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Abstract9

Distributed Constraint Optimization Problems (DCOPs) is a framework for representing and solving10

distributed combinatorial problems, where agents exchange messages to assign variables they own,11

such that the sum of constraint costs is minimized. When agents represent people (e.g., in meeting12

scheduling problems), the constraint information that the agents hold may be incomplete. For such13

scenarios, researchers proposed Incomplete DCOPs (I-DCOPs), which allow agents to elicit from14

their human users some of the missing information. Existing I-DCOP approaches evaluate solutions15

not only by their quality, but also the elicitation costs spent to find them (ex-post). Unfortunately,16

this may result in the agents spending a lot of effort (in terms of elicitation costs) to find high-quality17

solutions, and then ignoring them because previous lower-quality solutions were found with less18

effort.19

Therefore, we propose a different approach for solving I-DCOPs by evaluating solutions based20

on their quality and considering the elicitation cost beforehand (ex-ante). Agents are limited in21

the amount of information that they can elicit and, therefore, need to make smart decisions on22

choosing which missing information to elicit. We propose several heuristics for making these decisions.23

Our results indicate that some of the heuristics designed produce high-quality solutions, which24

significantly outperform the previously proposed ex-post heuristics.25
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1 Introduction32

The Distributed Constraint Optimization Problem (DCOP) formulation is widely used33

for representing and solving combinatorial optimization problems that are distributed by34

nature [5, 7, 15]. It includes agents holding variables, which are constrained with variables35

held by other agents (their neighbors) and attempt to find an optimal assignment to their36

variables that minimizes constraint costs, while exchanging messages with their neighbors.37

When agents represent humans, such as in meeting scheduling problems [4, 1], the38

information held by agents regarding the preferences of the humans that they represent may39

be incomplete. Agents can elicit information from the humans by introducing queries to40

their human users, However, humans might find that answering these queries is a tedious41

task and may abandon the use of the system if the burden is too heavy. Thus, there is a42

clear need to limit the amount of queries that the human users need to answer.43
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9:2 Ex-Ante Constraint Elicitation in Incomplete DCOPs

In order to represent such situations and allow agents to select high-quality assignments44

to their variables, while taking into consideration incomplete information, and make a limited45

use of elicitation queries, the Incomplete DCOP (I-DCOP) model was proposed [10, 11, 12].46

I-DCOP enables the representation of partial information by having agents hold constraint47

tables in which some entries include the costs for the corresponding combination of assignments48

and some do not. The agents can use elicitation queries to fill some of the empty entries and49

then use the information available to them in order to select the solution to the problem.50

Tabakhi et al. [11, 12] proposed limiting the use of elicitation queries by evaluating the51

outcome of the I-DCOP solving process as a weighted sum of the quality of the selected52

solution and the effort (e.g., number of queries asked) for producing it. Thus, the agents53

aimed to find a solution that has not only a high quality, but also a low effort to find it.54

While this evaluation of outcomes incentivizes the algorithm to make efficient use of the55

human query resources, from a practical point of view, this method for evaluating possible56

outcomes does not make sense.57

For example, imagine that an agent is searching for a hotel for the next trip of the person58

it represents. After a small search effort c1, the agent finds a decent hotel with solution59

quality q1. Then, the agent decides to spend more effort, searching for a better hotel and,60

after a costly effort c2 >> c1, it manages to find one that is slightly better q2 > q1. According61

to the evaluation method proposed [11, 12], the agent will choose the first hotel because62

c1 − q1 < c2 − q2.1 In other words, the second hotel is not as good because the marginal63

increase in quality is not worth the large amount of effort spent for it. However, intuitively,64

since the search effort was already spent, it does not make sense to not use the better solution65

found.66

The key issue with the prior approach is that the search effort considered is done ex-post67

– after the effort was spent – when it should be done ex-ante – before the effort was spent.68

With this insight in mind, we propose a different approach for solving incomplete DCOPs.69

Inspired by others [3], we limit the amount of queries that agents can use (i.e., a query70

