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Abstract9

Researchers recently extended Distributed Constraint Optimization Problems (DCOPs) to10

Communication-Aware DCOPs so that they are applicable in scenarios in which messages can11

be arbitrarily delayed. Distributed asynchronous local search and inference algorithms designed12

for CA-DCOPs are less vulnerable to message latency than their counterparts for regular DCOPs.13

However, unlike local search algorithms for (regular) DCOPs that converge to k-opt solutions (with14

k > 1), that is, they converge to solutions that cannot be improved by a group of k agents), local15

search CA-DCOP algorithms are limited to 1-opt solutions only.16

In this paper, we introduce Latency-Aware Monotonic Distributed Local Search-2 (LAMDLS-2),17

where agents form pairs and coordinate bilateral assignment replacements. LAMDLS-2 is monotonic,18

converges to a 2-opt solution, and is also robust to message latency, making it suitable for CA-DCOPs.19

Our results indicate that LAMDLS-2 converges faster than MGM-2, a benchmark algorithm, to a20

similar 2-opt solution, in various message latency scenarios.21
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1 Introduction28

A promising multi-agent approach for addressing distributed applications, where agents29

aim to achieve mutual optimization goals, is by modeling them as Distributed Constraint30

Optimization Problems (DCOPs) [12, 16, 5]. An illustrative example of such an application31

is a smart home, where various smart devices must coordinate to create a schedule that32

optimizes user preferences and satisfies constraints [6, 19]. In this context, decision-makers33

are represented as “agents” that assign “values” to their respective “variables”, and the34

objective is to optimize a global objective in a decentralized manner.35

DCOPs are NP-hard [12] and, thus, considerable research effort has been devoted to36

developing incomplete algorithms for finding good solutions quickly [23, 10, 24, 3, 4, 20, 8, 14].37

Distributed local search algorithms such as Distributed Stochastic Algorithm (DSA) [24]38

and Maximum Gain Message (MGM) [10] are two of the most popular incomplete DCOP39

algorithms.40

Most state-of-the-art local search DCOP algorithms (including DSA and MGM) are41

synchronous. However, the general setting in which agents operate is inherently asynchronous.42

Synchronization is achieved through message exchanges in each iteration of the algorithm, in43

which an agent receives messages sent by its neighbors in the previous iteration, performs44
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computation, and sends messages to all its neighbors [24, 26]. This ensures that at iteration k,45

an agent has access to all information sent to it during iteration k−1. The synchronous design46

enables the attainment of some desirable properties. For example, MGM agents achieve47

monotonicity on the quality of the solutions found by modifying their value assignments48

while ensuring that neighboring agents do not concurrently replace their assignments [10].49

There exists a class of local search DCOP algorithms that guarantee that the solutions50

found are k-opt (i.e., they cannot be improved by a group of k agents) [15]. MGM is a51

1-opt algorithm and MGM-2 is an extension that is a 2-opt algorithm. Unfortunately, their52

synchronous designs take advantage of the overly simplistic communication assumptions in53

the DCOP model, which do not reflect real-world scenarios. Notably, the assumption that all54

messages arrive instantaneously or with negligible and bounded delays is impractical, given55

that real-world networks may suffer from delays due to congestion and limited bandwidth.56

To address these limitations, researchers introduced Distributed Asynchronous Local57

Optimization (DALO), an asynchronous k-opt algorithm for solving DCOPs [9]. Unfortunately,58

its design lacks robustness in scenarios with message delays, restricting its applicability.59

Specifically, agents try to form groups by asking others to commit to the process they initiate,60

ensuring an up-to-date local view when computing local optimization. Because neighboring61

agents attempt to form groups simultaneously, a randomly set local timer is used. Agents can62

only commit to other groups if a lock request is sent during this timer’s duration. However,63

this design fails when the local timer is not coordinated with the magnitude of message64

delays, resulting in agents rejecting each other’s requests. Additionally, DALO’s design does65

not adequately handle messages not arriving in the order that they were sent. This raises66

concerns about the algorithm’s guaranteed properties under such conditions.67

Recent studies [17, 18] explored the performance of local search algorithms for solving68

DCOPs in the presence of imperfect communication, where messages can be delayed. They69

demonstrated the significant impact of message latency on the performance of synchronous70

distributed local search algorithms, especially on property guarantees and convergence71

rates of MGM. Consequently, a 1-opt Latency Aware Monotonic Distributed Local Search72

(LAMDLS) algorithm was proposed [18]. LAMDLS uses an ordered coloring scheme to73

prevent neighboring agents from replacing assignments concurrently while preventing agents74

from waiting for messages as they do in MGM. As a result, LAMDLS demonstrates a quicker75

convergence rate compared to MGM.76

Building on the success of LAMDLS, we advance the research on distributed algorithms77

that are robust to message delays by proposing LAMDLS-2, which allows agents to form78

pairs and coordinate their value assignment selection, while maintaining monotonicity and79

converging to a 2-opt solution. LAMDLS-2 enables sequential change of values among paired80

agents. Agents utilize a unique pairing selection process and an ordering scheme that allows81

concurrent value modifications for unconstrained pairs. We further discuss a scheme that82

will allow to generation of a similar monotonic k-opt algorithm for any 1 ≤ k ≤ n in future83

studies. We prove the monotonicity of LAMDLS-2 and its convergence to a 2-opt solution.84

