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Abstract. This paper proposes the design and implementation of a dynamic pro-
gramming based algorithm for (distributed) constraint optimization, which ex-
ploits modern massively parallel architectures, such as those found in modern
Graphical Processing Units (GPUs). The paper studies the proposed algorithm in
both centralized and distributed optimization contexts. The experimental analy-
sis, performed on unstructured and structured graphs, shows the advantages of
employing GPUs, resulting in enhanced performances and scalability.

1 Introduction

The importance of constraint optimization is outlined by the impact of its application
in a range of Constraint Optimization Problems (COPs), such as supply chain manage-
ment (e.g., [27, 15]) and roster scheduling (e.g., [1, 8]). When resources are distributed
among a set of autonomous agents and communication among the agents are restricted,
COPs take the form of Distributed Constraint Optimization Problems (DCOPs) [21,
33]. In this context, agents coordinate their value assignments to maximize the over-
all sum of resulting constraint utilities. DCOPs are suitable to model problems that are
distributed in nature, and where a collection of agents attempts to optimize a global
objective within the confines of localized communication. They have been employed to
model various distributed optimization problems, such as meeting scheduling [20, 32,
35], resources allocation [13, 36], and power network management problems [17].

Dynamic Programming (DP) based approaches have been adopted to solve COPs
and DCOPs. The Bucket Elimination (BE) procedure [10] iterates over the variables of
the COP, reducing the problem at each step by replacing a variable and its related utility
functions with a single new function, derived by optimizing over the possible values of
the replaced variable. The Dynamic Programming Optimization Protocol (DPOP) [25]
is one of the most efficient DCOP solvers, and it can be seen as a distributed version of
BE, where agents exchange newly introduced utility functions via messages.

The importance of DP-based approaches arises in several optimization fields includ-
ing constraint programming [2, 28]. For example, several propagators adopt DP-based
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techniques to establish constraint consistency; for instance, (1) the knapsack constraint
propagator proposed by Trick applies DP techniques to establish arc consistency on the
constraint [31]; (2) the propagator for the regular constraint establishes arc consistency
using a specific digraph representation of the DFA, which has similarities to dynamic
programming [24]; (3) the context free grammar constraint makes use of a propagator
based on the CYK parser that uses DP to enforce generalized arc consistency [26].

While DP approaches may not always be appropriate to solve (D)COPs, as their
time and space requirements may be prohibitive, they may be very effective in problems
with particular structures, such as problems where their underlying constraint graphs
have small induced widths or distributed problems where the number of messages is
crucial for performance, despite the size of the messages. The structure exploited by
DP-based approaches in constructing solutions makes it suitable to exploit a novel class
of massively parallel platforms that are based on the Single Instruction Multiple Thread
(SIMT) paradigm—where multiple threads may concurrently operate on different data,
but are all executing the same instruction at the same time. The SIMT-based paradigm is
widely used in modern Graphical Processing Units (GPUs) for general purpose paral-
lel computing. Several libraries and programming environments (e.g., Compute Unified
Device Architecture (CUDA)) have been made available to allow programmers to ex-
ploit the parallel computing power of GPUs.

In this paper, we propose a design and implementation of a DP-based algorithm
that exploits parallel computation using GPUs to solve (D)COPs. Our proposal aims
at employing GPU hardware to speed up the inference process of DP-based methods,
representing an alternative way to enhance the performance of DP-based constraint op-
timization approaches. This paper makes the following contributions: (1) We propose
a novel design and implementation of a centralized and a distributed DP-based algo-
rithm to solve (D)COPs, which harnesses the computational power offered by parallel
platforms based on GPUs; (2) We enable the use of concurrent computations between
CPU(s) and GPU(s), during (D)COP resolution; and (3) We report empirical results that
show significant improvements in performance and scalability.

2 Background

2.1 Centralized Constraint Optimization Problems (COPs)

A (centralized) Constraint Optimization Problem (COP) is defined as (X,D,C) where:
X = {x1, . . . , xn} is a set of variables; D = {D1, . . . , Dn} is a set of domains for
the variables in X, where Di is the set of possible values for the variable xi; C is a
finite set of utility functions on variables in X, with fi : "xj∈xi Dj → R+ ∪ {−∞},
where xi ⊆ X is the set of variables relevant to fi, referred to as the scope of fi,
and −∞ is used to denote that a given combination of values for the variables in xi

is not allowed.3 A solution is a value assignment for a subset of variables from X
that is consistent with their respective domains; i.e., it is a partial function θ : X →⋃n
i=1Di such that, for each xj ∈ X, if θ(xj) is defined, then θ(xj) ∈ Dj . A solution

is complete if it assigns a value to each variable in X. We will use the notation σ to

3 For simplicity, we assume that tuples of variables are built according to a predefined ordering.



 x1  x2                 Utilities
0   0     max(5+5, 8+8)     = 16
0   1     max(5+20, 8+3)   = 25
1   0     max(20+5, 3+8)   = 25
1   1     max(20+20, 3+3) = 40

 x1                 Utilities
0     max(5+16, 8+25)     = 33
1     max(20+25, 3+40)   = 45
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Fig. 1: Example (D)COP (a-c) and UTIL phase computations in DPOP (d).