“budget”) and propose different heuristic strategies for the agents to follow when they decide71

what information to elicit. We compare the success of the proposed strategies in comparison72

with the existing ex-post approach, in combination with a complete SyncBB algorithm [2]73

and two incomplete DSA and MGM [15, 17] algorithms.74

Our results indicate that all the ex-ante heuristic strategies we proposed outperformed75

the existing ex-post heuristic. Moreover, the heuristics that spend effort in identifying parts76

of the search space that have higher probability to be part of a high-quality solution are77

more successful.78

2 Background79

In this section, we present DCOPs and three algorithms for solving them: SyncBB, DSA,80

and MGM.81

2.1 Distributed Constraint Optimization Problems82

Without loss of generality, in the rest of this paper, we will assume that all problems are83

minimization problems, as it is common in the DCOP literature [1]. Thus, we assume that84

all constraints define costs and not utilities.85

1 We assume that we are minimizing costs in this paper.
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A DCOP is defined by a tuple ⟨A, X , D, R⟩. A is a finite set of agents {A1, A2, . . . , An}.86

X is a finite set of variables {X1, X2, . . . , Xm}. Each variable is held by a single agent, and87

an agent may hold more than one variable. D is a set of domains {D1, D2, . . . , Dm}. Each88

domain Di contains the finite set of values that can be assigned to variable Xi. We denote89

an assignment of value x ∈ Di to Xi by an ordered pair ⟨Xi, x⟩. R is a set of relations90

(constraints). Each constraint Rj ∈ R defines a non-negative cost for every possible value91

combination of a set of variables, and is of the form Rj : Dj1 ×Dj2 × . . .×Djk
→ R+ ∪{0}. A92

binary constraint refers to exactly two variables and is of the form Rij : Di × Dj → R+ ∪ {0}.93

We say that a variable is involved in a constraint if it is one of the variables the constraint94

refers to and that an agent is involved in a constraint if one of its variables is involved95

in the constraint. We assume that agents hold all constraints that they are involved in.96

For each binary constraint Rij , there is a corresponding cost table Tij with dimensions97

|Di| × |Dj | in which the cost in every entry exy is the cost incurred when x is assigned98

to Xi and y is assigned to Xj . A binary DCOP is a DCOP in which all constraints are99

binary. A partial assignment is a set of value assignments to variables, in which each variable100

appears at most once. vars(PA) is the set of all variables that appear in partial assignment101

PA (i.e., vars(PA) = {Xi | ∃x ∈ Di ∧ ⟨Xi, x⟩ ∈ PA}). A constraint Rj ∈ R of the102

form Rj : Dj1 × Dj2 × . . . × Djk
→ R+ ∪ {0} is applicable to PA if each of the variables103

Xj1 , Xj2 , . . . , Xjk
is included in vars(PA). The set of constraints that are applicable to104

a partial assignment PA will be denoted by RP A. Rj(PA) is the cost of incurred which105

corresponds to Rj with respect to PA. When Rj does not apply to (PA), Rj(PA) = 0. The106

cost of a partial assignment C(PA) is the sum of costs of all constraints that are applicable107

to PA, i.e., C(PA) =
∑

Rj∈RP A
Rj(PA). A complete assignment (or a solution) is a partial108

assignment that includes all the DCOP’s variables (i.e., vars(PA) = X ). An optimal solution109

is a complete assignment with minimal cost.110

For simplicity, we make the common assumption that each agent holds exactly one variable111

(i.e., n = m) and we concentrate on binary DCOPs. These assumptions are common in the112

DCOP literature [7, 13]. That being said, we emphasize that all methods and heuristics we113

propose in this paper apply to k-ary constraints as well, for 2 ≤ k ≤ n.114

2.2 Synchronous Branch-and-Bound (SyncBB)115

Synchronous Branch-and-Bound (SyncBB) [2] is a complete, synchronous, search-based116

algorithm that can be considered as a distributed version of a standard branch-and-bound117

algorithm. It uses a complete ordering of the agents to extend a Current Partial Assignment118

(CPA) via a synchronous communication process. The CPA is exchanged by the agents119

according to the order. Agents add the assignments to their variables before sending the120

CPA forward and remove their assignments before sending it backwards. The CPA also121

functions as a mechanism to propagate bound information. The algorithm prunes those122

parts of the search space whose solution quality is sub-optimal by exploiting the bounds that123

are updated at each step of the algorithm. In other words, an agent backtracks when the124

cost of the CPA is not smaller than the cost of the best complete solution found so far.125

The algorithm begins by the first agent in the order, which generates the CPA, assigns it a126

value and forwards it to the next in the order. The CPA includes a lower bound, which is the127

current cost of the partial assignment carried by the CPA and an upper bound (UB), which128

is the cost of the best solution found so far by the algorithm (initially infinity), When an129

agent Ai receives a CPA, it attempts to assign its variable Xi with one of the values x ∈ Di130

and send it forward. When it is received back from the agent following it in the order (Ai+1,131

it attempts to reassign Xi with a different value from Di. A CPA is sent back when the agent132