Our empirical results indicate that LAMDLS-2 converges significantly faster, in environments85

with a variety of latency patterns, compared to MGM-2, an existing 2-opt DCOP algorithm.86

2 Background87

We present background on Distributed Constraint Optimization Problems (DCOPs), k-opt88

algorithms, including the 2-opt algorithm MGM-2, Communication-Aware DCOPs (CA-89

DCOPs), and Latency-Aware Monotonic Distributed Local Search (LAMDLS).90
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2.1 Distributed Constraint Optimization Problems (DCOPs)91

A DCOP is a tuple ⟨A,X ,D,R⟩, where A is a finite set of agents {A1, A2, . . . , An}; X is a92

finite set of variables {X1, X2, . . . , Xm}, where each variable is held by a single agent (an93

agent may hold more than one variable); D is a set of domains {D1, D2, . . . , Dm}, where each94

domain Di contains the finite set of values that can be assigned to variable Xi and we denote95

an assignment of value d ∈ Di to Xi by an ordered pair ⟨Xi, d⟩; and R is a set of constraints96

(relations), where each constraint Rj ∈ R defines a non-negative cost for every possible value97

combination of a set of variables and is of the form Rj : Dj1 ×Dj2 × . . .×Djk
→ R+∪{0}. A98

binary constraint refers to exactly two variables and is of the form Rij : Di×Dj → R+ ∪ {0}.99

A binary DCOP is a DCOP in which all constraints are binary. Agents are neighbors if they100

are involved in the same constraint. A partial assignment (PA) is a set of value assignments101

to variables, in which each variable appears at most once. vars(PA) is the set of all variables102

that appear in partial assignment PA (i.e., vars(PA) = {Xi | ∃d ∈ Di ∧ ⟨Xi, d⟩ ∈ PA}).103

A constraint Rj ∈ R of the form Rj : Dj1 × Dj2 × . . . × Djk
→ R+ ∪ {0} is applicable to104

PA if each of the variables Xj1 , Xj2 , . . . , Xjk
is included in vars(PA). The cost of a partial105

assignment PA is the sum of all applicable constraints to PA over the value assignments in106

PA. A complete assignment (i.e., solution) is a partial assignment that includes all variables107

(vars(PA) = X ). An optimal solution is a complete assignment with minimal cost.108

For simplicity, we assume that each agent holds exactly one variable (i.e., n = m) and we109

focus on binary DCOPs. These assumptions are common in DCOP literature (e.g., [16, 22]).110

2.2 k-opt and Region-opt Algorithms111

Most local search DCOP algorithms are synchronous [24, 10, 26]. In MGM, a step (in which112

agents decide on value replacements) includes two synchronous iterations. First, agents113

receive their neighbors’ updated value assignments and seek improving alternatives for their114

assignments. Next, agents share their maximal gain from a value replacement. An agent115

replaces its assignment if its gain exceeds all its neighbors’ reported gains. MGM guarantees116

that agents compute cost reductions using up-to-date information and prevents simultaneous117

assignment changes by neighbors. This leads to monotonic global cost improvement. MGM118

also guarantees convergence to a 1-opt solution.119

k-opt generalizes the 1-opt solution concept to any case where k agents cannot improve a120

solution [10, 15]. An algorithm ensuring this must allow all possible coalitions of k agents to121

seek improving assignments. A well-known algorithm that guarantees the convergence to122

a 2-opt solution (k = 2) is MGM-2. In MGM-2, agents pair with neighbors to coordinate123

bilateral assignment replacements. MGM-2’s step has five synchronous iterations. In the first124

three, agents attempt to form pairs, exchange information, and identify the best bilateral125

gains for these pairs. Unpaired agents select the highest unilateral gain possible. In the126

remaining two iterations, as in standard MGM, each agent evaluates whether its gain (or127

the gain of its pair) is larger than the gain of all its neighbors. An agent that is part of a128

pair, must receive the approval of its partner, that their gain is larger than the gain of the129

partner’s neighbors as well.130

A general k-opt algorithm was proposed by Pearce an Tambe [15] and further generalized131

to region-optimal algorithms by Vinyals et al. [21]. A region is defined by groups of agents132

that are monitored by the same agent. Commonly, these groups are classified according to133

two parameters: Their size (k) and the distance of the agents from the monitoring agent (t).134

In each step of the algorithm, monitoring agents select a group from their region, aggregate135

their information, select an alternative assignment, calculate the corresponding gain, and136
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propagate it to the neighbors of all agents in the group. Groups with a larger gain than the137

gains reported by their neighbors replace their assignments.138

2.3 Communication-Aware DCOPs (CA-DCOPs)139

CA-DCOPs [18, 27] extend standard DCOPs by using a Constrained Communication Graph140