denote a complete solution, and, for a set of variables V = {xi1 , . . . , xih} ⊆ X,
σV = 〈σ(xi1), . . . , σ(xih)〉, where i1 < · · · < ih. The goal for a COP is to find a
complete solution σ∗ that maximizes the total problem utility expressed by its utility
functions, i.e., σ∗ = argmaxσ∈Σ

∑
fi∈C fi(σxi), where Σ is the state space, defined

as the set of all possible complete solutions.
Given a COP P , GP =(X, EC) is the constraint graph of P , where {x, y} ∈ EC

iff ∃fi ∈ C such that {x, y} ⊆ xi. Fig. 1(a) shows the constraint graph of a simple
COP with three variables, x1, x2, and x3. The domain of each variable is the set {0, 1}.
Fig. 1(c) describes the utility functions of the COP.

Definition 1 (Projection). The projection of a utility function fi on a set of variables
V ⊆ xi is a new utility function fi|V : V → R+ ∪ {−∞}, such that for each possible
assignment θ ∈ "xj∈V Dj , fi|V(θ) = max

σ∈Σ,σV=θ
fi(σxi).

In other words, fi|V is constructed from the tuples of fi, removing the values of the
variable that do not appear in V and removing duplicate values by keeping the maxi-
mum utility of the original tuples in fi.

Definition 2 (Concatenation). Let us consider two assignments θ′, defined for vari-
ables V , and θ′′, defined for variables W , such that for each x ∈ V ∩W we have that
θ′(x) = θ′′(x). Their concatenation is an assignment θ′ · θ′′ defined for V ∪W , such as
for each x ∈ V (resp. x ∈W ) we have that θ′ ·θ′′(x) = θ′(x) (resp. θ′ ·θ′′(x) = θ′′(x)).

We define two operations on utility functions:
• The aggregation of two functions fi and fj , is a function fi + fj : xi ∪ xj →
R+ ∪ {−∞}, such that ∀θ′ ∈ "xk∈xi Dk and ∀θ′′ ∈ "xk∈xj Dk, if θ′ · θ′′ is defined,
then we have that (fi + fj)(θ

′ · θ′′)=fi(θ′) + fj(θ
′′).

• Projecting out a variable xj ∈ xi from a function fi, denoted as π−xj (fi), produces
a new function with scope xi \{xj}, and defined as the projection of fi on xi \{xj},
i.e., π−xj

(fi)=fi|xir{xj}.

Bucket Elimination (BE): BE [10, 11] is a dynamic programming based procedure
that can be used to solve COPs. Algorithm 1 illustrates its pseudocode. Given a COP
(X,D,C) and an ordering o=〈x1, . . . , xn〉 on the variables in X, we say that a variable
xi has a higher priority with respect to variable xj if xi appears after xj in o. BE
operates from the highest to lowest priority variable. When operating on variable xi,
it creates a bucket Bi, which is the set of all utility functions that involve xi as the



Algorithm 1: BE
1 for i← n downto 1 do
2 Bi ← {fj ∈ C | xi ∈ xj ∧ i = max{k | xk ∈ xj}}
3 f̂i ← π−xi

(∑
fj∈Bi

fj
)

4 X← X \ {xi}
5 C← (C ∪ {f̂i}) \Bi

highest priority variable in their scope (line 2). The algorithm then computes a new
utility function f̂i by aggregating the functions in Bi and projecting out xi (line 3).
Thus, xi can be removed from the set of variables X to be processed (line 4) and the
new function f̂i replaces in C all the utility functions that appear in Bi (line 5). In our
example, BE operates, in order, on the variables x3, x2, and x1. When x3 is processed,
the bucket B3 is {f13, f23}, and the f̂3 utility function is shown in Fig. 1(d) top. The
rightmost column shows the values for x3 after its projection. BE updates the sets X=
{x1, x2} and C={f12, f̂3}. When x2 is processed, B2={f12, f̂3} and f̂2 is shown in
Fig. 1(d) bottom. Thus, X={x1} and C={f̂2}. Lastly, the algorithm processes x1, sets
B1={f̂2}, and f̂1 contains one value combination σ∗=〈1, 0, 0〉, which corresponds to
an optimal solution to the problem.

The complexity of the algorithm is bounded by the time needed to process a bucket
(line 3), which is exponential in number of variables in the bucket.

