. RELATED WORK

We now review search algorithms that are related to
BMAA*, focusing on pathfinding with heuristic search algo-
rithms, which use heuristic values to focus their search.

A. A*

A* [1] provides the foundation for our BMAA* and many
other MAPF algorithms, even though it was developed for

single-agent pathfinding. An A* search for an agent explores
the search space starting at its current node. The exploration is
informed by heuristic values and driven toward nodes with a
low estimate of the estimated cost of moving from the current
node via them to the goal node. Algorithm 1 shows the pseudo-
code for a version of A* that finds a cost-minimal path for
agent ai from its current node ni

curr to its goal node ni
goal under

mild assumptions about the graph and the heuristic values.1

It maintains two lists of nodes, namely the closed and open
lists. The closed list is initially empty (line 3), and the open
list contains the current node (line 4). The closed list is an
unordered set of nodes that A* has already expanded. The open
list is an ordered set of nodes that A* considers for expansion.
A* always expands a node in the open list with the lowest f -
value next, where the f -value of node n is f(n) = g(n)+h(n).
Its g-value g(n) is the cost of the lowest-cost path from the
current node to node n discovered so far, and its h-value h(n)
(or, synonymously, heuristic value) is the heuristic estimate of
the cost of a lowest-cost path from node n to the goal node.
(The g-values are initially zero for the start node and infinity
for all other nodes.) A* removes node n from the open list and
adds it to the closed list (lines 10 and 11). It then expands the
node by iterating over all of its neighbors n′. It updates the
g-value of node n′ if node n′ has not yet been expanded (i.e.,
it is not yet in the closed list) and the g-value of node n′ can
be decreased due to the fact that the cost of the path from the
current node via node n to node n′ is smaller than the g-value
of node n′ (because the search has then discovered a lower-
cost path from the current node to node n′) (line 17). In this
case, it also updates the parent of node n′ to node n (line 18)
and adds it to the open list if it is not already in it (line 20). A*
continues its search until either the open list is empty (line 6)
or the node about to be expanded is the goal node (line 7).
In the former case, no path exists from the current node to
the goal node. In the latter case, the path P that is obtained
by repeatedly following the parents from the node about to be
expanded to the current node is a cost-minimal path from the
current node to the goal node in reverse (line 8).

B. Online MAPF Algorithms

We focus on online MAPF algorithms, where there entire
problem is not required to be solved before agents begin
moving. since we are interested in MAPF algorithms that
operate in a short amount of time, lose only a small amount
of search in case players re-task NPCs or the map changes
and neither require explicit inter-agent coordination, complete
control of all NPCs nor preprocessing of maps. We describe
only the most suitable online MAPF algorithms below.

Windowed Hierarchical Cooperative A* (WHCA*) [6] finds
collision-free paths for all agents for their next window of

1In our pseudo-code, First returns a node with the smallest f -value in
the open list (breaking ties in favor of a node with the largest g-value, with
any remaining ties broken by first-in first-out); Pop removes a node with
the smallest f -value from the open list (breaking ties in favor of a node
with the largest g-value) and returns it; Add adds an element to a list; and
GetNeighbors returns all neighboring nodes of a node in the graph.



Algorithm 1 A*.
1: procedure A*
2: P ← ()
3: closed← ∅
4: open← {ni

curr}
5: g(ni

curr)← 0
6: while open 6= ∅ do
7: if open.First() = ni

goal then
8: calculate P
9: break

10: n← open.Pop()
11: closed.Add(n)
12: for n′ ∈ n.GetNeighbors() do
13: if n′ 6∈ closed then
14: if n′ 6∈ open then
15: g(n′)←∞
16: if g(n′) > g(n) + c(n, n′) then
17: g(n′)← g(n) + c(n, n′)
18: n′.parent← n
19: if n′ /∈ open then
20: open.Add(n′)

moves. It shares the paths of all agents up to the given move
limit through a reservation table, which adds a time dimension
to the search space and thus results in expensive searches.
Beyond the move limit, WHCA* simply assumes that every
agent follows the cost-minimal path to its goal node and thus
ignores collisions among agents. The move limit needs to be
sufficiently large to avoid conflicts among agents, resulting
in searches that might exceed the amount of time available to
compute the next moves for all NPCs before they need to start
moving. Furthermore, WHCA* requires all NPCs to be under
its complete control.