(CCG) to model the communication latency between pairs of agents. Thus, they can model141

any pattern of imperfect communication. Specifically, each edge e in the CCG represents142

the imperfect communication between a pair of agents and is associated with a latency143

distribution function.144

2.4 Latency-Aware Monotonic Distributed Local Search (LAMDLS)145

LAMDLS [17] is monotonic and 1-opt (like MGM). By allowing agents to consider value146

assignment replacements using a partial order, it effectively mitigates the impact of message147

latency and facilitates faster convergence. To establish the partial order structure it uses148

the Distributed Ordered Color Selection (DOCS) algorithm. DOCS divides the agents into149

subsets, where agents in each subset have the same color. Colors are ordered (i.e., there is150

a mapping from colors to the natural numbers from 1 to NC, where NC is the number of151

colors). The neighbors of each agent must hold a different color than its own, and the agent152

must know which neighbors are ordered before it and which after. During the algorithm153

execution, each agent keeps track of its neighbors’ computation steps, updates them with its154

selection, and performs the k-th iteration when neighbors with a lower color index complete155

k iterations and those with a higher index complete k− 1 iterations. LAMDLS demonstrates156

a faster convergence rate compared to MGM, with the difference becoming more noticeable157

as the magnitude of message delays increases [18].158

3 LAMDLS-2159

Latency-Aware Monotonic Distributed Local Search 2 (LAMDLS-2) is a monotonic algorithm160

that converges to a 2-opt solution. 2-opt algorithms, such as MGM-2, achieve this property by161

allowing all pairs of agents to make an attempt to improve any assignment that the algorithm162

traverses, unless it is revised before they get their chance. The main difference in LAMDLS-2163

is the method used to generate pairs that will cooperatively suggest an assignment revision.164

In contrast to MGM-2, where a query response process is used to determine pairs, LAMDLS-2165

uses DOCS to find an ordered coloring scheme for determining the pairs. Once DOCS selects166

an order, the pairs are generated deterministically accordingly, and there are no additional167

messages required for the pairing process. Thus, message latency has smaller deteriorating168

effects on this algorithm compared to MGM-2. In order to make sure that all pairs of agents169

get their chance to improve the current assignment, DOCS is performed iteratively, using170

random agent indexes. This results in random orderings, which eventually allow all possible171

pairs to be generated. We present the algorithm in more details below.172

LAMDLS-2 is composed of two alternating phases: Ordering and Pair Selection. Al-173

gorithm 1 presents the pseudocode performed by an agent Ai. In the ordering phase, agents174

select ordered colors using the DOCS algorithm (lines 6 and 12). In the pair selection phase,175

agents select partners and collaboratively adjust assignments using the pairPhase function176

(line 8). The algorithm’s input includes the set N(i) that includes Ai’s neighbors.177

The algorithm starts with agent Ai randomly selecting valuei for its value assign-178

ment (line 1). In addition, Ai maintains a step counter sci, which is incremented each179
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Algorithm 1 LAMDLS-2

Input: N(i)
1: valuei ← selectRandomValue()
2: sci ← 1
3: for each Aj ∈ N(i) : vN(i)[j]← 1
4: docsIdi ← i

5: for each Aj ∈ N(i) : docsIdsN(i)[j]← j

6: coi, coN(i) ← DOCS(i,docsIdsN(i))
7: while stop condition not met:
8: pairPhase(sci, vN(i),coi,coN(i),docsIdsN(i))
9: docsIdi ← random(0,1)

10: sendDocsId(N(i),docsIdi)
11: docsIdsN(i) ←recieveAllDocsIds()
12: coi, coN(i) ←DOCS(docsIdi,docsIdsN(i))

time Ai selects a value assignment, and a step counter for each of its neighbors in the set180

vN(i). Entry vN(i)[j] is updated when a value assignment update from a neighbor Aj is181

received. Both sci and entries in vN(i) are initialized to 1 (lines 2-3).182

3.1 Ordering Phase183

In the ordering phase, agents use the DOCS algorithm to select ordered colors, as in184

LAMDLS [18]. Following DOCS, Ai receives its selected color coi, and the colors coN(i) are185

selected by its neighbors. In contrast to LAMDLS, where agents use their indexes within the186

DOCS procedure to select colors, in LAMDLS-2 the agents use random values (docsIdi). Ai187

retains the docsId’s of its neighbors in the set docsIdsN(i). Once Ai has completed the pair188

selection phase, before re-starting DOCS, it selects a new value for docsIdi and waits for the189

docsId values of its neighbors to be updated in docsIdsN(i) (lines 9-11). Hence, each time190

DOCS operates, it uses different values for docsId and docsIdsN(i) and, thus, the probability191

that it would generate distinct values for coi and coN(i) is very high. In line 6, DOCS is192

initiated before the pair selection phase. Thus, initial values for the docsIds are according to193

the agents’ indexes. The use of randomized docsId values in DOCS results in diverse and194

randomized ordered color selections in the different steps of the algorithm.195

Algorithm 2 details the execution of the DOCS method by some agent Ai. At the196

initiation of the algorithm, Ai holds its own docsIdi and the docsIds of its neighbors (in197

docsIdsN(i)). When the algorithm terminates Ai holds the color it selected (coi) and the198

colors of its neighbors (coN(i)). The algorithm begins by initializing the variables coi and199

coN(i) (lines 1-2). If the value of docsIdi is the smallest among the values in docsIdsN(i),200

Ai sets the value of coi to 1 and sends this information to its neighbors. Afterward, Ai201

remains idle until it receives updated information about the colors selected by its neighbors202