CP 2024
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Figure 1 Example of a search tree

cannot assign a value to the CPA that has not been assigned to the CPA with the specific133

context (the partial assignment) before, or that does not cause a breach of UB. When the134

last agent in the order manages to assign its variable, without breaching UB, a new solution135

is generated and stored, and UB is updated with its cost. The algorithm terminates when136

the first agent sends the CPA back. The solution reported is the last complete assignment137

(solution) that caused an update of UB.138

In order to analyze the performance of complete search algorithms, such as SyncBB, when139

solving constraint reasoning problems, such as DCOPs, it is common to use a search tree.140

The search tree is a tool that allows one to follow the advancement of the search process and141

analyze its properties. The root of the search tree is the first variable in the order, and each142

of the edges connecting it to its children represents a possible value assignment. Similarly the143

second layer represents the possible assignments of the second variable in the order and so144

forth, until the leaves of the tree, which represent the value assignments of the last variable145

in the order [14]. Thus, each value assignment is the root of a sub-tree in this search tree.146

Figure 1 presents an example of a search tree with three agents A1, A2, and A3, each147

holding one variable with two values in its domain a and b.148

2.3 Distributed Stochastic Algorithm (DSA)149

The Distributed Stochastic Algorithm (DSA) [15] is a simple distributed local search algorithm150

in which, following an initial step where agents (randomly) choose an initial value for their151

variable, the agents perform a series of steps (looped iteratively) until some termination152

condition is met. In every step, an agent sends its value assignment to its neighbors in153

the constraint graph and collects the value assignments of its neighbors. Once the value154

assignments of all its neighbors have been collected, an agent decides whether to keep its155

value assignment or to modify it. This decision has a significant effect on the performance156

of the algorithm. If an agent in DSA cannot upgrade its current state by substituting its157

present value, it does not do so. On the other hand, if the agent can improve (or maintain,158
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depending on the version used) its current state, it decides whether to replace its value159

assignment using a stochastic strategy.160

2.4 Maximum Gain Message (MGM)161

Like DSA, Maximum Gain Message (MGM) is a distributed synchronous local search162

algorithm, in which agents perform in iterations. In each iteration the agents send messages163

to all their neighbors, receive messages from all of them and perform computation. The main164

difference from DSA is that, for each decision whether to replace an assignment, two iterations165

are performed. In the first, like in DSA, the agents exchange their value assignments. In166

the second, the agents exchange the maximal improvement they can achieve by replacing167

assignments. Only agents that suggested a positive improvement that is greater than all their168

neighbors (ties are broken deterministically according to the agents’ identifying indexes),169

replace their assignments.170

3 Ex-Ante Incomplete DCOP171

An Ex-Ante Incomplete DCOP (EAI-DCOP) is defined by a tuple ⟨A, X , D, R, R̃, E , B⟩,172

where A, X , D and R are defined the same as in DCOP. For each constraint Rj ∈ R, there173

is a corresponding incomplete constraint R̃j ∈ R̃, where R̃j ∈ R̃ : Dj1 × Dj2 × . . . × Djk
→174

R+ ∪ {0, ?}, where each of the Djq in R̃j is also a member in Rj and ? is a special element175

denoting that the cost for a given combination of value assignments is not known to the176

agent. In I-DCOP, it is assumed that an agent does not hold the set of constraints that it is177

involved in, but rather the set of incomplete constraints that it is involved in.178

For every incomplete constraint R̃j , there is an elicitation cost function Ej ∈ E , such that179

for each unknown cost of a combination of assignments r ∈ Rj there is a positive elicitation180

cost in e(r) ∈ Ej that the agent will need to “pay” for eliciting this constraint. An explored181

solution space x̃ is the union of all solutions explored so far by a particular algorithm. x̃P A182

is the explored solution space at the time that PA was generated. The cumulative elicitation183

cost E(x̃) (and E(x̃P A) respectively) is
∑

r∈R e(r) such that r is an unknown constraint in184

R̃, but it is not an unknown constraint in x̃. In other words, it is the sum of the elicitation185

costs of all elicitation queries conducted while exploring x̃.186

In standard (Ex-Post) I-DCOP [12], the cost C(PA) of a partial assignment is calculated187