Flow Annotated Replanning (FAR) [5] combines the reser-
vation table from WHCA* with flow annotations that make
its searches less expensive since no time dimension has to
be added to the search space. Each agent has to reserve its
next moves before it executes them. Agents do not incorporate
these reservations into their search but simply wait until other
agents that block them have moved away, similar to waiting at
traffic lights. FAR attempts to break deadlocks (where several
agents wait on each other indefinitely) by pushing some agents
temporarily off their goal nodes. However, agents can still
get stuck in some cases. The flow annotations of FAR [5]
change the edges of the original graph G in order to reduce
the number of collisions among agents. They effectively make
the undirected original graph directed by imposing move direc-
tions on the edges, similar to one-way streets, which reduces
the potential for head-to-head collisions among agents. This
annotation is done on a grid in a way so that any node remains
reachable from all nodes from which it could be reached on
the original graph, as follows: The new graph initially has
no edges. The first row of nodes is connected via westbound
edges, the second row is connected via eastbound edges,

and so on. Similarly, the first column of nodes is connected
via northbound edges, the second column is connected via
southbound edges, and so on. Sink nodes (with only in-bound
edges) and source nodes (with only out-bound edges) are
handled by adding diagonal edges adjacent to them. If sink and
source nodes are in close proximity of each other, the diagonal
edges can end up pointing at each other and result in a loss
of connectivity, in which case additional undirected edges are
added around them. Corridor edges (that is, edges on paths
whose interior nodes have degree two) of the original graph
remain undirected, which is important in case the corridor is
the only connection between two components of the original
graph. A standard implementation of A* is then used to search
for a path to the goal in this restricted graph.

C. Real-time Heuristic Search

Video games often require NPCs to start moving in a short
amount of time, which may not be possible with any of the
search algorithms reviewed above since they need to compute
a complete path before an agent can execute the first move.
Real-time heuristic search (RTHS) algorithms, on the other
hand, perform a constant amount of search per move regardless
of the size of the map or the distance between the start and
goal nodes. They have been studied for single-agent pathfind-
ing [8]–[11], starting with the seminal work by Korf [12].
They need to compute only the prefix of a path before the
agent can execute the first move — and repeat the operation
until the agent reaches the goal node. To avoid cycling forever
without reaching the goal node due to the incompleteness of
the searches, the algorithms update the heuristic values over
time by making them locally consistent [12], incrementally
building the open and closed lists [13] or ignoring parts of the
map [14]. There are two benefits to using RTHS algorithms
in video games. First, an NPC can start moving in a short
amount of time. Second, only a small amount of search is lost
in case a player re-tasks NPCs or the map changes.

A well-known RTHS algorithm Real-Time Adaptive A*
(RTAA*) [15] performs an A* search, limited to a given
number of node expansions. RTAA* then uses the f -value
of the node A* was about to expand to update the heuristic
values of all expanded nodes (that is, all nodes in the closed
list closed ) as shown in Procedure Update-Heuristic-Values in
Algorithm 4. The agent then moves along the path from its
current node to the node A* was about to expand, limited to a
given number of moves — and RTAA* repeats the operation.