2.2 Distributed Constraint Optimization Problems (DCOPs)

In a Distributed Constraint Optimization Problem (DCOP) [21, 25, 33], the variables,
domains, and utility functions of a COP are distributed among a collection of agents.
A DCOP is defined as (X,D,C,A, α), where X,D, and C are defined as in a COP,
A= {a1, . . . , ap} is a set of agents, and α : X → A maps each variable to one agent.
Following common conventions, we restrict our attention to binary utility functions and
assume that α is a bijection: Each agent controls exactly one variable. Thus, we will use
the terms “variable” and “agent” interchangeably and assume that α(xi) = ai. This is
a common assumption in the DCOP literature as there exist pre-processing techniques
that transform a general DCOP into this more restrictive DCOP [7, 34]. In DCOPs, so-
lutions are defined as for COPs, and many solution approaches emulate those proposed
in the COP literature. For example, ADOPT [21] is a distributed version of Iterative
Deepening Depth First Search, and DPOP [25] is a distributed version of BE. The main
difference is in the way the information is shared among agents. Typically, a DCOP
agent knows exclusively its domain and the functions involving its variable. It can com-
municate exclusively with its neighbors (i.e., agents directly connected to it in the con-
straint graph4), and the exchange of information takes the form of messages. Given a
DCOP P , a DFS pseudo-tree arrangement for GP is a spanning tree T = 〈X, ET 〉 of
GP such that if fi ∈ C and {x, y} = xi, then x and y appear in the same branch of
T . Edges of GP that are in (resp. out of) ET are called tree edges (resp. backedges).
The tree edges connect parent-child nodes, while backedges connect a node with its

4 The constraint graph of a DCOP is equivalent to that of the corresponding COP.



pseudo-parents and its pseudo-children. We use N(ai) = {aj ∈A | {xi, xj} ∈ET } to
denote the neighbors of agent ai; Ci, PCi, Pi, and PPi to denote the set of children,
pseudo-children, parent, and pseudo-parents of agent ai; and sep(ai) to denote the sep-
arator of agent ai, which is the set of ancestor agents that are constrained (i.e., they
are linked in GP ) with agent ai or with one of its descendant agents in the pseudo-tree.
Fig. 1(b) shows one possible pseudo-tree for the problem, where the agent a1 has one
pseudo-child a3 (the dotted line is a backedge).

Dynamic Programming Optimization Protocol (DPOP): DPOP [25] is a dynamic
programming based DCOP algorithm that is composed of three phases. (1) Pseudo-tree
generation: Agents coordinate to build a pseudo-tree, realized through existing dis-
tributed pseudo-tree construction algorithms [16]. (2) UTIL propagation: Each agent,
starting from the leaves of the pseudo-tree, computes the optimal sum of utilities in its
subtree for each value combination of variables in its separator. The agent does so by
aggregating the utilities of its functions with the variables in its separator and the utili-
ties in the UTIL messages received from its child agents, and then projecting out its own
variable. In our example problem, agent a3 computes the optimal utility for each value
combination of variables x1 and x2 (Fig. 1(d) top), and sends the utilities to its parent
agent a2 in a UTIL message. When the root agent a1 receives the UTIL message from
each of its children, it computes the maximum utility of the entire problem. (3) VALUE
propagation: Each agent, starting from the root of the pseudo-tree, determines the opti-
mal value for its variable. The root agent does so by choosing the value of its variable
from its UTIL computations—selecting the value with the maximal utility. It sends the
selected value to its children in a VALUE message. Each agent, upon receiving a VALUE
message, determines the value for its variable that results in the maximum utility given
the variable assignments (of the agents in its separator) indicated in the VALUE mes-
sage. Such assignment is further propagated to the children via VALUE messages.

The complexity of DPOP is dominated by the UTIL propagation phase, which is
exponential in the size of the largest separator set sep(ai) for all ai∈A. The other two
phases require a polynomial number of linear size messages, and the complexity of the
local operations is at most linear in the size of the domain.

Observe that the UTIL propagation phase of DPOP emulates the BE process in a
distributed context [6]. Given a pseudo-tree and its preorder listing o, the UTIL message
generated by each DPOP agent ai is equivalent to the aggregated and projected function
f̂i in BE when xi is processed according to the ordering o.

2.3 Graphical Processing Units (GPUs)

Modern GPUs are multiprocessor devices, offering hundreds of computing cores and
a rich memory hierarchy to support graphical processing. We consider the NVIDIA
CUDA programming model [29], which enables the use of the multiple cores of a graph-
ics card to accelerate general (non-graphical) applications. The underlying model of
parallelism is Single-Instruction Multiple-Thread (SIMT), where the same instruction
is executed by different threads that run on identical cores, grouped in Streaming Mul-
tiprocessors (SMs), while data and operands may differ from thread to thread.

A typical CUDA program is a C/C++ program. The functions in the program are
distinguished based on whether they are meant for execution on the CPU (referred to



Algorithm 2: GPU-(D)BE
(1) Generate pseudo-tree
2 GPU-INITIALIZE( )
3 if Ci = ∅ then
4 UTILxi ⇔ PARALLELCALCUTILS( )

(5) Send UTIL message (xi,UTILxi) to Pi

6 else
7 Activate UTILMessageHandler(·)

(8) Activate VALUEMessageHandler(·)

as the host) or in parallel on the GPU (referred as the device). The functions executed
on the device are called kernels, and are executed by several threads. To facilitate the
mapping of the threads to the data structures being processed, threads are grouped in
blocks, and have access to several memory levels, each with different properties in terms
of speed, organization, and capacity. CUDA maps blocks (coarse-grain parallelism) to
the SMs for execution. Each SM schedules the threads in a block (fine-grain parallelism)
on its computing cores in chunks of 32 threads (warps) at a time. Threads in a block
can communicate by reading and writing a common area of memory (shared memory).
Communication between blocks and communication between the blocks and the host is
realized through a large slow global memory. The development of CUDA programs that
efficiently exploit SIMT parallelism is a challenging task. Several factors are critical in
gaining performance. Memory levels have significantly different sizes (e.g., registers
are in the order of dozens per thread, shared memory is in the order of a few kilobytes
per block) and access times, and various optimization techniques are available (e.g., co-
alesced of memory accesses to contiguous locations into a single memory transaction).