as follows: C(PA) =
∑

Rj∈RP A
C(Rj) + E(x̃P A), where RP A is the set of constraints whose188

variables are in vars(PA). In an Ex-Ante I-DCOP, the solution cost, like in standard DCOP,189

is C(PA) =
∑

Rj∈RP A
C(Rj). However, agents are limited in the amount of information190

they can elicit. We formulate this limitation using a budget B = {B1, B2, ..., Bn}, where Bi191

is the amount of elicitation cost agent Ai may spend. These are taken into consideration192

during the search process and, thus, the agents take the budget limitations into consideration193

before they decide whether to elicit some information.194

Figure 2 includes an example of an EAI-DCOP with seven agents. Each agent holds one195

variable with three values in its domain, and has an elicitation budget (we only present the196

budgets of A2 and A7, which are relevant to the example). On the right hand side the cost197

table and the elicitation cost table of constraint R2,7 are presented. There are three unknown198

costs in the cost table. Agent A2’s budget allows it to elicit the cost for ⟨X2 = a, X7 = a⟩ or199

⟨X2 = b, X7 = a⟩. Agent X7 can afford to elicit any of the three missing costs, and even to200

elicit the costs for both ⟨X2 = a, X7 = a⟩ and ⟨X2 = b, X7 = a⟩.201

CP 2024
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Budgets
A2: 15
A7: 30

Figure 2 Example of an EAI-DCOP

4 Solving EAI-DCOPs202

We propose ex-ante elicitation heuristics for three algorithms solving EAI-DCOPs – Syn-203

cBB [2], DSA [15], and MGM [4]. These well-known algorithms were selected for their204

simplicity, in order to emphasize the effect of the selected elicitation heuristic on the search205

process. SyncBB and MGM were also used in the previous I-DCOP studies [11, 12].206

4.1 Solving EAI-DCOPs with SyncBB207

The main difference between agents performing SyncBB to solve EAI-DCOPs from the agents208

performing SyncBB to solve standard DCOPs is that, in EAI-DCOPs, agents do not attempt209

to assign all values to their variables. Instead, when an agent that has partial information210

regarding the constraint costs of its variable receives a CPA, it needs to decide whether211

to elicit missing information and which missing information to elicit. We will assume that212

regardless of the heuristic being used, an agent will first attempt to assign values to its213

variable, for which it knows all costs of constraints with the value assignments included in214

the CPA. For the values in its domain for which it does not know all the constraint costs,215

the agent can decide either to elicit this information, and pay the corresponding cost (which216

is deducted from its budget), or to avoid eliciting this information. Obviously, if its budget217

is smaller than the elicitation cost, the first option is ruled out. After eliciting the constraint218

costs corresponding to a value x ∈ Di, agent Ai treats x as any other value in its domain219

for which it has complete knowledge regarding its constraints, that is, it tries to assign x220

to Xi and send the CPA forward. On the other hand, if Ai decides not to elicit the costs221

that correspond to x, the subtree rooted by x (in the search tree) will not be explored. We222

propose the following heuristics for deciding whether to elicit the cost information by agents223

solving EAI-DCOPs with SyncBB.224

Depth Dependent (DD): The decision whether to elicit the cost information for a value225

is decided stochastically. The probability for an agent Ai to elicit the costs of a value in its226



R. Zivan, S. Regev, W. Yeoh 9:7

domain is calculated using the Sigmoid function: p(i) = ei

en/2+ei , where i is the depth of the227

agent’s variable in the search tree and n is the number of agents.2 Note that this function228

does not distinguish between the values within a domain of a variable held by some agent229

and, thus, if the decision is to elicit, the agent will elicit the constraint cost information for230

all its values, until the budget is exhausted.231

The intuition that led to the design of this heuristic was that the deeper an agent is in232

the search tree, the larger is the chance that a solution improving on former solutions will be233

found. This is because every layer in the search tree can require additional elicitation.234

Distance from Bound (DB): The decision whether to elicit the cost information for a235

value x ∈ Di is based on its distance ∆x of the cost of the CPA from the upper bound (UB)236

maintained by SyncBB and a threshold t(i) of the agent ai. Specifically, the costs for x are237

elicited if ∆x > t(i).238

The distance from the upper bound ∆x for each value x ∈ Di is calculated as follows:239

∆x = UB − (C(PA) + δx), where C(PA) is the cost of the current partial assignment and240