IV. OUR APPROACH: BMAA*

Our Bounded Multi-Agent A* (BMAA*) is a MAPF al-
gorithm where every agent runs its own copy of RTAA*.
BMAA* satisfies our requirements: It operates in real-time,
loses only a small amount of search in case players re-task
NPCs or the map changes. Additionally, it does not requires
explicit inter-agent coordination, complete control of all NPCs
or preprocessing of maps. The design of BMAA* is modular
to allow for extensions by adding or changing modules. For
example, BMAA* can be enhanced by, first, adding flow



Algorithm 2 BMAA*’s NPC Controller.
1: procedure NPC-CONTROLLER(A)
2: for all ai ∈ A do
3: ai.Search-Phase()
4: for all ai ∈ A do
5: if ai.P (ni

curr) is defined then
6: n← ai.P (ni

curr)
7: if push ∧ n is blocked by agent aj then
8: aj .PushAgent()
9: if n is not blocked by an agent then

10: ai.MoveTo(n)
11: time ← time + 1

annotations from FAR and, second, allowing agents to push
other agents temporarily off their goal nodes, when necessary,
if agents are allowed to send each other move requests.

We parameterize BMAA* as follows in the spirit of recent
research in the context of Parameterized Learning Real-Time
A* [16]: First, expansions is the limit on the number of node
expansions of the A* search of RTAA*. Second, vision is
the distance within which agents can see other agents. Third,
moves is the number of moves that each agent makes along
its path before RTAA* determines a new path for the agent.
Fourth, push is a Boolean flag that determines whether agents
can push other agents temporarily off their goal nodes. Finally,
flow is a Boolean flag that determines whether RTAA* uses
the flow annotations from FAR.

A. Procedure NPC-Controller

Algorithm 2 shows the pseudo-code for the central NPC
controller. The time step time is initialized to zero at the start
of BMAA*, and the central NPC controller is then invoked at
every time step with A, the set of agents currently under the
control of the system. In the search phase, the central NPC
controller lets every agent under the control of the system use
the Procedure Search-Phase shown in Algorithm 3 to find a
prefix of a path from its current node to its goal node (line 3,
Algorithm 2). In the subsequent execution phase, the central
NPC controller iterates through all agents under the control of
the system: First, it retrieves the node that the agent should
move to next, which is the successor node of the current
node of the agent on its path (line 6, Algorithm 2). Second,
if the desired node is blocked by an agent that has reached
its own goal node already and agents can push other agents
temporarily off their goal nodes (push = true), it can push the
blocking agent to any neighboring node (line 8, Algorithm 2).
The blocking agent returns to its own goal node in subsequent
time steps since all agents always execute RTAA* even if
they are in their goal nodes. Finally, it moves the agent to
the desired node if that node is (no longer) blocked (line 10,
Algorithm 2) and increments the current time step (line 11,
Algorithm 2).

Algorithm 3 BMAA*’s Search Phase.
1: procedure SEARCH-PHASE
2: if Search.P(ni

curr) is undefined or time ≥ limit then
3: Search()
4: if Search.open 6= ∅ then
5: n← Search.open.First()
6: f ← g(n) + h(n)
7: Update-Heuristic-Values(Search.closed, f)
8: limit← time + moves

Algorithm 4 BMAA*’s Update Phase.
1: procedure UPDATE-HEURISTIC-VALUES(closed, f )
2: for n ∈ closed do
3: h(n)← f − g(n)

B. Procedure Search-Phase

Algorithm 3 shows the pseudo-code for the search phase. It
finds a new prefix of a path from the current node of the agent
to its goal node when it has reached the end of the current
path, the current node is no longer on the path (for example,
because the agent has been pushed away from its goal node),
or the agent has already executed moves moves along the path.
(The “expiration” time step limit for the path keeps track of
the last condition on line 2 and is set on line 8.) If so, then it
uses Procedure Search in Algorithm 5 to execute an RTAA*
search (line 3) and uses Procedure Update-Heuristic-Values to
update the heuristic values afterward (lines 5-7).

