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Abstract. The DCOP model has gained momentum in recent years thanks to
its ability to capture problems that are naturally distributed and cannot be real-
istically addressed in a centralized manner. Dynamic programming based tech-
niques have been recognized to be among the most effective techniques for build-
ing complete DCOP solvers (e.g., DPOP). Unfortunately, they also suffer from
a widely recognized drawback: their messages are exponential in size. Another
limitation is that most current DCOP algorithms do not actively exploit hard con-
straints, which are common in many real problems. This paper addresses these
two limitations by introducing an algorithm, called BrC-DPOP, that exploits arc
consistency and a form of consistency that applies to paths in pseudo-trees to re-
duce the size of the messages. Experimental results shows that BrC-DPOP uses
messages that are up to one order of magnitude smaller than DPOP, and that it
can scale up well, being able to solve problems that its counterpart can not.

1 Introduction

Distributed Constraint Optimization Problems (DCOPs) are constraint optimization
problems where variables and constraints are distributed among a group of agents, and
where each agent can only interact with agents that share a common constraint [20,
24, 30]. As a result, agents need to coordinate their value assignments to maximize the
overall sum of resulting constraint utilities and lead to an optimal solution of the opti-
mization problem. DCOPs provide an elegant and effective modeling of problems that
have a distributed nature, and where a collective is trying to achieve a globally optimal
solution within the confines of the localized communication. Researchers have used
DCOPs to model various distributed optimization problems, such as meeting schedul-
ing [19, 34], resource allocation [8, 33], and power network management problems [16].

In recent years, we have witnessed a growing interest towards DCOPs, with the de-
velopment of a number of complete and incomplete distributed algorithms. A number of
implementations have been proposed and are publicly available [18, 28, 7]. The major-
ity of the existing DCOP algorithms can be placed in one of three classes. Search-based
algorithms perform a distributed search over the space of solutions to determine opti-
mum [20, 9, 32]. Inference-based algorithms, on the other hand, make use of techniques
from dynamic programming to propagate aggregate information among agents [24,
8]. Finally, sampling-based algorithms rely on sampling applied to the overall search



space [23, 22]. Of these methods, the Distributed Pseudo-tree Optimization Procedure3

(DPOP) [24] is one of the most efficient DCOP solvers; DPOP has also been extended
in several ways to enhance its performance and capabilities (e.g., O-DPOP and MB-
DPOP trade off memory requirement for longer runtimes [26, 27], A-DPOP trades off
solution optimality for shorter runtimes [25], SS-DPOP trades off runtime for increased
privacy [10], H-DPOP exploits hard constraints for smaller runtimes [17], and DPOP
with function filtering exploits utility bounds for smaller runtimes [3]).

This paper proposes a novel variant of DPOP, called Branch-Consistency DPOP
(BrC-DPOP), that takes advantage of hard constraints present in the problem to prune
the search space. BrC-DPOP introduces a new form of consistency, called branch con-
sistency, which can be viewed as a weaker version of path consistency [21] tailored to
variables ordered in a pseudo-tree, and where each agent can only communicate with
neighboring agents. The effect of enforcing this consistency in DPOP is the ability to
actively use hard constraints (either explicitly provided in the problem specification or
implicitly described in utility tables) to prune the search space and to reduce the size of
the utility tables exchanged among agents.

2 Background

2.1 Distributed Constraint Optimization Problems (DCOPs)

A DCOP [20, 24, 30] is defined by a tuple 〈X ,D,F ,A, α〉, where X = {x1, . . . , xn}
is a set of variables; D = {D1, . . . , Dn} is a set of finite domains, where Di is the
domain of variable xi; F = {f1, . . . , fe} is a set of utility functions (also called con-
straints), fi : "xj∈scope(fi)Dj 7→ N ∪ {0,−∞}, specifying the utility of each combi-
nation of values to the variables in the scope of the constraint (where scope(fi) ⊆ X );
A = {a1, . . . , ap} is a set of agents; α : X → A maps each variable to one agent.
In this paper, we will focus on unary and binary constraints. For simplicity, we will
refer to unary constraints as fii and binary constraints as fij to denote the fact that
their scope is {xi} ⊆ X and {xi, xj} ⊆ X , respectively. We also assume that each
agent has exactly one variable mapped to it. Thus, we will use the terms “variable” and
“agent” interchangeably. This is a common assumption in the DCOP literature as there
exist pre-processing techniques that transform a general DCOP into our more restrictive
DCOP [31, 4]. A solution is a value assignment for a subset of variables. Its utility is the
evaluation of all utility functions on it. A solution is complete if it is a value assignment
for all variables in X . The goal is to find a utility-maximal complete solution.

Each constraint in F can be either hard, indicating that some value combinations
result in a utility of −∞ and must be avoided, or soft, indicating that all value combi-
nations result in a finite utility and need not be avoided. We use Hi and Si to denote
the set of hard and soft constraints, respectively, whose scope includes xi. With a slight
abuse of notation, we will also often view a unary constraint fii as a subset of Di, de-
fined as fii = {(u) ∈ Di | fii(u) 6= −∞}, and a binary constraint fij as a subset of
Di ×Dj , defined as fij = {(u, v) ∈ Di ×Dj | fij(u, v) 6= −∞}.