(line 7). The algorithm terminates when Ai becomes aware of the colors of all its neighbors203

and selects a color for coi (line 6). Upon receiving updated information about the colors204

selected by its neighbors, Ai updates coN(i). Then it checks if it can select a color. If a color205

was not chosen previously and Ai receives the colors of all its neighbors with smaller indices206

in docsIdsN(i), it selects the color with the smallest number that hasn’t been chosen by any207

of its neighbors and sends this color to its neighbors. This process ensures that eventually,208

the color selected by each agent is different from the colors selected by its neighbors. To209

accelerate the convergence process of LAMDLS-2, agents can select values while they select210
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Algorithm 2 LAMDLS-2 color selection DOCS

Input: docsIdi, docsIdsN(i)

Output: coi, coN(i)

1: coi ← None
2: for each Aj ∈ N(i) : coN(i)[j]← None

3: if min(docsIdi, docsIdsN(i)) then:
4: coi ← 1
5: send (N(i),coi,valuei)
6: while not aware of all colors:
7: when color from Aj:
8: update (coj , coN(i)[j])
9: update (valuej)

10: if coi is None and can select color then:
11: coi ← selectMinAvilableColor(coN(i))
12: valuei ← selectValueUnilaterally(coN(i))
13: send (N(i),coi,valuei)
14: return coi, coN(i)

their colors (line 12).211

3.2 Pair Selection Phase212

Like MGM-2, LAMDLS-2 achieves monotonicity and convergence to a 2-opt solution by213

allowing agents to form pairs and select the best mutual assignment, while their neighbors214

avoid replacing their assignments at the same time. The main difference from MGM-2 is215

the use of the ordered color scheme by agents to decide when to suggest pairing with their216

neighbors, which neighbor they should make suggestions to, and whether to accept such217

suggestions from their neighbors. Agent Ai selects Aj as its partner and shares all relevant218

information, including its current assignment, the content of its domain, its neighbors, their219

assignments, and its constraints. Then, when allowed, Aj proceeds to calculate the bilateral220

value assignments for both Ai and itself and notifies Ai about its updated value assignment.221

The phase concludes when the agent makes a selection of its value assignment (denoted by222

valuei). If the pairing process is successful, Aj selects the value assignment for both Ai and223

Aj . However, if the pairing process fails (i.e., Ai is not paired with any other agent), Ai can224

unilaterally select its assignment. Following each selection of a value assignment, there is an225

update of the agent’s step counter (sci), accompanied by a message sent to its neighbors,226

which includes valuei and sci.227

Below, we provide a more detailed description of the Pair Selection phase and present its228

pseudocode in Algorithm 3. Agent Ai divides its neighbors into two sets, PC(i) and FC(i),229

based on the input variables coi and coN(i). PC(i) includes neighbors with color indices230

smaller than coi, while FC(i) includes neighbors with larger color indices. This division is231

used to determine the selected neighbor (sn) that Ai shares its information with. Agents232

take into consideration coi, coN(i), sci, and vN(i) while deciding when to initiate partnerships233

and how to respond to partnership requests. LAMDLS-2 agents exchange three types of234

messages during the pair selection phase:235

Value (lines 6-11): Triggers an update of vN (i), which allows agents to initiate partner-236

ships and reply to them.237
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Algorithm 3 LAMDLS-2 Pair Selection Phase

Input: N(i),sci, vN(i),coi,coN(i),docsIdsN(i)

1: varConsist← [sci, vN(i),coi,coN(i)]
2: sn, nInfo← None

3: sn←offer(varConsist,sn,docsIdsN(i))
4: while phase not completed:
5: when receive message from Aj:
6: if message is of type value then:
7: update(valuesN(i)[j],vN(i)[j])
8: if message.sender is sn :
9: valuei ← selectValueUnilaterally()

10: else:
11: sn←offer(varConsist,sn,docsIdsN(i))
12: if message is of type reply then:
13: updateValue(message.getValue(i))
14: if message is of type offer then:
15: nInfo←getOfferInfo(message,docsIdsN(i))
16: reply(varConsist,nInfo)
17: sci ← sci + 1
18: sendLocalInfo(N(i),valuei,sci)

Reply (lines 12-13): Contains the value assignment found by the neighbor the agent238

paired with.239

Offer (lines 14-16): Contains the relevant information sent when an agent offers a240

neighbor to form a pair.241

Upon receiving a value message, Ai updates its local view (line 7) and then considers242

two scenarios that may be triggered: Either rejecting or initiating an offer. If the sender of243

the value message is the agent (sn) to whom Ai has made an offer in the current phase (lines244

8− 9), Ai considers the value message as a rejection of its offer. Conversely, if Ai did not245

initiate an offer during the current phase, a value message reception may prompt an offer246

initiation due to an update in vN(i), as Ai examines the necessary condition to offer (lines247

10− 11).248

In the offer function, Ai checks its eligibility to make an offer when the condition249

sci = scj − 1 is met for every Aj ∈ PC(i). The offer function is activated under two250

circumstances. The first occurs when a value is received from the neighbor Aj . This results251

in an update of scj , which might satisfy the condition that will allow Ai to offer. The second252

is tied to the base case that initiates the phase for agents meeting the condition due to253

pc = ∅ (line 3). When the agent decides to make an offer, it selects a neighbor (sn) using a254

deterministic process. The chosen neighbor must meet the following conditions: Its color255

index is larger by one from the color index of Ai (coi + 1 = coN(i)[sn]), and the value of256

vN(i)[sn] equals sci. If multiple agents meet these conditions, the neighbor with the smallest257

value in docsIdsN(i) is chosen. If sn is found, Ai sends an offer message containing all258

relevant information for a bilateral value assignment selection. The function returns sn for259

future examination of whether the offer was accepted or rejected. If no neighbor satisfies260

the conditions to qualify as sn, Ai unilaterally selects a value assignment and indicates that261

the phase is completed. After sending an offer message, Ai enters an idle state, awaiting a262

reply from sn. Upon receiving a reply message, Ai is informed of the offer’s acceptance.263
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(a) Identity index (b) Random index

Figure 1 Two different numerical graph color partitions.