3 GPU-based (Distributed) Bucket Elimination (GPU-(D)BE)

Our GPU-based (Distributed) Bucket Elimination framework, extends BE (resp. DPOP)
by exploiting GPU parallelism within the aggregation and projection operations. These
operations are responsible for the creation of the functions f̂i in BE (line 3 of Algo-
rithm 1) and the UTIL tables in DPOP (UTIL propagation phase), and they dominate
the complexity of the algorithms. Thus, we focus on the details of the design and the
implementation relevant to such operations. Due to the equivalence of BE and DPOP,
we will refer to the UTIL tables and to the aggregated and projected functions f̂ of Al-
gorithm 1, as well as variables and agents, interchangeably. Notice that the computation
of the utility for each value combination in a UTIL table is independent of the compu-
tation in the other combinations. The use of a GPU architecture allows us to exploit
such independence, by concurrently exploring several combinations of the UTIL table,
computed by the aggregation operator, as well as concurrently projecting out variables.

Algorithm 2 illustrates the pseudocode, where we use the following notations: Line
numbers in parenthesis denote those instructions required exclusively in the distributed
case. Starred line numbers denote those instructions executed concurrently by both the
CPU and the GPU. The symbols ← and ⇔ denote sequential and parallel (multiple
GPU-threads) operations, respectively. If a parallel operation requires a copy from host



Procedure UTILMessageHandler(ak,UTILak )
(9) Store UTILak

10 if received UTIL message from each child ac ∈ Ci then
11 UTILai ⇔ PARALLELCALCUTILS( )
12 if Pi = NULL then
13 d∗i ← CHOOSEBESTVALUE(∅)

(14) foreach ac ∈ Ci do
(15) VALUEai ← (xi, d

∗
i )

(16) Send VALUE message (ai,VALUEai) to ac

(17) else Send UTIL message (ai,UTILai) to Pi

Procedure VALUEMessageHandler(ak,VALUEak )
(18) VALUEai ← VALUEak

(19) d∗i ← CHOOSEBESTVALUE(VALUEai)
(20) foreach ac ∈ Ci do
(21) VALUEai ← {(xi, d∗i )} ∪ {(xk, d∗k) ∈ VALUEak | xk ∈ sep(ac)}
(22) Send VALUE message (ai,VALUEai) to ac

(device) to device (host), we write
D←H
⇔ (

H←D
⇔ ). Host to device (resp. device to host)

memory transfers are performed immediately before (resp. after) the execution of the
GPU kernel. Algorithm 2 shows the pseudocode of GPU-(D)BE for an agent ai. Like
DPOP, also GPU-(D)BE is composed of three phases; the first and third phase are exe-
cuted exclusively in the distributed version. The first phase is identical to that of DPOP
(line 1). In the second phase:
• Each agent ai calls GPU-INITIALIZE() to set up the GPU kernel. For example, it

determines the amount of global memory to be assigned to each UTIL table and
initializes the data structures on the GPU device memory (line 2).
• Each agent ai aggregates the utilities for the functions between its variables and its

separator, projects its variable out (line 4), and sends them to its parent (line 5). The
MessageHandlers of lines 7 and 8 are activated for each new incoming message.

By the end of the second phase (line 11), the root agent knows the overall utility for
each values of its variable xi. It chooses the value that results in the maximum utility
(line 13). Then, in the distributed version, it starts the third phase by sending to each
child agent ac the value of its variable xi (lines 14-16). These operations are repeated
by every agent receiving a VALUE message (lines 18-22). In contrast, in the centralized
version, the value assignment for each variable is set by the root agent directly.

3.1 GPU Data Structures

In order to fully capitalize on the parallel computational power of GPUs, the data struc-
tures need to be designed in such a way to limit the amount of information exchanged
between the CPU host and the GPU device, and in order to minimize the accesses to the
(slow) device global memory (and ensure that they are coalesced). To do so, each agent
identifies the set of relevant static entities, i.e., information required during the GPU
computation, which does not mutate during the resolution process. The static entities



are communicated to the GPU once at the beginning of the computation. This allows
each agent running on a GPU device to communicate with the CPU host exclusively to
exchange the results of the aggregation and projection processes. The complete set of
utility functions, the constraint graph, and the agents ordering, all fall in such category.
Thus, each agent ai stores:
• The set of utility functions involving exclusively xi and a variable in ai’s separator

set: Si = {fj ∈ C | xi ∈ xj ∧ sep(ai) ∩ xj 6= ∅}. For a given function fj ∈ Si, its
utility values are stored in an array named gFuncj .
• The domain Di of its variable (for simplicity assumed to be all of equal cardinality).
• The set Ci of ai’s children.
• The separator sets sep(ai), and sep(ac), for each ac ∈ Ci.