3 This algorithm has also been referred to as Dynamic Programming Optimization Protocol.
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Fig. 1: Example DCOP

x1 x4 Utilities
0 0 max(20+0, 8-∞, 10-∞, 3-∞) = 20
0 1 max(20-∞, 8+0, 10-∞, 3-∞) = 8
0 2 max(20-∞, 8-∞, 10+0, 3-∞) = 10
0 3 max(20-∞, 8-∞, 10-∞, 3+0) = 3
. . . . . .

Table 1: Example UTIL Phase Computations of a5

A constraint graph visualizes a DCOP, where nodes correspond to the variables and
the edges connect pairs of variables in the scope of the same utility function. A DFS
pseudo-tree arrangement has the same nodes and edges as the constraint graph and satis-
fies two conditions: (i) there is a subset of edges (tree edges) that form a rooted tree, and
(ii) two variables in the scope of the same utility function appear in the same branch of
the tree. The other edges are called backedges. Tree edges connect parent-child nodes,
while backedges connect a node with its pseudo-parents and pseudo-children. We also
use the following notation: Ci, PCi, Pi, and PPi refer to the set of children, pseudo-
children, parent, and pseudo-parents of agent ai, respectively; and sep(ai) refers to the
separator of agent ai, which is the set of ancestor agents that are constrained with agent
ai or one of its descendant agents.

Figure 1(a) shows the constraint graph of a simple DCOP with five agents, ai, with
i = 1, . . . , 5, each owning exactly one variable xi. The domain of each variable is the
set {0, 1, 2, 3}. Figure 1(b) shows one possible pseudo-tree for the problem, where the
agent a1 has one pseudo-child, a5 (the dotted line is a backedge). Figure 1(c) describes
few value combinations of the utility function associated with the constraint f15.

2.2 Distributed Pseudo-tree Optimization Procedure (DPOP)

DPOP [24] has the following three phases:
(1) The first phase is the pseudo-tree generation phase, realized through an existing

distributed pseudo-tree construction algorithm, like Distributed DFS [15].
(2) The second phase is the UTIL propagation phase, where each agent, starting from

the leaves of the pseudo-tree, computes the optimal sum of utilities in its subtree for
each value combination of variables in its separator. The agent does so by summing



the utilities of its constraints with the variables in its separator and the utilities in the
UTIL messages received from its children agents, and then projecting out its own
variables by optimizing over them. In our example problem, agent a5 computes
the optimal utility for each value combination of variables x1 and x4, as shown in
Table 1, and sends the utilities to its parent agent a4 in a UTIL message. Such a
table consists of 43 = 64 utilities before projecting out its variable x5, and 42 = 16
utilities after the projection. The value 0 (−∞) represents the utility for the hard
constraint f45 for values of x4, x5 that satisfy (do not satisfy) it. When the root
agent a1 receives the UTIL message from each of its children, it computes the
maximum utility of the entire problem.

(3) The third phase is the VALUE propagation phase, where each agent, starting from
the root of the pseudo-tree, determines the optimal value for its variable. The root
agent does so by choosing the value of its variable from its UTIL computations—
selecting the value with the maximum utility. It sends the selected value to its chil-
dren in a VALUE message. Each agent receiving a VALUE message will determine
the value for its variable producing the maximum utility given the variable assign-
ments (of the agents in its separator) indicated in the VALUE message. Once deter-
mined, such assignment is further propagated to the children via VALUE messages.

3 Branch-Consistent DPOP (BrC-DPOP)

3.1 Preliminaries

Definition 1. The consistency graph of a DCOP 〈X ,D,F ,A, α〉 is G = (V,E) where
V = {(i, k) | xi ∈ X , k ∈ Di} and E = {〈(i, r), (j, c)〉 | r ∈ Di, c ∈ Dj , fij ∈
F , (r, c) ∈ fij}.

Definition 2. Given a pseudo-tree associated with a DCOP problem instance, we de-
fine a linear ordering ≺ on its variables: xi ≺ xj iff xj ∈ Pi. Similarly, xi � xj iff

xj ∈ Ci. We denote with� (and�) the reflexive closure of≺ (and�), and with
∗
≺ (and

∗
�,
∗
�,
∗
�) the transitive closure of ≺ (and �, �, � ).

Definition 3. A pair of values (r, c) ∈ Di×Dj of two variables xi, xj that share
a constraint fij is branch consistent (BrC) iff for any sequence of variables (xi =
xk1 , . . . , xkm =xj), such that fkpkq ∈ F , where p ≤ q ≤ p + 1, and xk1 �· · ·�xkm ,
there exists a tuple of values (r = vk1

, . . . , vkm
= c) such that vkq

∈ Dkq
and

(vkp
, vkq

) ∈ fkpkq
, for each 1 ≤ q ≤ m and p ≤ q ≤ p+ 1.