Subsequently, Ai updates its valuei based on the bilateral decision made by sn (line 13).264

Upon receiving an offer message, Ai stores the shared information and uses the reply265

function (line 15). Ai has the option to either accept the offer or reject it. Ai can only266

accept a single offer per step. If Ai accepts the offer, it proceeds to calculate values for itself267

and its partner using its local information and the information received from its partner268

and sends a reply message back to it. However, if Ai declines the offer, indicating that269

it has already formed a bilateral value assignment change with a different agent, it sends270

a message containing its value to inform the sender that the offer was rejected. If Ai271

receives multiple offers, it selects as a partner the offering agent with the lowest index in272

docsIdsN(i). Let PO(i) denote the set of agents that sent offers to Ai in the current pair273

selection phase. An offer can be accepted by Ai if the following condition is met: for each274

agent Aj ∈ PC(i)\PO(i), sci = scj − 1. Until this condition is met, Ai will remain idle and275

wait for messages to arrive.276

3.3 Demonstration of LAMDLS-2277

In the following sub-section, we describe the beginning of a high-level trace of LAMDLS-2,278

when operating on the constraint graph presented in Figure 1. In this graph, each node279

represents an agent, and the corresponding colors (selected using DOCS) of the agents are280

displayed beneath the nodes. Specifically, each node represents an agent Ai,docsId, where i281

is the agent’s index and docsId is a randomly assigned value that is drawn before the next282

step.283

After agents randomly select values for their assignments, each agent initializes its docsId.284

They also set the entries of docsIdsN(i) with the identity indices of their respective neighbors,285

e.g., A1: docsId1 = 1 and docsIdsN(1) = [⟨A3 : 3⟩, ⟨A4 : 4⟩, ⟨A5 : 5⟩]286

First Step287

After initiation, agents proceed to execute DOCS. Figure 1 (a) presents the outcome of the288

color selection process carried out by DOCS. This process utilizes the values of docsId of the289

agents, therefore the outcome is dependent on their selection. In the example at hand, agents290

A1 and A2 do not have neighbors with smaller indices, so they select the color 1 (blue) and291

communicate this information to their neighbors. Among these neighbors, agents A3 and A4292

do not have other neighbors with smaller indices, so they choose the color 2 (red) and send293

messages including this information to their neighbors. Finally, agents A5 and A6 select the294

color 3 (purple). This completes the color selection phase.295
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When the pair selection phase begins, both A1 and A2, which selected the color 1, can296

choose a neighbor and send an offer along with the relevant information. They are eligible297

because PC(1) = ∅ and PC(2) = ∅. A1 must select a neighbor with the smallest docsId298

color among its neighbors with color 2. It has two neighbors with color 2, A3 and A4), and299

among them, A3 has a smaller docsId, thus, it sends the offer to A3. A2 selects A4, since it300

is its only neighbor with color 2.301

Upon receiving an offer, A3 is eligible to respond, given that A1 is its only neighbor.302

A3 selects values for itself and for A1, updating sc3 to 2. It then sends a reply to A1, who303

adjusts its assignment and updates sc1 to 2, notifying all its neighbors including A4.304

After receiving an offer from A2, A4 must wait for an update from A1 (which is included305

in PC(4)). Following this update, A4 selects values for itself and for A2, increments sc4 to306

2, responds to A2 and informs its neighbors of the new selected value. Subsequently, A2307

updates its value, sc2 becomes 2, and it informs its neighbors too.308

At this point, agents with colors 1 and 2 have already chosen value assignments. Upon309

receiving this information, A5 updates vN(5) = [⟨A4 : 2⟩, ⟨A5 : 2⟩]. Thus, when receiving a310

value message that finalizes the update of vN(5), A5 is eligible to offer, given that sc5 = 1 and311

sc1 = sc4 = 2. While attempting to find a suitable partner, A5 will pick a value unilaterally312

since no agent in coN(5) holds color 4 (which is one greater than co5 = 3). Similarly, A6 will313

also independently select its value assignment. This finalizes the second phase of the first314

step.315

Second Step316

At the beginning of the second step, agents select random docsIds and send messages that317

inform their neighbors of their selection.318

Next, agents execute DOCS using the random docsIds selected and generate the color319

selection that is depicted in Figure 1 (b), as described next: Agents A4 with docsId4 = 0.1320

and A3 with docsId3 = 0.5 do not have neighbors with smaller docsId values, leading them321

to select color 1 (blue) and communicate this decision to their neighbors. Agents A2 with322

docsId2 = 0.2 and A5 with docsId5 = 0.4 can then select the color 2 (red) and convey it to323

their neighbors. Eventually, agents A6 with docsId6 = 0.3 and A1 with docsId1 = 0.6 select324

color 3 (purple) and inform their neighbors.325

In the pair selection phase, agent A4 selects A2 as its partner and forwards an offer (since326

docsId4 < docsId5, i.e., 0.2 < 0.4). Agent A3 changes its value independently, as its only327

neighbor A1 has color 3. Upon receiving a value message from A4, A5 can send an offer to328