The GPU-INITIALIZE() procedure of line 2, invoked after the pseudo-tree construc-
tion, stores the data structures above for each agent on the GPU device. As a technical
detail, all the data stored on the GPU global memory is organized in mono-dimensional
arrays, so as to facilitate coalesced memory accesses. In particular, the identifier and
scope of the functions in Si as well as identifiers and separator sets of child agents in
Ci are stored within a single mono-dimensional array. The utility values stored in the
rows of each function are padded to ensures that a row is aligned to a memory word—
thus minimizing the number of memory accesses.

GPU-INITIALIZE() is also responsible for reserving a portion of the GPU global
memory to store the values for the agent’s UTIL table, denoted by gUtilsi, and those
of its children, denoted by gChUtilsc, for each ac ∈ Ci. As a technical note, an
agent’s UTIL table is mapped onto the GPU device to store only the utility values,
not the associated variables values. Its j-th entry is associated with the j-th permu-
tation of the variable values in sep(ai), in lexicographic order. This strategy allows
us to employ a simple perfect hashing to efficiently associate row numbers with vari-
ables’ values and vice versa. Note that the agent’s UTIL table size grows exponen-
tially with the size of its separator set; more precisely, after projecting out xi, it has
|Di|sep(ai) entries. However, the GPU global memory is typically limited to a few GB
(e.g., in our experiments it is 2GB). Thus, each agent, after allocating its static entities,
checks if it has enough space to allocate its children’s UTIL tables and a consistent
portion (see next subsection for details) of its own UTIL table. In this case, it sets the
project on device flag to true, which signals that both aggregate and project opera-
tions can be done on the GPU device.5 Otherwise it sets the flag to false and bounds the
device UTIL size table to the maximum storable space on the device. In this case, the
aggregation operations are performed only partially on the GPU device.

3.2 Parallel Aggregate and Project Operations

The PARALLELCALCUTILS procedure (executed in lines 4 and 11) is responsible for
performing the aggregation and projection operations, harnessing the parallelism pro-
vided by the GPU. Due to the possible large size of the UTIL tables, we need to separate
two possible cases and devise specific solutions accordingly:

5 If the UTIL table of agent ai does not fit in the global memory, we partition such table in
smaller chunks, and iteratively execute the GPU kernel until all rows of the table are processed.



Procedure ParallelCalcUtils( )
23 if project on device then

24 gChUTILac

D←H

⇔ UTILac for all ac ∈ Ci

25 R← 0 ; UTILai ← ∅
26 while R < |Di|sep(ai) do
27 if project on device then

28* UTIL′ai

H←D

⇔ GPU-AGGREGATE-PROJECT(R)
29 else

30* UTIL′ai

H←D

⇔ GPU-AGGREGATE(R)
31* UTIL′ai

← AGGREGATECH-PROJECT(ai,UTIL′ai
,UTILac) for all ac ∈ Ci

32* UTILai ← UTILai ∪ COMPRESS(UTIL′ai
)

33 R← R+ |UTIL′ai
|

34 return UTILai

(a) When the device global memory is sufficiently large to store all ai’s children
UTIL tables as well as a significant portion of ai’s UTIL table6 (i.e., when
project on device = true), both aggregation and projection of the agent’s UTIL
table are performed in parallel on the GPU. The procedure first stores the UTIL ta-
bles received from the children of ai into their assigned locations in the GPU global
memory (lines 23-24). It then iterates through successive GPU kernel calls (line 28)
until the UTILai table is fully computed (lines 26-33). Each iterations computes a
certain number of rows of the UTILai table (R serves as counter).

(b) When the device global memory is insufficiently large to store all ai’s chil-
dren UTIL tables as well as a significant portion of ai’s UTIL table (i.e., when
project on device = false), the agent alternates the use of the GPU and the
CPU to compute UTILai . The GPU is in charge of aggregating the functions in
Si (line 30), while the CPU aggregates the children UTIL table,7 projecting out xi.
Note that, in this case, the UTILai storage must include all combinations of values
for the variables in sep(xi) ∪ {xi}, thus the projection operation is performed on
the CPU host. As in the previous case, the UTILai is computed incrementally, given
the amount of available GPU global memory.

To fully capitalize on the use of the GPU, we exploit an additional level of par-
allelism, achieved by running GPU kernels and CPU computations concurrently; this
is possible when the UTILai table is computed in multiple chunks. Fig. 2 illustrates
the concurrent computations between the CPU and GPU. After transferring the chil-
dren UTIL tables into the device memory (Init)—in case (a) only—the execution of
kernel K1 produces the update of the first chunk of UTILai , denoted by U1 in Fig. 2,
which is transferred to the CPU host. The successive parallel operations are performed

6 In our experiments, we require that at least 1/10 of the UTIL table can be stored in the GPU.
We experimentally observed that a partitioning of the table in at most 10 chunks provides a
good time balance between memory transfers and actual computation.