C. Procedure Search

Algorithm 5 shows the pseudo-code for an A* search,
as discussed before, but with the following changes: First,
each agent maintains its own heuristic values across all of
its searches. Second, the search also terminates after it has
expanded expansions nodes. Thus, the path P obtained on
line 9 by repeatedly following the parents from the node about
to be expanded to the current node is now only the prefix of
a path from the current node of the agent to its goal node.
Finally, GetNeighbors returns a node’s neighbours that are
not blocked by stationary obstacles. However, other agents
within the straight-line distance vision within which agents
can see other agents are treated as obstacles as long as they
do not block its goal node. Thus, the corresponding nodes
are immediately discarded (lines 15-17). If RTAA* uses the
flow annotations from FAR (flow = true), then GetNeighbors
returns only those neighboring nodes of a node of the graph
which are reachable from the node via the flow annotations
from FAR. The flow annotations are not computed in advance
but generated the first time the node is processed and then
cached so that they can be re-used later.

V. EXPERIMENTAL EVALUATION

We experimentally evaluate four versions of BMAA* both
against FAR and against A*-Replan, which is equivalent to
FAR with no flow annotations. BMAA* cannot push other
agents temporarily off their goal locations (push = false) and



Algorithm 5 BMAA*’s Version of A*.
1: procedure SEARCH
2: P ← ()
3: exp← 0
4: closed← ∅
5: open← {ni

curr}
6: g(ni

curr)← 0
7: while open 6= ∅ do
8: if open.First() = ni

goal ∨ exp ≥ expansions then
9: calculate P

10: break
11: n← open.Pop()
12: closed.Add(n)
13: for n′ ∈ n.GetNeighbors(flow) do
14: d← distance(ni

curr, n
′)

15: if n′ is blocked by an agent∧d ≤ vision then
16: if n′ 6= ni

goal then
17: continue
18: if n′ 6∈ closed then
19: if n′ 6∈ open then
20: g(n′)←∞
21: if g(n′) > g(n) + c(n, n′) then
22: g(n′)← g(n) + c(n, n′)
23: n′.parent← n
24: if n′ /∈ open then
25: open.Add(n′)

26: exp← exp + 1

uses no flow annotations (flow = false), BMAA*-c can push
other agents temporarily off their goal locations, BMAA*-f
uses flow annotations, and BMAA*-f-c combines both fea-
tures. All BMAA* versions use the parameters lookahead =
32 , moves = 32 and vision =

√
2. We choose these

parameters on the basis of preliminary experiments. Increasing
lookahead often decreases the travel distance at the cost of
increasing the search time per move. Increasing vision often
reduces the completion rate since it makes agents react to
far-away agents. FAR and A*-Replan use a reservation size of
three, as suggested by the creators of FAR, meaning that agents
must successfully reserve their next three moves before they
execute them. All MAPF algorithms use the octile heuristic
values as heuristic values (or, in case of BMAA*, to initialize
them), are coded in C# and are run on a single Intel Broadwell
2.1Ghz CPU core with 3GB of RAM and a runtime limit of
30 seconds per MAPF instance, which is sufficiently large to
allow for full A* searches.

We evaluate them on ten maps from the MovingAI bench-
mark set [17]. We use three maps from Dragon Age: Origins
(DAO), three maps from WarCraft III (WCIII), three maps
from Baldur’s Gate II (BGII) (resized to 512× 512) and one
map from Baldur’s Gate II in its original size. We create ten
MAPF instances for each map with the number of agents
ranging from 25 to 400 in increments of 25 and from 400
to 2000 in increments of 200. We assign each agent unique

Fig. 2: Completion rates averaged over all MAPF instances.

randomly selected start and goal locations which are reachable
from each other in the absence of other agents.

A. Aggregate Completion Rate Results

Figure 2 shows the completion rates of all MAPF algorithms
averaged over all MAPF instances on all maps. The completion
rates of all MAPF algorithms decrease as the number of agents
increases because the congestion and amount of search (since
every agent has to search) increase. A higher congestion makes
it more difficult for agents to reach their goal locations, and a
higher amount of search makes it more likely that the runtime
limit is reached.