A1. After A1 receives a value update from A4, it can respond to A5. Notably, in the previous329

step, the pair A5 and A1 did not form a partnership. When A6 receives value messages330

from A2 and A4 (PC(6) = {A2, A4}), it attempts to select a neighbor. Failing to do so (no331

neighbors in FC(6)), it selects a value on its own.332

3.4 Theoretical Properties333

We now prove that LAMDLS-2 is monotonic and convergence to a 2-opt solution. Our334

monotonicity proof stems from previous studies that proved the monotonicity of MGM,335

MGM-2, and LAMDLS [11, 18] based on the fact that, in DCOP algorithms, when a single336

agent or a pair of agents improve their local state, while their neighbors remain idle, the337

global cost improves as well. Thus, it remains to show that when an agent or a pair of agents338

improve their local state in LAMDLS-2, their neighbors are idle until the messages regarding339

the assignment replacements that were performed by the agent or pair of agents arrive.340

CP 2024



9:10 Latency-Aware 2-Opt Monotonic Local Search for Distributed Constraint Optimization

▶ Lemma 1. In a DCOP (with symmetric constraints), when an agent Ai is the only agent341

replaces its assignment, while none of its neighbors (NC(i)) replace their assignments, and342

this replacement results in a local gain, it also results in an improvement of the global cost.343

Proof: Denote the global cost before Ai’s assignment replacement by gc and the local344

gain following Ai’s assignment replacement by LRi. Since the problem is symmetric, the345

sum of local gains of Ai’s neighbors is also equal to LRi. Since we assumed that LRi > 0,346

gc > gc− 2LRi. □347

▶ Lemma 2. When some agent Ai initiates a partnership offer, all agents in N(i) that348

do not partner with Ai avoid replacing their assignments until Ai completes its assignment349

replacement.350

Proof: For Ai to be active, sci must be equal to k (i.e., it has not been incremented since351

the color selection phase) and, for each agent Ai′ ∈ PC(i), sci′ = k + 1. Thus, when Ai352

sends an offer, all agents in PC(i) have already incremented their step counters. In addition,353

for each agent Aj′ ∈ FC(i) (i.e., Ai ∈ PC(j′)), until sci is incremented, Aj′ cannot send an354

offer or replace its assignment. □355

▶ Lemma 3. When agent Ai initiates a partnership offer to Aj, agents in N(j) do not356

replace their assignments until Aj completes its assignment replacement.357

Proof: Agents in FC(j) cannot offer or reply to an offer until scj is incremented. On the358

other hand, for the agents in PC(j), there are two cases:359

Ai′ ∈ PC(j)(i ̸= i′) did not offer to Aj . Then, Aj will not reply and replace assignments360

until sci′ is incremented, which can happen only after Ai′ replaces its assignment. Thus,361

it cannot happen concurrently with the assignment replacement of Aj .362

Ai′ ∈ PC(j)(i ̸= i′) did offer to Aj . Then, either Aj pairs with it, or it sends a rejection363

reply only after it completed the assignment replacement. Thus, they do not replace364

assignments concurrently. □365

▶ Proposition 4. LAMDLS-2 is monotonic (i.e., each assignment replacement improves the366

global cost of the complete assignment held by the agents).367

Proof: Follows immediately from Lemma 2 and Lemma 3. While agents replace their value368

assignments, none of their neighbors can replace their assignments. □369

▶ Proposition 5. At each pair selection phase, every agent that receives an offer will reply370

(positively to one of the offering agents and negatively to the rest).371

Proof: We prove by induction, using an order on all agents that can receive an offer (i.e., all372

agents except for the ones with the color 1; we will assume that the colors are numbered from373

1 to NC). When colors are selected, the step counters of all agents are equal (e.g., sci = k374

for all i). Agents of the same color have a different docsId. Thus, the order between every375

two agents that can receive an offer is determined first according to their color (small colors376

come first). If the colors are equal then the tie is broken using their docsId (smaller comes377

first).378

Recall that the conditions for an agent Aj to reply to an offer are that all agents in PC(j)379

either offered to Aj or their step counter equals scj + 1. Assume that Ai is the agent with380

the smallest docsId among the agents with color 2. It will receive offers from all its neighbors381

with color 1. Thus, it will be able to select a neighbor to reply positively to its offer, and all382

its other neighbors will get a negative reply and unilaterally select an assignment.383



B. Rachmut, R. Zivan, W. Yeoh 9:11

The agent with the second smallest docsId that received an offer (Aj) with color 2 can384

have two types of neighbors with color 1: Ones that sent an offer to Ai and ones that sent385

an offer to Aj . The ones that sent an offer to Ai, after they receive the reply from Ai, will386

attempt to replace their assignment and increase their step counter. After receiving all387

indications regarding the increase of the step counters of these agents, Aj can reply to the388

agents that sent it an offer.389

Assume that later on during the algorithm run, Ai is the agent that received an offer,390

with sci = k, and with the smallest color index and the smallest docsId among the agents391

that received an offer and did not yet reply (i.e., if agent Ai′ received an offer and did not392

yet reply, then either coi′ > coi or coi′ = coi&docsIdi′ > docsIdi). Since there are no agents393

with a color smaller than coi that received an offer and did not reply, then there is no agent394

that sent an offer with a color index smaller than coi − 1, which a reply was not sent to it.395