Definition 4. A DCOP is branch consistent (BrC) iff for any pair of variables (xi, xj)
with xi � xj and any (u, v) ∈ fij , (u, v) is branch consistent.

Definition 5. Given a DCOP, the Value Reachability Matrix (VRM) Mij of two vari-

ables xi and xj ofX , with xi
∗
�xj , is a binary matrix of sizeDi×Dj , whereMij [r, c]=1

iff there exists at least one sequence of variables (xi = xk1
, . . . , xkm

= xj), such that
xk1
�· · ·�xkm

, and a tuple of values (r=vk1
, vk2

, . . . , vkm
=c) such that vkp

∈ Dkp

and (vkp , vkq ) ∈ fkpkq , for each 1 ≤ q ≤ m and p ≤ q ≤ p+ 1.



Proposition 1. For each variable xi, xj , and xk, the regular product of two VRMs Mik

and Mkj is a VRM Mij =Mik ×Mkj , where each entry (r, c) of Mij is given by

Mij [r, c] = min

1,

|Dk|∑
l=1

Mik[r, l] ·Mkj [l, c]


Proposition 2. For each variable xi and xj , the entrywise product of two VRMs Mij

and M̂ij is a VRM M ′ij =Mij ◦ M̂ij , where each entry (r, c) of M ′ij is given by

M ′ik[r, c] =Mij [r, c] · M̂ij [r, c]

Definition 6. Given a VRM Mij , a pair of values (r,c) is a valid pair iff Mij [r, c] = 1.

Definition 7. If fij ∈ F , then Mij is branch consistent (BrC) iff all its valid pairs are
branch consistent. If fij /∈ F , then Mij is branch consistent iff it is a regular product
of branch consistent VRMs.

3.2 High-Level Algorithm Description

Let us now illustrate the high-level structure of BrC-DPOP on the example DCOP
shown in Figure 1. BrC-DPOP consists of the following phases:
• Pseudo-tree Generation Phase: This phase is identical to that of DPOP.
• Path Construction Phase: In this phase, each agent builds the VRMs associated

with the constraints involving its variables along with the structures describing the
paths between pseudo-parents and pseudo-children. Figure 2(a) shows the VRMs
(in a consistency graph representation); we do not show the soft constraint between
variables x1 and x5 as it allows every value combination of the two variables.
• Arc Consistency Enforcement Phase: In this phase, the agents enforce arc consis-

tency in a distributed manner. At the end of this phase, each agent has the updated
VRMs shown in Figure 2(b). Arc consistency causes the removal of exactly two val-
ues from the domain of each variable of the DCOP: values 0 and 3 from D1, 0 and 1
from D2, and 2 and 3 from D3, D4, and D5.
• Branch Consistency Enforcement Phase: In this phase, the agents enforce branch

consistency in a distributed manner. In our example, branch consistency needs to
be enforced for the pairs of values of variables x1 and x5 only. The values for all
other pairs of variables are already branch consistent. Agent a1 starts this process by
sending a message containing VRM M11 to its child a3 (since a5 is in the subtree
rooted at a3). Once agent a3 receives the message, it computes the VRM M31 by
multiplying its VRM M31 with the VRM M11 just received, and sends a message
containing this VRM to its child a4. Agent a4 repeats this process by multiplying its
VRM M43 with the VRM M31, resulting in VRM M41, which it sends to its child
a5. This process repeats until agent a5 computes the VRMM51, after which it knows
its set of reachable values in x5 for each value in x1. Figure 2(c) shows the VRMs.
• UTIL and VALUE Propagation Phases: This phase is identical to the correspond-

ing UTIL and VALUE propagation phases of DPOP, except that each agent constructs
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Fig. 2: Example Trace

a UTIL table that contains utilities for each combination of unpruned values of vari-
ables in its VRMs. In our example, agent a5 is able to project out its variable x5
and construct its UTIL table, shown in Figure 2(d). Note that the UTIL table consists
of only 3 utilities, both before and after projection. In contrast, DPOP’s UTIL table
consists of 43 = 64 utilities before projection and 42 = 16 utilities after projection.

3.3 Messages and Data Structures

During the execution of BrC-DCOP, each agent ai maintains the following data struc-
tures, where the first three are used in the arc consistency phase and the last two are
used in the branch consistency phase.

• The set of hard constraints Ĥi = {fij ∈ Hi | ai
∗
� aj} to check for consistency.

• The set of VRMs M̂i = {M̂ij | fij ∈ F , aj
∗
� ai}, which includes the VRMs for

each parent and pseudo-parent aj .
• The flag fixedi for each agent ai, which is initialized to true. It indicates if agent ai

has reached a fixed point in the arc consistency phase.
• The set of VRMs Mi = {Mij | aj ∈ sep(ai)}, which includes the VRMs for each

separator agent aj .