All BMAA* versions have substantially higher completion
rates than FAR and A*-Replan for more than 200 agents, with
the BMAA* versions that can push other agents temporarily
off their goal locations being slightly better than the other
BMAA* versions. This can be explained as follows: FAR and
A*-Replan determine complete paths for the agents, which
results in many agents sharing path segments and thus creates
congestion around choke points, such as the one-cell-wide
corridor in Figure 3. The BMAA* versions often avoid this
behavior, for two reasons: First, the agents of the BMAA*
versions have larger travel distances than the ones of FAR
and A*-Replan. While the large travel distances of RTHS
algorithms are viewed as a major deficiency in the context
of single-agent pathfinding, they are beneficial in the context
of MAPF since they avoid congestion around choke points.
Second, the agents of the BMAA* versions treat the other
agents as (moving) obstacles and thus find paths that avoid
choke points that are blocked by other agents and thus appear
impassable, while the agents of FAR and A*-Replan assume
that they can resolve conflicts in their paths with those of other
agents and thus move toward choke points.

However, the BMAA* versions also have disadvantages:
First, they might move agents into dead ends, such as the one
shown in Figure 4, if the initial heuristic values are misleading
(resulting in depressions in the heuristic value surface). This



Fig. 3: Issue for FAR: One-cell-wide corridors.

Fig. 4: Issue for BMAA*: Dead ends.

well-known issue for RTHS algorithms is addressed by them
updating their heuristic values. Several recent RTHS tech-
niques attempt to reduce the travel distances but, of course,
agents exploring new areas in imperfect manners could also be
viewed as realistic in some cases. Second, even the BMAA*
versions that can push other agents temporarily off their goal
locations might not be able to move all agents to their goal
locations when other agents on their paths are unable to vacate
their own goal locations (Figure 5).

B. Per-Map Results

Tables I-III show the three performance measures for all
MAPF algorithms averaged over all MAPF instances for each
of the maps separately since the map features affect the
performance of the MAPF algorithms. The best results are
highlighted in bold.

1) Per-Map Completion Rate Results: Table I shows that
BMAA*-f-c has the highest completion rates on seven out of
the ten maps but the completion rate of BMAA*, for example,
is 15 percent larger than the one of BMAA*-f-c on map DAO-
lak307d.

2) Per-Map Completion Time Results: The completion rates
of FAR and A*-Replan drop substantially for more than 200

Fig. 5: Unsolvable MAPF instance for the BMAA* versions,
where the triangular agent has to move to its red goal location
while the green agents are already at their own goal locations
in a one-cell-wide corridor.

agents, as shown in Figure 2. We thus limit the number
of agents to 200 since most agents then reach their goal
locations. We assign the remaining agents a completion time
of 30 seconds. Table II shows that BMAA*-f has the lowest
completion times on five maps and BMAA* has the lowest
completion times on the remaining four maps.

3) Per-Map Travel Distance Results: We again limit the
number of agents to 200 since most agents then reach their
goal locations. We assign the remaining agents their travel
distances when the runtime limit is reached. Table III shows
that FAR has the lowest travel distances on nine maps.

VI. CONCLUSIONS

Our paper considered an important problem faced by ar-
tificial intelligence in many video games, namely MAPF.
We reviewed recent related work and argued for the use of
real-time heuristic search. We then contributed a new real-
time MAPF algorithm, BMAA*, which is of modular design
and can be enhanced with recent flow-annotation techniques.
BMAA* has higher completion rates and smaller completion
times than FAR at the cost of longer travel distances, which
is a good trade-off since NPCs reaching their goal locations
via possibly longer paths is less noticeable by players than
NPCs not reaching their goal locations at all. Finally, we
discussed what makes MAPF difficult for different algorithms,
paving the road to per-problem algorithm selection techniques
in the spirit of recent research in the context of single-agent
pathfinding [18], [19].

Overall, BMAA* demonstrates the promise of real-time
heuristic search for MAPF. Its main shortcoming is its large
travel distances compared to the ones of FAR. Several recent
RTHS techniques attempt to reduce the travel distances for
single-agent pathfinding [20] and thus might also be able to
reduce the travel distances for BMAA*. Examples include
search space reduction techniques [14], [21], precomputation
techniques [22], [23] and initialization techniques for the
heuristic values, which might help to reduce the dead-end
problem shown in Figure 4.