7 The CPU aggregates only those child UTIL table that could not fit in the GPU memory. Those
that fit in memory are integrated through the GPU computation as done in the previous point.
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Fig. 2: Concurrent computation between host and device.

asynchronously with respect to the GPU, that is, the execution of the j-th CUDA ker-
nel Kj (j > 1), returns the control immediately to the CPU, which concurrently op-
erates a compression operation on the previously computed UTIL′ai chunk (line 32),
referred to as Uk−1 in Fig. 2. For case (b), the CPU also executes concurrently the
AGGREGATECH-PROJECT of line 31. We highlight the concurrent operations by mark-
ing with a ∗ symbol their respective lines in the procedure PARALLELCALCUTILS.

Technical Details: We now describe in more detail how we divide the workload among
parallel blocks, i.e., the mapping between the UTIL table rows and the CUDA blocks.
A total of T =64 ·k (1 ≤ k ≤ 16) threads (a block) are associated to the computation of
T permutations of values for sep(ai). The value k depends on the architecture and it is
chosen to maximize the number of concurrent threads running at the same time. In our
experiments, we set k = 3. The number of blocks is chosen so that the corresponding
aggregate number of threads does not exceed the total number of UTIL′ai permutations
currently stored in the device. Let h be the number of stream multiprocessors of the
GPU. Then, the maximum number of UTIL permutations that can be computed concur-
rently is M = h · T . In our experiments h= 14, and thus, M = 2688. Fig. 3 provides
an illustration of the UTIL permutations computed in parallel on GPU. The blocks Bi
in each row are executed in parallel on different SMs. Within each block, a total of (at
most) 192 threads operate on as many entries of the UTIL table.
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5 Related Work

Probably, i will move this section in the introduction

DP Algorithms: BE, CTE, DPOP, DCTE.
GPU-CP: Federico and Codognet (local search and CP).
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Fig. 3: GPU kernel parallel computations.

The GPU kernel procedure is shown in lines 35-49. We surround line numbers with
| · | to denote parts of the procedure executed by case (b). The kernel takes as input
the number R of the UTIL table permutations computed during the previous kernel
calls. Each thread identifies its entry index rid within the table chunk UTIL′ai (line 35).
It then assigns the shared memory allocated to local arrays to store the static entities
Si, Ci, and sep(ac), for each ac ∈ Ci. In addition it reserves the space θ to store the
assignments corresponding to the UTIL permutation being computed by each thread,



Procedure GPU-Aggregate-Project(R)
|35| rid ← the thread’s entry index of UTIL′i
|36| did ← the thread’s value index of Di

|37| 〈|θ, Si|, Ci, sep(xc)〉 ← ASSIGNSHAREDMEM() for all xc ∈ Ci

|38| θ ← DECODE(R+ rid)
|39| util ← −∞
40 foreach did ∈ Di do
|41| utildid ← 0
|42| foreach fj ∈ Si do
|43| ρj ← ENCODE(θxj | xi = did)
|44| utildid ← utildid + gFuncj [ρj ]

45 foreach ac ∈ Ci do
46 ρc ← ENCODE(θsep(ac) | xi = did)
47 utildid ← utildid + gChUtilsc[ρc]

|48| util ← max(util , utildid)

|49| gUtilsi[rid]← util

which is retrieved using the thread entry index and the offset R (line 38). DECODE
implements a minimal perfect hash function to convert the entry index of the UTIL
table to its associated variables value permutation. Each thread aggregates the functions
in Si (lines 42-44) and the UTIL tables of ai’s children (lines 45-47), for each element
of its domain (lines 40-48). The ENCODE routine converts a given assignments for the
variables in the scope of a function fj (line 43), or in the separator set of child ac
(line 46), to the corresponding array index, sorted in lexicographic order. The value
for the variable xi within each input, is updated at each iteration of the for loop. The
projection operation is executed in line 48. Finally, the thread stores the best utility in
the corresponding position of the array gUtilsi

The GPU-AGGREGATE procedure (called in line 30), is illustrated in lines 35-
49—line numbers surrounded by | · |. Each thread is in charge of a value combina-
tion in sep(ai) ∪ {xi}, thus, the foreach loop of lines 40-48 is operated in parallel by
|Di| threads. Lines 45-47 are not executed. The AGGREGATECH-PROJECT procedure
(line 31), which operates on the CPU, is similar to the GPU-AGGREGATE-PROJECT
procedure, except that lines 36-37, and 42-44, are not executed.

The proposed kernel has been the result of several investigations. We experimented
with other levels of parallelism, e.g., by unrolling the for-loops among groups of
threads. However, these modifications create divergent branches, which degrade the
parallel performance. We experimentally observed that such degradation worsen con-
sistently as the size of the domain increases.

3.3 General Observations

Observation 1. GPU-DBE requires the same number of messages as those required by
DPOP, and it requires messages of the same size as those required by DPOP.
Observation 2. The UTIL messages constructed by each GPU-DBE agent are identical
to those constructed by each corresponding DPOP agent.