• The set of paths PATHSi = {(as
aj
 ad) | aj ∈ Ci, as

∗
� ai � aj

∗
� ad}, which

the agent uses to send updated VRMs in the branch consistency phase. Each path
(as

aj
 ad) indicates that there is a branch in the pseudo-tree from as to ad that passes

through ai and its child aj . This data is needed by agent ai to know which child it
should send its updated VRM to, if the VRM originated from agent as. For example,
in our example trace, agent a1 knows to send its VRM to its child a3 and not a2.
To preserve privacy, the information about the destination agent ad can be omitted
from each path. Each agent thus maintains only (as

aj
 ?), which is sufficient to ensure

correctness.

In addition to the UTIL and VALUE messages used in the UTIL and VALUE prop-
agation phases, each agent ai uses the following types of messages, where the first



Algorithm 1: BRC-DPOP
1 PSEUDO-TREE-GENERATION-PHASE( )
2 PATH-CONSTRUCTION-PHASE( )
3 AC-PROPAGATION-PHASE( )
4 BRC-PROPAGATION-PHASE( )
5 UTIL-AND-VALUE-PHASES( )

two are used in the arc consistency phase, while the last two in the branch consistency
phase:4

• AC↑i (D
′
j ,fixedi), which is sent from an agent ai to an agent aj

∗
� ai such that fij ∈

Hi. It contains a copy of the domain of the variable xj ,D′j , updated with the changes
caused by the propagation of the constraints in Ĥi, and a flag, fixedi, which denotes
whether changes have occurred in the domain of some variable in the subtree rooted
at ai during the last iteration of the AC↑ messages.

• AC↓i (Di), which is sent from an agent ai to the agents aj
∗
≺ ai such that fij ∈ Hi.

It contains a copy of the domain of the variable xi, Di, updated with the changes
caused by the propagation of the constraints in Ĥi.
• PATH↑i (as), which is sent from an agent ai to its parent Pi to inform it that it is part

of a tree path in the pseudo-tree between agents as and some pseudo-child of as.
• BrC↓i (Mis), which is used to determine the branch consistent value pairs of xs and
xi.

3.4 Algorithm Description

Algorithm 1 shows the pseudo-code of BrC-DPOP. It can be visualized as a process
composed of 5 phases:

• Phase 1 - Pseudo-tree Generation Phase: This phase is identical to that of DPOP,
where a pseudo-tree is generated (line 1).
• Phase 2 - Path Construction Phase: The phase is used to construct the direct

paths from each agent to its parent and pseudo-parents. At the start of this phase
(line 2), each agent, starting from the leaves of the pseudo-tree, recursively populates
its PATHSi as follows: It saves a path information (ap

NULL
 ?) for each of its pseudo-

parents ap (lines 6-7) and sends a PATH↑i (ap) message to its parent. When the parent
ai receives a PATH↑c message from each of its child ac, it stores the path information
in the message in its PATHSi data structure (lines 9-11). For each path in PATHSi, if
it is not the destination agent, then it sends a PATH↑j message that contains that path
to its parent (lines 12-13). If it does not send a PATH↑j message to its parent, then it
sends an empty PATH↑j message (lines 14-15). These path information will be used in
the branch consistency propagation phase later. When the root processes and stores
the path information from each of its children, it ends this phase and starts the next
AC propagation phase.

4 We use the superscript ↑ to denote the messages being propagated from the leaves of the
pseudo-tree to the root, and ↓ to denote the ones propagated from the root to the leaves.



Procedure Path-Construction-Phase( )
6 foreach ap ∈ PPi do
7 PATHSi ← PATHSi ∪ (ap

NULL
 ?)

8 if Ci 6= ∅ then
9 while not received all PATH↑

c(·) from each ac ∈ Ci do
10 if receive PATH↑

c(as) from ac ∈ Ci then
11 PATHSi ← PATHSi ∪ (as

ac ?)

12 foreach as 6= ai such that (as
ac ?) ∈ PATHSi do

13 Send PATH↑
i (as) to Pi

14 if PATH↑
i (·) has not been sent to Pi then

15 Send PATH↑
i (NULL) to Pi

• Phase 3 - Arc Consistency (AC) Propagation Phase: In this phase, the agents
enforce arc consistency in a distributed manner, by interleaving the direction of the
AC message flows: from the leaves to the root (lines 18-24) and from the root to the
leaves (lines 25-34), until a fixed point is detected at the root (line 35).
In the first part of this phase (lines 18-24), each agent, starting from the leaves up to
the root, recursively enforces the consistency of its hard constraints in Ĥi (line 22)
via the ENFORCEAC procedure, which we implemented using the AC-2001 algo-
rithm [2]. In this process, the agent also updates the VRMs M̂i associated with all
its constraints fij ∈ Ĥi and its domain Di to prune all unsupported values. If any of
its values are pruned, indicating that it has not reached a fixed point, it sets its fixedi
flag to false (line 23). It then sends an AC↑i message to each of its parent and pseudo-
parent aj , which contains its fixedi flag as well as a copy of their domains D′j

5 to
notify them about which unsupported values were pruned (line 24). The domain of
each agent is updated before enforcing the arc consistency, as soon as it receives all
the AC↑i messages from each of its children and pseudo-children (lines 20-21).
Once the root enforces the consistency of its hard constraints, it checks if it has
reached a fixed point (line 28). If it has not, then it starts the next part of this phase,
which is similar to the previous one except for the direction of the recursion and the
AC message flow (lines 29-34). This phase is carried from the root down to the leaves
of the pseudo-tree, and it ends when all the leaves have enforced the consistency of
their hard constraints. Then the procedure repeats the first part where the recursion
and the AC message flow starts from the leaves again and continues up to the root.
This process repeats until a fixed point is reached at the root (line 35), which ends
this phase, and starts the next BrC propagation phase.