δx is the lowest cost that was generated from constraints with assignments of variables held241

by agents that come after Ai in the order, in previous attempts to assign x to Xi. If there242

were no previous attempts, δx = 0.243

The threshold t(i) is calculated as follows: t(i) = g ·
(

1 − ei

en/2+ei

)
, where g is a constant244

that is dependent on the distribution of constraint costs in the problem.245

The intuition is that when the distance from the upper bound is larger, there is more246

chance that this part of the search tree will include relevant solutions, since for a small247

distance an additional cost is expected to breach the bound and cause a backtrack.248

Elicitation Required in Subtree (ERS): The decision whether to elicit the costs corres-249

ponding to a value assignment is done according to the number of unknown constraints in250

the subtree (of the search tree) rooted by this value. The intuition is that there is a larger251

chance that in a subtree with a small number of unknown constraints, complete solutions252

will be found with low elicitation cost.253

In EAI-DCOPs, it is possible to count the number of unknown constraints in each such254

subtree. The process is performed bottom up, having the last agent in the order count the255

unknown constraints for each of the values in its domain, and sending this information up256

to the agent preceding it in the order. This agent adds the amount of constraints for each257

of its value and sends it up to the agent preceding it, and so forth. The process ends when258

the first agent in the order, holding the root variable of the subtree, updates the number of259

unknown constraints in each of the subtrees rooted by the values in its domain.260

In more details, after an agent Ai receives a message that includes a number Ci+1 of261

unknown constraints from the agent following it in the order, it can calculate, for each value262

x ∈ Di, the number of constraints it is involved in among them. Thus, in order to calculate263

the number of unknown constraints in the subtree rooted by x, it reduces from Ci+1 the264

number of constraints that all values x′ ∈ Di, x′ ̸= x are involved in. To this number, it adds265

the number of unknown constraints that x is involved in with variables held by agents that266

are before Ai in the order. The total number of unknown constraints that Ai sends to Ai−1267

is then calculated as follows: Ci =
∑

x∈Di
Cx.268

Each agent performs the initial calculations of Cx for every value x in the domain of its269

variables before the algorithm begins as a prepossessing procedure. After the algorithm starts,270

2 Sigmoid functions are used as activation functions in neural networks [9], but are not related to their
use here.
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Figure 3 Solution costs when agents have a total budget of 105

these parameters are updated following each elicitation as follows: When agent Ai elicits271

the unknown constraints for a value x ∈ Di, it updates the number of unknown constraints272

for this value, and updates each of the agents involved in the constraints that were elicited.273

These agents reduce the corresponding number of unknown constraints for the subtrees of274

the corresponding values.275

4.2 Solving EAI-DCOPs with DSA and MGM276

Like in the case of SyncBB, the main challenge when solving EAI-DCOPs using distributed277

local search algorithms, such as the DSA and MGM, is in deciding which constraints to elicit.278

However, in contrast to SyncBB, DSA and MGM are incomplete and, thus, not all values279

with known constraints need to be assigned. Therefore, the decision whether to elicit needs280

to take into consideration the amount of uncertainty regarding the cost of a possible value281

assignment and the potential improvement it offers. In more details, we propose a heuristic282

that we incorporated in both DSA and MGM, according to which the elicitation decision for283

value x ∈ Di is performed if the following two conditions hold:284

1. The number of unknown constraints that x is involved in is smaller than q · CNx, where285

CNx is the total number of constraints that x is involved in and 0 ≤ q ≤ 1.286

2. The difference between the sum of the known constraints that x is involved in and the287

cost of the current partial assignment is larger than g · ei

en/2+ei . Here, g is a constant as288

defined above for the formula in SyncBB and i is the iteration number.289

5 Experimental Evaluation290

In order to evaluate the success of our approach for generating high-quality I-DCOP solutions,291

under different elicitation “budget” restrictions, we performed experiments in which we292

compared the different heuristics that we proposed for solving EAI-DCOPs incorporated in293

DCOP algorithms, with the previous proposed approach for solving I-DCOP [12]. All our294

experiments were performed on a simulator, implemented in Python, on a Lenovo Carbon295
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Figure 4 Solution costs when agents have a total budget of 525
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Figure 5 Solution costs when agents have a total budget of 1050

X1 Gen 9 computer with an 11th Generation Intel(R) Core (TM) i7-1165G7 @ 2.80GHz 2.80296