The above observations follow from the pseudo-tree construction and VALUE prop-
agation GPU-DBE phases, which are identical to those of DPOP. Thus, their corre-
sponding messages and message sizes are identical in both algorithms. Moreover, given
a pseudo-tree, each DPOP/GPU-DBE agent computes the UTIL table containing each
combination of values for the variables in its separator set. Thus, the UTIL messages of
GPU-DBE and DPOP are identical.
Observation 3. The memory requirements of GPU-(D)BE is, in the worst case, expo-
nential in the induced width of the problem (for each agent).
This observation follows from the equivalence of the UTIL propagation phase of DPOP
and BE [6] and from Observation 2.
Observation 4. GPU-(D)BE is complete and correct.
The completeness and correctness of GPU-(D)BE follow from the completeness and
correctness of BE [10] and DPOP [25].

4 Related Work

The use of GPUs to solve difficult combinatorial problems has been explored by several
proposals in different areas of constraint optimization. For instance, Meyer et al. [18]
proposed a multi-GPU implementation of the simplex tableau algorithm which relies
on a vertical problem decomposition to reduce communication between GPUs. In con-
straint programming, Arbelaez and Codognet [3] proposed a GPU-based version of the
Adaptive Search that explores several large neighborhoods in parallel, resulting in a
speedup factor of 17. Campeotto et al. [9] proposed a GPU-based framework that ex-
ploits both parallel propagation and parallel exploration of several large neighborhoods
using local search techniques, leading to a speedup factor of up to 38. The combination
of GPUs with dynamic programming has also been explored to solve different combi-
natorial optimization problems. For instance, Boyer et al. [5] proposed the use of GPUs
to compute the classical DP recursion step for the knapsack problem, which led to a
speedup factor of 26. Pawłowski et al. [23] presented a DP-based solution for the coali-
tion structure formation problem on GPUs, reporting up to two orders of magnitude of
speedup. Differently from other proposals, our approach aims at using GPUs to exploit
SIMT-style parallelism from DP-based methods to solve general COPs and DCOPs.

5 Experimental Results

We compare our centralized and distributed versions of GPU-(D)BE with BE [10] and
DPOP [25] on binary constraint networks with random, scale-free, and regular grid
topologies. The instances for each topology are generated as follows:
Random: We create an n-node network, whose density p1 produces bn (n − 1) p1c
edges in total. We do not bound the tree-width, which is based on the underlying graph.
Scale-free: We create an n-node network based on the Barabasi-Albert model [4]: Start-
ing from a connected 2-node network, we repeatedly add a new node, randomly con-
necting it to two existing nodes. In turn, these two nodes are selected with probabilities
that are proportional to the numbers of their connected edges. The total number of edges
is 2 (n− 2) + 1.
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Fig. 4: Runtimes for COPs (top) and DCOPs (bottom) at varying number of variables/agents.

Regular grid: We create an n-node network arranged as a rectangular grid, where each
internal node is connected to four neighboring nodes, while nodes on the grid edges
(resp. corners) are connected to two (resp. three) neighboring nodes.
We generate 30 instances for each topology, ensuring that the underlying graph is con-
nected. The utility functions are generated using random integer costs in [0, 100], and
the constraint tightness (i.e., ratio of entries in the utility table different from −∞) p2
is set to 0.5 for all experiments. We set as default parameters, |A|= |X|=10, |Di|=5
for all variables, and p1=0.3 for random networks, and |A|= |X|=9 for regular grids.
Experiments for GPU-DBE are conducted using a multi-agent DCOP simulator, that
simulates the concurrent activities of multiple agents, whose actions are activated upon
receipt of a message. We use the publicly-available implementation of DPOP available
in the FRODO framework v.2.11 [19], and we use the same framework to run the BE
algorithm, in a centralized setting.

Since all algorithms are complete, our focus is on runtime. Performance of the
centralized algorithms are evaluated using the algorithm’s wallclock runtime, while
distributed algorithms’ performances are evaluated using the simulated runtime met-
ric [30]. We imposed a timeout of 300s of wallclock (or simulated) time and a memory
limit of 32GB. Results are averaged over all instances and are statistically significant
with p-values < 1.638 e−12.8 These experiment are performed on an AMD Opteron
6276, 2.3GHz, 128GB of RAM, which is equipped with a GPU device GeForce GTX
TITAN with 14 multiprocessors, 2688 cores, and a clock rate of 837MHz.