• Phase 4 - Branch Consistency (BrC) Propagation Phase: In this phase, the agents
enforce branch consistency in a distributed manner, that is, every pair of values of
an agent and its pseudo-parents are mutually reachable throughout every tree path
connecting them in the pseudo-tree.
At the start of this phase, each agent, starting from the root down to the leaves, re-
cursively enforces branch consistency for all tree paths from the root to that agent

5 In the pseudo-code, we use the notation M̂ij|j to indicate D′
j .



Procedure AC-Propagation-Phase( )
16 iteration← 0
17 repeat
18 if Ci 6= ∅ then
19 Wait until received AC↑

c(D
′
i, fixedc) from each ac ∈ Ci ∪ PCi in this iteration

20 foreach AC↑
c(D

′
i, fixedc) received do

21 Di ← Di ∩D′
i

22 〈M̂i, Di〉 ← ENFORCEAC(Ĥi, M̂i, Di)
23 fixedi ← ¬CHANGED(Di) ∧

∧
ac∈Ci

fixedc

24 Send AC↑
i (M̂ij|j , fixedi) to each aj ∈ Pi ∪ PPi

25 if Pi 6= NULL then
26 Wait until received AC↓

p(Dp) from each ap ∈ Pi ∪ PPi in this iteration or
received BrC↓

p(·) from parent ap

27 if received BrC↓
p(·) from parent ap then break

28 if ¬fixedi then
29 foreach AC↓

p(Dp) received do
30 update M̂ip with Dp

31 if Pi 6= NULL then
32 〈M̂i, Di〉 ← ENFORCEAC(Ĥi, M̂i, Di)

33 Send AC↓
i (Di) to each ac ∈ Ci ∪ PCi

34 iteration← iteration+ 1

35 until Pi = NULL and fixedi

and sends a BrC↓i message to each of its children. This message includes the VRM
for each path through that child. Once an agent ai receives all the VRM messages
from its parent (lines 36-37), for each path that goes through it (line 38), it creates a
new VRM Mis. If it is the start of the path, then it sets its VRM M̂ii (line 39), which
is arc consistent, as the new VRM Mis. Otherwise, it performs the regular product
of its VRM M̂ip for the constraint between itself and its parent ap and the VRM
received from the parent Mps and sets it to Mis (line 40). Then, to ensure that the
VRMMis is branch consistent, it performs the entrywise product with the VRM M̂is

of its pseudo-parent as (line 41). If the agent is the destination of the path, then it will
use the resulting VRM in the construction of the UTIL messages in the UTIL phase.
Otherwise, it will send the VRM to its child agent that is in that path in a BrC↓i mes-
sage (lines 42-43). Finally, it will send an empty BrC↓i to all remaining child agents
to ensure that the propagation reaches all the leaves (lines 44-45).
• Phase 5 - DPOP’s UTIL and VALUE Phases: This phase is identical to the cor-

responding UTIL and VALUE propagation phases of DPOP, except that each agent
constructs a UTIL table that contains utilities for each combination of unpruned val-
ues of variables in its VRMs.

4 Theoretical Analysis

In this section, we use n, e, and d to denote |A|, |F|, and maxxi∈X |Di|, respectively.



Procedure BrC-Propagation-Phase( )
36 if Pi 6= NULL then
37 Wait until received a BrC↓

p(Mps) for each path (as
ac ?) ∈ PATHSi from parent ap

38 foreach (as
ac ?) ∈ PATHSi do

39 if as = ai then Mis ← M̂ii

40 else Mis ← M̂ip ×Mps

41 Mis ← M̂is ◦Mis

42 if ac 6= NULL then
43 Send BrC↓

i (Mis) to ac

44 foreach ac ∈ Ci that has not been sent a BrC↓
i message do

45 Send BrC↓
i (NULL) to ac

Theorem 1. The AC propagation phase requires O(nde) messages, each of size O(d).

Proof Sketch: In the worst case, each AC iteration removes exactly one value from one
domain. Thus, there are only O(nd) iterations, as there are only O(nd) values among
all variables. In each iteration, each agent sends exactly one AC↑ message to each parent
and pseudo-parent and one AC↓ message to each child and pseudo-child. Thus, there
are at most O(e) messages sent in each iteration. Each message contains at most the
full domain of a variable and the fixed flag, which is O(d).

Theorem 2. The BrC propagation phase requires O(e) messages, each of size O(d2).