Thus, the members of PC(i) include two types of agents: Agents that sent an offer to Ai396

and agents that a reply for the offers they sent was already sent to them. Thus, once all the397

offers from agents of the first type and the indications on the increase in the step counter of398

the agents from the second type arrive, Ai will be able to reply to the offers sent to it. □399

An immediate correlation from Proposition 5 is that the algorithm terminates its phases400

and does not deadlock. The ordering phase uses the DOCS algorithm and its correctness401

and termination have been established in previous studies [2, 18]. The pair selection phase402

must terminate because every agent that receives an offer must reply, and thus, all agents403

can perform the assignment selection method and increase their step counter.404

▶ Proposition 6. LAMDLS-2 converges to a 2-opt solution.405

Proof: According to Proposition 4, LAMDLS-2 is monotonic. Thus, since the problem is406

finite, it must converge to some solution. To prove that the solution it converges to is 2-opt,407

we need to establish that following convergence, every pair of neighboring agents will get a408

chance to form a pair and check all their alternative assignments. For agent Ai to form a409

pair with agent Aj , one of them (without loss of generality we select Ai) needs to send an410

offer to the other (Aj), and Aj needs to respond positively. This happens in two conditions:411

(1) coi = coj − 1; or (2) for any agent Aj′ with coj = coj′ , docsIdj < docsIdj′ . Since colors412

and docsIds are selected randomly, this situation will eventually occur. □413

4 Extension to a Region-Optimal Algorithm414

Similar to how MGM-2 was extended to k-opt and then to region-opt algorithms, we propose415

an extension of LAMDLS-2 to LAMDLS-ROpt. In LAMDLS-ROpt, an agent initiating416

ad-hoc coalition formation takes on a mediator role. Unlike LAMDLS-2, where this agent417

includes its information in the offer message sent to the selected neighbor, in LAMDLS-ROpt,418

the mediator sends an offer message to neighboring agents within the coalition it aims to419

form. This message invites them to join and prompts other specified neighbors to join as well.420

The information of the agents in the forming coalition is sent back to the monitoring agent,421

who selects an alternative assignment for the group. The group replaces the assignment if422

the mediator is ordered before the mediators of neighboring groups according to the ordered423

color and docsId scheme. This process is similar to the region-optimal algorithm RODA [7].424

The difference is in its repeated selection of mediators, the selection of members in the groups425

included in the mediators’ regions, and the order in which groups replace assignments, in a426

designated sequence, according to the ordered color scheme used in LAMDLS and LAMDLS-427

2. We leave for future work the investigation of the performance of LAMDLS-ROpt in428

comparison with RODA.429
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5 Experimental Evaluation430

We present a comprehensive study that compares the proposed LAMDLS-2 algorithm to431

MGM-2, solving a variety of DCOP benchmarks in environments with different patterns of432

message latency.433

5.1 Experimental Design434

In our experiments, we use the same asynchronous simulator used by researchers for CA-435

DCOP algorithms.1 The experiments were conducted on a Windows Server 2019 Standard436

operating system, with an Intel Xeon Silver 4210 CPU 2.20GHz.437

We follow the approach used in the literature [17, 18] to evaluate the quality of the438

solutions of the algorithms, as a function of the asynchronous advancement of the algorithm,439

in terms of non-concurrent logic operations (NCLOs) [25, 13]. The utilization of NCLO440

ensures implementation independence and avoids double counting of simultaneous actions.441

In each experiment, we randomly generated 100 different problem instances with 50 agents442

and we reported the average solution quality of the algorithms examined. To demonstrate443

the convergence of the algorithms, we present the sum of costs of the constraints involved in444

the assignment that would have been selected by each algorithm every 10, 000 NCLOs.445

We simulated three types of communication scenarios: (1) Perfect communication; (2)446

Message latency selected from a uniform distribution U(0, UB), where UB is a parameter447

indicating the maximum latency; and (3) Message latency selected from a Poisson distribution448

with λ = |MSG| and then scaling it by a factor of m, where |MSG| represents the number449

of messages that are currently delivered in the system, and m is a scaling factor indicating450

the magnitude of the latency. This scenario is the evaluation of the impact of bandwidth451

load. Latency was also measured in terms of NCLOs.452

We evaluated our algorithms on three problem types that are commonly used in the453

DCOP literature:454

Uniform Random Problems. These are random constraint graph topologies with455

densities 0.2 and 0.7. Each variable had a domain of 10 values, and constraint costs were456

uniformly selected between 1 and 100.457

Graph Coloring Problems [24, 4]. Each variable has three values (colors). Equal458

assignments between two neighbors incurred random costs from U(10, 100), while non-459

equal assignments had 0 cost. The density was set at 0.05.460

Scale free Network Problems [1]. Initially, 10 agents were randomly selected and461

connected. Additional agents were sequentially added, connecting to 3 other agents with462

probabilities proportional to the existing agents’ edge counts. Similar to the first type,463

variables had a domain of 10 values, and constraint costs ranged from 1 to 100.464

5.2 Experimental Evaluation465

Figure 2 presents a comparison between the results of two algorithms: The proposed466