GHz processor.297

The complete algorithms solved I-DCOPs including seven agents, each holding one298

variable with four values in its domain. The average number of neighbors that agents had299

was 3. Constraint costs for combinations of assignments of neighboring agents were selected300

uniformly between 2 and 5. The percentage of unknown constraints varied. We generated301

problems in which the fraction of known constraints was 10%, 50%, and 90%. For each302

unknown cost, an elicitation cost was selected uniformly from the range [0, 20].303

5.1 SyncBB with Global Budgets304

Previous I-DCOP approaches [12] with SyncBB assumed agents considered global elicitation305

costs, which are summations of elicitation costs over all agents. Therefore, to fairly compare306

against them, we also consider a variant, where agents have access to a global budget that307
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Figure 6 Solution costs when agents have a personal budget of 15
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Figure 7 Solution costs when agents have a personal budget of 75

can be accessed by all agents. Specifically, we set the global budget to either 105, 525, or308

1050, so that the highest budget was an order of magnitude more than the lowest and they309

are easy to split among the agents in the personal budget version, which will be presented310

next. (We consider the variant where agents have personal budgets in the next section.)311

Figure 3 depicts the average overhead in the solution quality with respect to the optimal312

solution (when all information is known), of solutions that the different algorithms produced313

when solving the problems with SyncBB, when agents were allocated the smallest global314

elicitation budget (105). The figure includes three batches of bars, one for each percentage315

of knowledge known to the agents in the beginning of the run of the algorithm (from left316

to right: 10%, 50%, and 90%). The two bars on the right in each batch are the results of317

the I-DCOP algorithm using the CAC heuristic proposed previously [12]. In one version318

(labeled CACbudget), the algorithm was limited by a budget, similar to the amount used by319

the EAI-DCOP heuristics (i.e., 105). In the second (labeled CAC), the algorithm was not320

bounded by a budget. Surprisingly, the version that was limited by a budget produced better321
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Figure 8 Solution costs when agents have a personal budget of 150

results on average. We assume that a limited budget limits also the elicitation cost that is322

taken into consideration in the lower bound of the algorithm and, thus, the agents explore323

more solutions when they have a limited budget. It is apparent that both of these versions324

produce solutions with much greater costs than the solutions produced by the other versions.325

Among them, the bar on the left (labeled IDCOP) is a version of the algorithm that does not326

perform elicitation at all, while the three others present the average results of the algorithm327

using the limited budget according to the three heuristics described in Section 4.1.328

The results clearly indicate that it is enough to solve the I-DCOP using SyncBB with329

no elicitation, in order to get a much better solution in comparison with the solutions330

produced by the algorithm implementing the ex-post approach and heuristic suggested by331

the literature [12]. Yet, performing elicitation using the allocated budget can reduce costs332

further. The best result is achieved by the ERS heuristic. However, its advantage over DD333

and DB is not significant. Figures 4 and 5 present similar results produced by scenarios in334

which agents had larger budgets (525 and 1050 respectively). While the trends seem similar,335

it is clear that the advantage of the proposed heuristics over the I-DCOP version without336

elicitation, is more apparent (as expected).337

5.2 SyncBB with Personal Budgets338

Figures 6, 7, and 8 present results for the same algorithms solving the same problems, only339

in this case the EAI-DCOP heuristics, that is, DD, DB, and ERS use personal budgets340

instead of a global budget as used in the experiments presented above. We divided the341

global costs such that there will be no difference in the total budget used by the agents.342

However, these scenarios present the more realistic case where an agent represents a user,343

and the budget limits the effort a user must spend in replying to queries during search.344

In these personal budget scenarios, the versions using the EAI-DCOP heuristics produced345

solution with a more significant advantage in general over the vanilla I-DCOP version. The346

difference was most apparent when the agents had medium or high budgets, and the initial347

knowledge available was 50%. The EAI-DCOP heuristics were able to produce solutions with348

a significant advantage over the vanilla I-DCOP version, and for the 150 budget per agent,349

the DD and ERS heuristics produce solutions that their quality was close to optimal. It350
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Figure 9 Runtime in terms of NCLOs with a budget of 105
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Figure 10 Runtime in terms of NCLOs with a budget of 525

seems that, besides being a more realistic scenario in a multi-agent environment, the budget351

per agent settings allows the algorithm to use elicitation in different parts of the search space352

and explore high quality solutions.353

Figures 9, 10, and 11 present the runtimes in a logarithmic scale, of the algorithms in354

terms of NCLOs [16, 6]. In each figure, the budget allocated to the agents were different.355