Proof Sketch: In the BrC propagation phase, each agent sends exactly one BrC↓ mes-
sage to each child, and the phase ends after all the leaves in the pseudo-tree receives a
BrC↓ message. Each message contains at most a VRM, which is O(d2).

Theorem 3. The DCOP is arc consistent after the AC propagation phase.

Proof Sketch: We prove this result by contradiction. Assume that there are ai, aj ∈ A
and a ∈ Di such that ∀b ∈ Dj , (a, b) 6∈ fij . Let b1, . . . , bm be all the (pruned) values
in Dj supporting a. We have the following two cases:
• ai ∈ Pj ∪ PPj . If agent aj pruned all its values br (1 ≤ r ≤ m) from Dj , then the

value a is pruned from the copy of the domain Di held at aj (M̂ji|i will not include
the value a) (line 22). When ai receives an AC↑ message from each ak ∈ Ci ∪ PCi

(including aj), it updates its own domain with the copy received from each agent
(lines 20-21) removing a from Di and resulting in a contradiction.
• ai ∈ Cj ∪ PCj . Agent aj can prune all its values br (1 ≤ r ≤ m) from Dj in

the following two ways. In case 1, agent ai prunes all the values br from a copy of
Dj during its AC consistency enforcement (line 22), sends up an AC↑ message to
aj , and aj prunes all its values br from its Dj . However, in this case, agent ai would
have also pruned value a from its domain, resulting in a contradiction. In case 2, some
other agent ak that shares a constraint fkj with agent aj prunes all the values br from
the copy of Dj during its AC consistency enforcement, sends up an AC↑ message



to aj , and aj prunes all its values br from its Dj . In this case, aj will eventually
send an AC↓ message to ai that contains its updated domain without the values br.
Then, agent ai will prune value a from its domain in its AC consistency enforcement
(line 22), resulting in a contradiction.

Theorem 4. The DCOP is branch consistent after the BrC propagation phase.

Proof Sketch: We prove by induction on the number of variables in the paths xi =
xk1

, . . . , xkm
=xj , such that xk1

� . . .�xkm
.

Base Case (m= 2): We know that xj ∈ Ci and there is only one path from xi to xj
via the constraint fij . Additionally, this constraint is arc consistent because the BrC
propagation phase runs after the AC propagation phase. Thus, all the remaining pairs
of values in both variables are by definition branch consistent (Definition 3). The VRM
Mji is thus branch consistent.
Induction Assumption: Assume that for any 2 ≤ q ≤ r and paths xi=xk1

, . . . , xkq
=

xj with xk1
� . . .�xkq

, there is a VRM Mji that is branch consistent.
Induction Case (m= r + 1): We know that the paths from xi = xk1 to xkr is branch
consistent from the induction assumption. Thus, the VRM Mkrk1 received by xkr+1 is
branch consistent. Additionally, all the constraints between any xkp

(1 ≤ p ≤ r) and
xkr+1

are arc consistent because the BrC propagation phase runs after the AC propaga-
tion phase. Thus, the VRMs M̂kr+1kp

are also branch consistent.
We now show that the algorithm removes values of xkr+1

that are not branch consistent
with values of its ancestors in the following two cases:
• For paths that include the constraint between xr and xr+1, BrC-DPOP takes the

regular product (line 40), which removes all inconsistent values.
• For paths that do not include the constraint between xr and xr+1 and, thus, must

include the constraint between xk1 and xkr+1 , BrC-DPOP performs the entrywise
product (line 41), which removes all inconsistent values.

Theorem 5. BrC-DPOP is complete and correct.

Proof Sketch: The completeness and correctness of BrC-DPOP follows from the cor-
rectness and completeness of DPOP [24] and the correctness and completeness of the
AC and BrC propagation phases (Theorems 1, 2, 3, and 4).

Property 1. Both the UTIL and the VALUE phases require O(n) number of messages.

Property 2. The memory requirement of BrC-DPOP is in the worst case exponential in
the induced width of the problem for each agent.

Both properties follow trivially from the properties of DPOP since no values are
pruned from the AC and BrC propagation phases in the worst case.

5 Related Work

We characterize the approaches that prune values of variables in DCOPs along two
general types. Algorithms in the first category propagates exclusively hard constraints