TABLE I: Completion rates averaged over all MAPF instances for each map.

Map Name A*-Replan BMAA* BMAA*-c BMAA*-f BMAA*-f-c FAR Overall

BGII-AR0414SR (320*281) 45 87 87 85 89 32 71
BGII-AR0414SR (512*512) 14 80 79 82 83 07 58
BGII-AR0504SR (512*512) 08 51 51 62 62 05 40
BGII-AR0701SR (512*512) 08 48 49 64 65 06 40
WCIII-blastedlands (512*512) 14 85 85 78 80 03 58
WCIII-duskwood (512*512) 08 58 58 67 67 03 43
WCIII-golemsinthemist (512*512) 10 59 59 72 72 04 46
DAO-lak304d (193*193) 19 39 38 53 51 27 38
DAO-lak307d (84*84) 60 79 77 68 64 60 68
DAO-lgt300d (747*531) 12 65 65 77 77 10 51

Overall 20 65 65 71 71 16 51

TABLE II: Completion times (in seconds) averaged over all MAPF instances for each map.

Map Name A*-Replan BMAA* BMAA*-c BMAA*-f BMAA*-f-c FAR Overall

BGII-AR0414SR (320*281) 2.8 1.2 5.1 2.2 5.6 3.8 3.5
BGII-AR0414SR (512*512) 8.8 3.6 6.6 3.0 6.8 12.9 7.0
BGII-AR0504SR (512*512) 12.3 8.6 12.7 6.3 12.5 16.0 11.4
BGII-AR0701SR (512*512) 12.7 4.0 5.4 3.2 4.5 15.0 7.5
WCIII-blastedlands (512*512) 8.8 1.4 1.5 2.2 2.3 21.0 6.2
WCIII-duskwood (512*512) 12.5 4.1 5.8 3.7 5.5 21.1 8.8
WCIII-golemsinthemist (512*512) 11.1 4.2 5.9 3.0 4.2 19.0 7.9
DAO-lak304d (193*193) 4.5 6.7 15.1 7.9 11.4 3.2 8.1
DAO-lak307d (84*84) 0.2 0.2 0.2 0.5 0.3 0.6 0.3
DAO-lgt300d (747*531) 8.3 1.4 1.6 2.2 2.4 10.5 4.4

Overall 8.2 3.5 6.0 3.4 5.5 12.3 6.5

TABLE III: Travel distances averaged over all MAPF instances for each map.

Map Name A*-Replan BMAA* BMAA*-c BMAA*-f BMAA*-f-c FAR Overall

BGII-AR0414SR (320*281) 663 554 557 620 639 130 527
BGII-AR0414SR (512*512) 661 1538 1557 2080 2115 224 1363
BGII-AR0504SR (512*512) 407 2167 2231 3671 3783 227 2089
BGII-AR0701SR (512*512) 562 973 967 1267 1287 322 896
WCIII-blastedlands (512*512) 299 376 376 775 784 268 480
WCIII-duskwood (512*512) 367 1179 1188 1712 1737 257 1073
WCIII-golemsinthemist (512*512) 530 1205 1206 1371 1369 285 994
DAO-lak304d (193*193) 2154 1425 1460 1258 1295 148 1290
DAO-lak307d (84*84) 578 38 39 125 95 47 154
DAO-lgt300d (747*531) 435 403 404 592 603 289 454

Overall 666 986 998 1347 1371 225 932

ACKNOWLEDGMENTS

Devon Sigurdson and Vadim Bulitko appreciate support
from NSERC and Nvidia. Carlos Hernández was partially
funded by Fondecyt grant number 1161526. Sven Koenig was
supported by the National Science Foundation (NSF) under
grant numbers 1724392, 1409987 and 1319966 as well as a
gift from Amazon. The views and conclusions contained in
this document are those of the authors and should not be in-
terpreted as representing the official policies, either expressed
or implied, of the sponsoring organizations, agencies or the
U.S. government.