The differences between the complete DCOP version and the I-DCOP version is identical356

in all figures because it is not affected by the budget. It is however affected by the amount357

of knowledge known to agents: In the 10% scenario, the algorithm solving I-DCOP is358

much faster than the algorithm solving the complete DCOP while, in the 90% scenario,359

the runtimes are much closer. It is also apparent that the CAC and ERS versions of the360

algorithms are much slower than all other versions. The reason is that these heuristics require361

exponential computation before the algorithm begins its search (preparing the heuristic data362

in preprocessing). Moreover, unlike the SyncBB algorithms that performs some level of363

pruning, the preprocessing heuristics aggregate information from the entire search space364

and thus, their runtime is orders of magnitude larger. On the other hand, The DD and DB365

heuristics are much faster. Additionally, their advantage over the ERS heuristic in runtime366

is much more significant than the advantage that ERS provides in solution quality. Similar367

results were obtained when agents used personal budget as presented in Figures 12, 13368
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Figure 11 Runtime in terms of NCLOs with a budget of 1050
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Figure 12 Runtime in terms of NCLOs when each agent had a personal budget of 15

and 14369

5.3 MGM and DSA with Personal Budgets370

In the second set of experiments we performed, we compared incomplete algorithms, that is,371

MGM and DSA, which were implemented in the ALS framework [17], in order to produce372

the anytime solutions as was done previously in the literature [12]. In this set of experiments,373

the problems included 50 agents, each holding a single variable with 10 values in its domain.374

Agents had 20 neighbors in average. The costs of constraints were randomly selected between375

2 and 5. We present the solution costs of the algorithms in the first 50 iterations, because376

that was the number of iterations that were required for the algorithms to converge.377

We first discuss the MGM results, since this was the algorithm that was implemented378

in the literature [12]. Figure 15 presents the solution cost as a function of the number of379

iterations performed by the algorithms. The DCOP version is the omniscient algorithm that380

knows all constraints. The dashed lines are the versions implementing the NHC heuristic [12].381

The different lines represent the amount of initial knowledge. The other solid lines represent382

the results of the EAI-DCOP version in which the elicitation was performed according to383

the heuristic presented in Section 4.2. Each agent was allocated 180 elicitation queries. The384

significant advantage of the EAI-DCOP version is apparent regardless of the amount of initial385
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Figure 13 Runtime in terms of NCLOs when each agent had a personal budget of 70
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Figure 14 Runtime in terms of NCLOs when each agent had a personal budget of 150
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Figure 15 Solution cost as a function of the number of iterations

knowledge the agents had.386

Figure 16 presents the results of MGM and DSA performing the EAI-DCOP heuristic for387

deciding on elicitation, with an allocation 180 queries per agent (with 50% initial knowledge388

available). Surprisingly, the EAI-DCOP version of MGM is more successful than the DSA389

version. This is in contrast to the well-known advantage that DSA has over MGM when390
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Figure 16 Solution cost as a function of the number of iterations
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Figure 17 Solution cost as a function of the number of iterations

solving standard DCOPs.391

Figure 17 presents the EAI-DCOP versions of MGM and DSA, when allocated fewer392

(120) queries per agent. Again, it is apparent that the MGM versions outperform the DSA393

versions, except for the versions solving problems with 10% initial knowledge, where both394

algorithms struggle. Moreover, the versions that solved problems with 50% initial knowledge395

outperform the versions that solved problems with 90% knowledge. We assume that less396

knowledge resulted in a positive exploration effect, as was reported for environments with397

imperfect communication [8].398

6 Conclusions399

We introduced a novel approach for solving I-DCOPs in this paper. In contrast to previous400

studies on I-DCOPs in which elicitation costs were considered after elicitations were made,401

we consider the costs before the elicitations in EAI-DCOPs.402

The EAI-DCOP approach is not only more realistic, as it is not reasonable that agents403

will not use a high-quality solution after spending much effort to find it, it is also better in404

finding higher quality solutions and finding them with less runtime. These empirical results405

were shown on both complete and incomplete algorithms that are commonly used in the406

literature. Therefore, this seems to be one of the rare occasions where the new approach407

outperforms prior work on all three key relevant dimensions – practicality, solution quality,408

and runtime.409
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