(BrC-DPOP falls into this category). To the best of our knowledge, the only existing
work that falls into this category is H-DPOP [17], which, like BrC-DPOP, is also an ex-
tension of DPOP. The main difference between H-DPOP and BrC-DPOP is that instead
of VRMs, each agent ai in H-DPOP uses constraint decision diagrams (CDDs) to rep-
resent the space of possible value assignments of variables in its separator set sep(ai).
A CDD is a rooted directed acyclic graph structured by levels, one for each variable
in sep(ai). In each level, a non-terminal node represents a possible value assignment
for the associated variable. Each non-terminal node v has a list of successors: one for
each value u in the next variable for which the pair (u, v) is satisfied by the constraint
between the two variables. As a result of using CDDs, H-DPOP suffers from two limita-
tions: (1) H-DPOP can be slower than DPOP because maintaining and performing join
and projection operations on CDD are computationally expensive. In contrast, main-
taining and performing operations on VRMs can be faster, which we will demonstrate
in the experimental results section later. (2) H-DPOP cannot fully exploit information
of hard constraints to reduce the size of UTIL messages. Consider the DCOP instance
of Figure 2, where the domains for the variables x1, x3, x4, and x5 are represented by
the set {1, . . . , 100}, while the domain for variable x2 is the set {1, 2}. In H-DPOP, a5
is not aware of the constraints x1 < x2 and x1 < x3—neither x2 nor x3 are in sep(a5),
thus no pruning will be enforced. Its UTIL table will hence contain 1002 = 10, 000
utilities for each combination of values of x4 and x1. This is the same table that DPOP
would construct. In contrast, in BrC-DPOP, the domains of x1 and x2 will be pruned to
{1} and {2}, respectively, and the domains of x3, x4, and x5 to {2, . . . , 100}. There-
fore, the UTIL table that a5 sends to a4 contains 99 × 1 = 99 utilities. Aside from
these two limitations, a more critical limitation of H-DPOP is its assumption that each
agent has knowledge of all the constraints whose scope is a subset of its separator set.
This assumption is stronger than the assumptions made by most DCOP algorithms and
might cause privacy concerns in some applications. In contrast, BrC-DPOP does not
make such assumptions.

Algorithms in the second category propagates lower and upper bounds. Researchers
have extended search-based DCOP algorithms (e.g., BnB-ADOPT and its enhanced
versions [29, 12, 14]) to maintain soft-arc consistency in a distributed manner [1, 13,
11]. Such techniques are typically very effective in search-based algorithms as their
runtime depends on the accuracy of its lower and upper bounds.

Finally, it is important to note the differences between branch consistency and path
consistency [21]. One can view branch consistency as a weaker version of path consis-
tency, where all the variables in a path must be ordered according to the relation ≺, and
only a subset of all possible paths have to be examined for consistency. Thus, one can
view branch consistency as a form of consistency tailored to pseudo-trees, where each
agent can only communicate with neighboring agents.

6 Experimental Results

We implemented a variant of BrC-DPOP, called AC-DPOP, that enforces arc consis-
tency only in order to assess the impact of the branch consistency phase in BrC-DPOP.
Moreover, in order to be as comprehensive as possible in our evaluations, we also im-
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Fig. 3: Runtimes and Message Sizes

plemented a variant of H-DPOP called PH-DPOP, which stands for Privacy-based H-
DPOP, that restricts the amount of information that each agent can access to the amount
common in most DCOP algorithms including BrC-DPOP. Specifically, agents in PH-
DPOP can only access their own constraints and, unlike H-DPOP, cannot access their
neighboring agents’ constraints.

In our experiments,6 we compare AC-DPOP and BrC-DPOP against DPOP [24],
H-DPOP [17], and PH-DPOP. We use a publicly-available implementation of DPOP
available in the FRODO framework [18] and an implementation of H-DPOP provided
by the authors. We ensure that all algorithms use the same pseudo-tree for fair com-
parisons. All experiments are performed on an Intel i7 Quadcore 3.4GHz machine with
16GB of RAM with a 300-second timeout. If an algorithm fails to solve a problem, it
is due to either memory limitations or timeout. We conduct our experiments on ran-
dom graphs [6], where we systematically vary the constraint density p1 and constraint
tightness p2,7 and distributed Radio Link Frequency Assignment (RLFA) problems [5],
where we vary the number of agents |A| in the problem. We generated 50 instances for
each experimental setting, and we report the average runtime, measured using the sim-
ulated runtime metric [28], and the average total message size, measured in the number
of utility values in the UTIL tables. For the distributed RLFA problems, we also report
the percentage of satisfiable instances solved to show the scalability of the algorithms.

6 available at http://www.cs.nmsu.edu/klap/brc-dpop_cp14/
7 p1 and p2 are defined as the ratio between the number of binary constraints in the problem and

the maximum possible number of binary constraints in the problem and the ratio between the
number of hard constraints and the number of constraints in the problem, respectively.



Random Graphs: In our experiments, we set |A| = 10, |X | = 10, |Di| = 8 for all
variables. We vary p1 (while setting p2 = 0.6) and vary the p2 (while setting p1 = 0.6).
We did not bound the tree-width, which is determined based on the underlying graph
and randomly generated. We used hard constraints that are either the “less than” or
“different” constraints. We also assign a unary constraint to each variable that gives it a
utility corresponding to each its value assignments.