LAMDLS-2 (represented by the blue curve) and MGM-2 (represented by the red curve).467

The comparison is performed on different problem types, as shown in each subgraph. The468

graph illustrates the performance of both algorithms in terms of the average global cost469

as a function of NCLOs. This enables the demonstration of the solution quality and the470

1 The simulation’s code is available at https://github.com/benrachmut/CADCOP_CP_2024.

https://github.com/benrachmut/CADCOP_CP_2024
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Figure 2 Solution quality as a function of NCLOs. Message delays are sampled from a uniform
distribution.
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Figure 3 Solution quality as a function of NCLOs. Message delays sampled from a Poisson
distribution linked to message volume.

convergence speed for each algorithm. Latency is sampled from a uniform distribution, and471

the line type (solid, dashed, and dotted) corresponds to different magnitudes of latency,472

where UB = {0, 5,000, 10,000}. The results demonstrate that the algorithms converge to473

solutions with similar quality, independent of message delays. This is expected because,474

in both algorithms, agents wait for updated information from their neighbors before they475

perform computation and replace assignments.476

LAMDLS-2 demonstrates faster convergence than MGM-2 in scenarios with no message477
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Figure 4 Solution quality as a function of different matrices in environments with different
message delays.

delays, except when solving graph coloring problems, where both algorithms show similar478

convergence rates. Moreover, LAMDLS-2 is more resilient to message delays than MGM-2.479

Its convergence rate remains relatively stable even with increasing delay, while MGM-2480

experiences a more substantial slowdown in convergence as the latency magnitude increases.481

The most significant difference in the convergence rate between LAMDLS-2 and MGM-2482

is observed in dense uniform problems (Figure 2(b)). Interestingly, LAMDLS-2 with the483

longest delays UB = 10,000 converges faster than MGM-2 with no delays. When solving484

graph coloring problems (Figure 2(d)), although the convergence rates are similar when485

communication is perfect, LAMDLS-2 exhibits a much faster convergence rate compared to486

MGM-2 when messages are delayed. These problems are characterized by low density among487

the examined types, leading to rapid convergence for both algorithms. For sparse uniform488

problems (Figure 2(a)), the impact of message delays on both LAMDLS-2 and MGM-2 is489

consistent and proportional. However, LAMDLS-2 maintains its superiority over MGM-2 in490

terms of convergence speed. When solving scale-free networks (Figure 2(c)), the negative491

impact on convergence rates is more pronounced for MGM-2 compared to LAMDLS-2 as the492

latency magnitude increases. Figure 3 presents the results of a similar experiment in which493

message delays were sampled from a Poisson distribution with the parameter λ = |MSG| ·m,494

where m = {0, 20, 50}. In this set of experiments, the resilience of LAMDLS-2 is pronounced495

regardless of the type of problem being solved. The increase in the latency magnitude did496

not significantly affect LAMDLS-2’s convergence rate, unlike the significant effect it had on497

MGM-2.498

The results in Figures 2 and 3 indicate a faster convergence rate of LAMDLS-2 in499

comparison with MGM-2. To investigate the reasons for this advantage, we present in500

Figure 4 the solution costs of the algorithms as a function of two additional elements in501

the algorithms’ execution. These elements are the number of messages exchanged by the502

agents and the amount of time (in NCLOs) that agents were inactive (i.e., idle). Both503

algorithms solve sparse uniform problems under various communication scenarios: Perfect504
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Figure 5 Average costs at convergence with error bars.

communication (PC) represented by the solid line, U(0,5,000) represented by the dashed line,505

and Pois(|MSG|) · 20 represented by the dotted line. While the three presented subgraphs506

illustrate the faster convergence rate of LAMDLS-2 compared to MGM-2, each of them507

highlights a distinct advantage of LAMDLS-2. The faster convergence in terms of message508

count indicates that LAMDLS-2 makes more economical use of the communication network.509

The faster convergence in terms of idle time indicates that agents in LAMDLS-2 are more510

active, and perform more concurrently.511

In Figure 5, we present the average costs of both algorithms at convergence with SEM error512

bars. Overlapping bars across sparse, dense, and scale-free networks suggest no significant513

difference. Paired t-tests confirm this, with p-values above 0.05 (0.7514 for sparse, 0.8364 for514

dense, and 0.4839 for scale-free). For graph coloring problems, there is a significant difference515

(p-value 0.005), indicating diverse algorithmic performance in favor of LAMDLS-2.516

6 Conclusions517

We introduced Latency-Aware Monotonic Distributed Local Search 2 (LAMDLS-2), a dis-518

tributed local search algorithm for solving DCOPs, which is monotonic and guarantees519

convergence to a 2-opt solution. LAMDLS-2 converges faster, compared to MGM-2, a520

synchronous distributed local search algorithm that converges to 2-opt solutions with similar521

quality. We demonstrate that the algorithm not only converges faster but also makes more522

economical use of the communication network and that the agents spend less time idle523

during the algorithm run. The results indicate that LAMDLS-2 is more suitable for realistic524

scenarios with message delays. Our approach, which is based on the ordered color scheme,525

allows the agents to be more active in computing their assignments and spend less effort526

in coordinating their actions. We also discussed how this approach can be extended to a527

general k-opt algorithm, which we intend to implement in future work.528
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