Fig. 4 illustrates the runtime, in seconds, for random (a), scale-free (b), and regular
grid (c) topologies, varying the number of variables (resp. agents) for the centralized
(resp. distributed) algorithms. The centralized algorithms (BE and GPU-BE) are shown
at the top of the figure, while the distributed algorithms (DPOP and GPU-DBE) are
illustrated at the bottom. All plots are in log-scale. We make the following observations:
• The GPU-based DP-algorithms (for both centralized and distributed cases) are con-

sistently faster than the non-GPU-based ones. The speedups obtained by GPU-BE

8 t-test performed with null hypothesis: GPU-based algorithms are faster than non-GPU ones.
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Fig. 5: Runtimes for COPs (top) and DCOPs (bottom) at varying number of variables/agents.

vs. BE are, on average, and minimum (showed in parenthesis) 69.3 (16.1), 34.9 (9.5),
and 125.1 (42.6), for random, scale-free, and regular grid topologies, respectively.
For the distributed algorithms, the speedups obtained by GPU-DBE vs. DPOP are on
average (minimum) 44.7 (14.7), 22.3 (8.2), and 124.2 (38.8), for random, scale-free,
and regular grid topologies, respectively.
• In terms of scalability, the GPU-based algorithms scale better than the non-GPU-

based ones. In addition, their scalability increases with the level of structure exposed
by each particular topology. On random graphs, which have virtually no structure,
the GPU-based algorithms reach a timeout for instances with small number of vari-
ables (25 variables—compared to 20 variables for the non-GPU-based algorithms).
On scale-free networks, the GPU-(D)BE algorithms can solve instances up to 50 vari-
ables,9 while BE and DPOP reach a timeout for instances greater than 40 variables.
On regular grids, the GPU-based algorithms can solve instances up to 100 variables,
while the non-GPU-based ones, fail to solve any instance with 36 or more variables.
We relate these observations to the size of the separator sets and, thus, the size of the
UTIL tables that are constructed in each problem. In our experiments, we observe
that the average sizes of the separator sets are consistently larger in random graphs,
followed by scale-free networks, followed by regular grids.

• Finally, the trends of the centralized algorithms are similar to those of the distributed
algorithms: The simulated runtimes of the DCOP algorithms are consistently smaller
than the wallclock runtimes of the COP ones.

Fig. 5 illustrates the behavior of the algorithms when varying the graph density p1
for the random graphs (a), and the domains size for random graphs (b) and regular grids
(c). As for the previous experiments, the centralized (resp. distributed) algorithms are
shown on the top (resp. bottom) of the figure. We can observe:
• The trends for the algorithms runtime, when varying both p1 and domains size, are

similar to those observed in the previous experiments.
• GPU-(D)BE achieves better speed-up for smaller p1 (Fig. 4 (a)). The result is ex-

plained by observing that small p1 values correspond to smaller induced width of

9 With 60 variables, we reported 12/30 instances solved for GPU-(D)BE.



the underlying constraint graph. In turn, for small p1 values, GPU-(D)BE agents
construct smaller UTIL tables, which increases the probability of performing the
complete inference process on the GPU, through the GPU-AGGREGATE-PROJECT
procedure. This observation is also consistent with what observed in the previous
experiments in terms of scalability.
• GPU-(D)BE achieves greater speedups in presence of large domains. This is due to

the fact that large domains correspond to large UTIL tables, enabling the GPU-based
algorithms to exploit a greater amount of parallelism, provided that the UTIL tables
can be stored in the global memory of the GPU.

6 Conclusions and Discussions
In this paper, we presented an investigation of the use of GPUs to exploit SIMT-style
parallelism from DP-based methods to solve COPs and DCOPs. We proposed a pro-
cedure, inspired by BE (for COPs) and DPOP (for DCOPs), that makes use of multi-
ple threads to parallelize the aggregation and projection phases. Experimental results
show that the use of GPUs may provide significant advantages in terms of runtime and
scalability. The proposed results are significant—the wide availability of GPUs pro-
vides access to parallel computing solutions that can be used to improve efficiency
of (D)COP solvers. Furthermore, GPUs are renowned for their complex architectures
(multiple memory levels with very different size and speed characteristics; relatively
slow cores), which often create challenges to the effective exploitation of parallelism
from irregular applications; the strong experimental results indicate that the proposed
algorithms are well-suited to GPU architectures. While envisioning further research in
this area, we anticipate several challenges:
• In terms of implementation, GPU programming can be more demanding when com-

pared to a classical sequential implementation. One of the current limitations for
(D)COP-based GPU approaches is the absence of solid abstractions that allow com-
ponent integration, modularly, without restructuring the whole program.
• Exploiting the integration of CPU and GPU computations is a key factor to obtain

competitive solvers performance. Complex and repeated calculations should be del-
egated to GPUs, while simpler and memory intensive operations should be assigned
to CPUs. It is however unclear how to determine good tradeoffs of such integrations.
For instance, repeatedly invoking many memory demanding GPU kernels could be
detrimental to the overall performance, due to the high cost of allocating the device
memory (e.g., shared memory). Creating lightweight communication mechanisms
between CPU and GPU (for instance, by taking advantage of the asynchronism of
CUDA streams) to allow active GPU kernels to be used in multiple instances could
be a possible solution to investigate.
• While this paper describes the applicability of our approach to BE and DPOP, we

believe that analogous techniques can be derived and applied to other DP-based ap-
proaches to solve (D)COPs—e.g., to implement the logic of DP-based propagators.
We also envision that such technology could open the door to efficiently enforcing
higher form of consistencies than domain consistency (e.g., path consistency [22],
adaptive consistency [12], or the more recently proposed branch consistency for
DCOPs [14]), especially when the constraints need to be represented explicitly.
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