Figures 3(a-b) show the runtimes of the algorithms and Figures 3(d-e) show the
message sizes. We omit results of an algorithm for a specific parameter if it fails to solve
50% of the satisfiable instances for that parameter. We make the following observations:

• On message sizes, BrC-DPOP uses smaller messages than AC-DPOP because BrC-
DPOP prunes more values due to its BrC propagation enforcement. H-DPOP uses
smaller messages than BrC-DPOP and AC-DPOP because agents in H-DPOP uti-
lize more information about the neighbors’ constraints to prune values. In contrast,
agents in BrC-DPOP and AC-DPOP only utilize information on their own constraints
to prune values. BrC-DPOP and AC-DPOP use smaller messages than PH-DPOP at
large p2 values, highlighting the strength of the AC and BrC propagation phases com-
pared to the pruning techniques in PH-DPOP. Finally, they all use smaller messages
than DPOP because they all prune values while DPOP does not.
• On runtimes, BrC-DPOP is slightly faster than AC-DPOP because BrC-DPOP prunes

more values than AC-DPOP. Additionally, these results also indicate that the over-
head of the BrC propagation phase is relatively small. BrC-DPOP and AC-DPOP
are faster than DPOP because they do not need to perform operations on the pruned
values. This also indicates that the overhead of the AC propagation phase is small. In
our experiments, the number of AC messages exchanged during the AC propagation
phase never exceeds 3|F| and is, on average, as small as |F|. DPOP is faster than
H-DPOP and PH-DPOP because they maintain and perform operations on CDDs,
which are computationally very expensive. In contrast, BrC-DPOP maintains and
performs operations on matrices, which are more computationally efficient.

Distributed RLFA Problem: In these problems, we are given a set of links
{L1, . . . , Lr}, each consisting of a transmitter and a receiver. Each link must be as-
signed a frequency from a given set F . At the same time the total interference at the
receivers must be reduced below an acceptable level using as few frequencies as possi-
ble. In our model, each transmitter corresponds to an agent (and a variable). The domain
of each variable consists of the frequencies that can be assigned to the corresponding
transmitter. The interference between transmitters are modeled as constraints of the
form |xi − xj | > s, where xi and xj are variables and s ≥ 0 is a randomly generated
required frequency separation. We also assign a utility value to each frequency taken by
each agent, represented as a unary soft constraint, which represents a preference for an
agent to transmit at a given frequency.

For generating the constraint graphs, we vary |A| and fix the other parameters:
|Di| = 6, p2 = 0.55, s ∈ {2, 3}. We also set the maximum number of neighbors
for each agent to 3 in order to generate more satisfiable instances. Figure 3(c) shows the
runtimes and Figure 3(f) shows the message sizes. We omit results of an algorithm for a
specific parameter if it fails to solve 50% of the satisfiable instances for that parameter.



|A| 5 10 15 20 25 30 35 40 45 50 55

BrC-DPOP 1.00 1.00 1.00 1.00 1.00 0.97 0.52 0.78 0.73 0.70 0.51
AC-DPOP 1.00 1.00 1.00 1.00 1.00 0.39 0.11 0.30 0.15 0.15 0.19
H-DPOP 1.00 1.00 1.00 1.00 0.46 0.12 0.00 0.00 0.00 0.00 0.00

PH-DPOP 1.00 1.00 1.00 1.00 0.21 0.09 0.00 0.00 0.00 0.00 0.00
DPOP 1.00 1.00 1.00 1.00 1.00 0.67 0.23 0.35 0.23 0.29 0.19

Table 2: Percentage of Satisfiable Instances Solved

We observe trends that are similar to those in the earlier random graphs except that
the message size of H-DPOP is slightly larger than of those of BrC-DPOP. Therefore,
as we have described in Section 5, it is possible for H-DPOP to prune fewer values de-
spite using more information. Additionally, both H-DPOP and PH-DPOP can only solve
small problems and failed to solve some problems that DPOP successfully solved. Ta-
ble 2 tabulates the percentage of satisfiable problem instances solved by each algorithm
(the largest percentage in each parameter setting is shown in bold), where it is clear that
BrC-DPOP is more scalable than all its counterparts.

7 Conclusions and Future Work

To the best of our knowledge, H-DPOP is the only existing DCOP algorithm that prop-
agates exclusively hard constraints. Unfortunately, it suffers from high computational
requirements as well as its overly strong assumption on the knowledge of each agent.
In this paper, we alleviate these limitations by introducing the concept of branch con-
sistency as well as the BrC-DPOP algorithm, a DPOP extension that enforces arc con-
sistency and branch consistency. We experimentally show that BrC-DPOP can prune as
much as a version of H-DPOP that limits its knowledge to the same amount as BrC-
DPOP in a much smaller amount of time. We also show that it can scale to larger
problems than DPOP and H-DPOP. Therefore, these results confirm the strengths of
this approach, leading to enhanced efficiency and scalability.

For future work, we plan to extend BrC-DPOP to handle higher arity constraints,
which can be done by substituting the VRM structures with either consistency graphs
or higher dimension VRMs. We suspect that there will be a tradeoff between runtime
and memory requirement between the two approaches, where using higher dimension
VRMs is faster but uses more memory. We also plan to extend BrC-DPOP to memory-
bounded versions similar to MB-DPOP [27] in order to scale to even larger problems.
Finally, we plan to explore propagation of soft constraints similar to the versions of
BnB-ADOPT with soft AC enforcement [1, 13, 11].
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