REFERENCES

[1] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[2] S. Koenig and H. Ma, “AI buzzwords explained: Multi-agent path
finding (MAPF),” AI Matters, 2017.

[3] BioWare, “Dragon Age: Origins,” 2009.
[4] “Starcraft,” https://starcraft2.com/en-us/, accessed: 2018-03-14.
[5] K.-H. C. Wang and A. Botea, “Fast and memory-efficient multi-agent

pathfinding,” in Proceedings of the International Conference on Auto-
mated Planning and Scheduling (ICAPS), 2008, pp. 380–387.

[6] D. Silver, “Cooperative pathfinding,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE), 2005, pp. 117–122.

[7] K.-H. C. Wang and A. Botea, “MAPP: A scalable multi-agent path plan-
ning algorithm with tractability and completeness guarantees,” Journal
of Artificial Intelligence Research, vol. 42, pp. 55–90, 2011.

[8] T. Ishida, Real-time search for learning autonomous agents. Springer
Science & Business Media, 1997, vol. 406.

[9] V. Bulitko and G. Lee, “Learning in real time search: A unifying
framework,” Journal of Artificial Intelligence Research, vol. 25, pp. 119–
157, 2006.

[10] S. Koenig and X. Sun, “Comparing real-time and incremental heuristic
search for real-time situated agents,” Journal of Autonomous Agents and
Multi-Agent Systems, vol. 18, no. 3, pp. 313–341, 2009.



[11] B. Cserna, M. Bogochow, S. Chambers, M. Tremblay, S. Katt, and
W. Ruml, “Anytime versus real-time heuristic search for on-line plan-
ning,” in Proceedings of the Symposium on Combinatorial Search
(SoCS), 2016.

[12] R. Korf, “Real-time heuristic search,” Artificial Intelligence, vol. 42, no.
2–3, pp. 189–211, 1990.

[13] Y. Björnsson, V. Bulitko, and N. Sturtevant, “TBA*: Time-bounded
A*,” in Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 2009, pp. 431–436.

[14] C. Hernandez, A. Botea, J. A. Baier, and V. Bulitko, “Online bridged
pruning for real-time search with arbitrary lookaheads,” in Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI),
2017, pp. 510–516.

[15] S. Koenig and M. Likhachev, “Real-time Adaptive A*,” in Proceedings
of the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2006, pp. 281–288.

[16] V. Bulitko, “Evolving real-time heuristic search algorithms,” in Proceed-
ings of the International Conference on the Synthesis and Simulation of
Living Systems, 2016.

[17] N. R. Sturtevant, “Benchmarks for grid-based pathfinding,” Transactions
on Computational Intelligence and AI in Games, vol. 4, no. 2, pp. 144–
148, 2012.

[18] V. Bulitko, “Per-map algorithm selection in real-time heuristic search,”
in Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE), 2016, pp. 143–148.

[19] D. Sigurdson and V. Bulitko, “Deep learning for real-time heuristic
search algorithm selection,” in Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment (AIIDE),
2017, pp. 108–114.

[20] V. Bulitko and A. Sampley, “Weighted lateral learning in real-time
heuristic search,” in Proceedings of the Symposium on Combinatorial
Search (SoCS), 2016.

[21] C. Hernandez and J. A. Baier, “Avoiding and escaping depressions in
real-time heuristic search,” Journal of Artificial Intelligence Research,
vol. 43, pp. 523–570, 2012.

[22] R. Lawrence and V. Bulitko, “Database-driven real-time heuristic search
in video-game pathfinding,” IEEE Transactions on Computational Intel-
ligence and AI in Games, vol. 5, no. 3, pp. 227–241, 2013.

[23] L. Cohen, T. Uras, T. Kumar, H. Xu, N. Ayanian, and S. Koenig,
“Improved solvers for bounded-suboptimal multi-agent path finding,”
in Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 2016, pp. 3067–3074.


