
Multi-Agent Planning and Diagnosis with Commonsense
Reasoning

Tran Cao Son
stran@nmsu.edu

New Mexico State University
Las Cruces, NM, USA

William Yeoh
wyeoh@wustl.edu

Washington University in St. Louis
Saint Louis, MO, USA

Roni Stern
sternron@bgu.ac.il

Ben-Gurion University of the Negev
Beer Sheva, Israel

Meir Kalech
kalech@bgu.ac.il

Ben-Gurion University of the Negev
Beer Sheva, Israel

ABSTRACT
In multi-agent systems, multi-agent planning and diagnosis are
two key subfields – multi-agent planning approaches identify plans
for the agents to execute in order to reach their goals, and multi-
agent diagnosis approaches identify root causes for faults when
they occur, typically by using information from the multi-agent
planning model as well as the resulting multi-agent plan. However,
when a plan fails during execution, the cause can often be related to
some commonsense information that is neither explicitly encoded
in the planning nor diagnosis problems. As such existing diagno-
sis approaches fail to accurately identify the root causes in such
situations.

To remedy this limitation, we extend the Multi-Agent STRIPS
problem (a common multi-agent planning framework) to a Com-
monsense Multi-Agent STRIPS model, which includes common-
sense fluents and axioms that may affect the classical planning prob-
lem. We show that a solution to a (classical) Multi-Agent STRIPS
problem is also a solution to the commonsense variant of the same
problem. Then, we propose a decentralized multi-agent diagnosis
algorithm, which uses the commonsense information to diagnose
faults when they occur during execution. Finally, we demonstrate
the feasibility and promise of this approach on several key multi-
agent planning benchmarks.

CCS CONCEPTS
• Computing methodologies→Multi-agent systems;Multi-
agent planning; Logic programming and answer set programming;
Cooperation and coordination; • Hardware → Bug detection,
localization and diagnosis; • Theory of computation→ Dis-
tributed algorithms.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DAI ’23, November 30-December 3, 2023, Singapore, Singapore
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0848-0/23/11.
https://doi.org/10.1145/3627676.3627690

KEYWORDS
Multi-Agent Systems, Multi-Agent Planning, Multi-Agent Diagno-
sis, Commonsense Reasoning, Decentralized Algorithms, Answer
Set Programming

ACM Reference Format:
Tran Cao Son, William Yeoh, Roni Stern, and Meir Kalech. 2023. Multi-
Agent Planning and Diagnosis with Commonsense Reasoning. In The Fifth
International Conference on Distributed Artificial Intelligence (DAI ’23), No-
vember 30-December 3, 2023, Singapore, Singapore.ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3627676.3627690

1 INTRODUCTION
Multi-agent planning – the ability of a group of autonomous agents
to reason about their actions and identifying sequences of actions
(i.e., plans) that lead them to their goals – is a core area of AI research
at the intersection of automated planning and multi-agent systems.
Applications of multi-agent planning are abound, ranging from
robots navigating in autonomous warehouses today [20, 21, 41]
to autonomous vehicles navigating on roads in the future [7, 32].
As is the case with any application with embodied agents, failures
may occur during an agent’s execution. When abnormal behaviors
caused by failures are observed, automated diagnosis techniques [10,
33, 40] are used to identify the root cause of the abnormal behavior.

However, a key assumption in both multi-agent planning meth-
ods is that the problem is fully-specified – in the sense that ev-
erything that can affect the outcomes of actions in the prob-
lem, however unlikely, is defined. For example, consider the
well-known Logistics domain [22], where a set of packages
need to be moved from their initial to target locations using a
given fleet of vehicles such as trucks, airplanes, etc. In this do-
main, the drive(truck,origin,destination,city) action will
successfully move truck from origin to destination if the
pre-conditions that truck is at origin and both origin and
destination are in city and are connected by a road are satisfied.
This implicitly assumes some commonsense knowledge, typically
defined as knowledge about the world that all humans are expected
to know. For example, it assumed that the drive action is success-
ful only if the truck is not broken, the road between origin and
destination is not blocked, etc.

To ensure conciseness in the planning problem specification and
tractability of solution approaches, it is reasonable that one models
only knowledge (commonsense or otherwise) that is assumed to

https://doi.org/10.1145/3627676.3627690
https://doi.org/10.1145/3627676.3627690

DAI ’23, November 30-December 3, 2023, Singapore, Singapore Tran Cao Son, William Yeoh, Roni Stern, and Meir Kalech

be relevant to the problem and ignores knowledge (much of which
is commonsense) that is not relevant. However, when a plan fails
during execution, the cause is often related to some factor that
was not taken into consideration during the planning stage. For
example, perhaps the truck failed to reach destination because
the road between origin and destination is not traversable due
to a flood, and the problem did not consider the possibility of a
flood. As such, automated diagnosis methods need to reason about
commonsense knowledge that is not explicitly encoded in the classical
planning problem.

For automated diagnosis methods to perform commonsense rea-
soning, it must have access to commonsense knowledge that was
not used in the planning stage. However, instead of explicitly rep-
resenting all commonsense knowledge and providing it as input to
diagnosis methods, we take a more sensible approach by consider-
ing only a subset of commonsense knowledge that may affect the
planning problem. In this paper, we propose a Commonsense Multi-
Agent STRIPS model, which extends the traditional Multi-Agent
STRIPS model [4] by including commonsense fluents and com-
monsense axioms that may affect the classical planning problem.
Then, with access to such commonsense knowledge, we propose
commonsense multi-agent diagnosis algorithms that allow agents
to collaboratively identify the root cause of abnormal behaviors
in a decentralized manner. Finally, we demonstrate the feasibility
and promise of this class of algorithms on several key multi-agent
planning benchmarks.

2 BACKGROUND
We now provide some background on multi-agent STRIPS (MA-
STRIPS), which we will later extend to a commonsense variant,
and automated diagnosis, which we will rely on for our multi-agent
diagnosis algorithm.

2.1 Multi-Agent STRIPS (MA-STRIPS)
An MA-STRIPS problem is defined by a tuple ⟨𝐹, 𝐼 ,𝐺, {𝐴𝑖 }𝑖 ⟩, where
𝐹 is a set of fluents, 𝐼 is the initial state, 𝐺 is the goal state, and
𝐴𝑖 is the set of actions that can be performed by agent 𝑖 [4]. A
multi-agent plan in MA-STRIPS is often assumed to be a sequence
of actions (𝑎0, . . . , 𝑎𝑛) where each action 𝑎 𝑗 is an action of some
agent 𝑖 (i.e., 𝑎 𝑗 ∈ 𝐴𝑖). A plan is a solution if it transitions the initial
state to the goal state. A solution is optimal if it has the fewest
actions among all solutions.

A multi-agent plan can also be a sequence of joint actions, if
concurrent execution is allowed. We will also consider MA-STRIPS
extensions in which some fluents and actions are only observable
by some agents (these are called private fluents and actions). In this
type of privacy-aware MA-STRIPS problems [27], a multi-agent
plan comprise of a public plan that includes the actions publicly
known to all agents, and set of private plans for each agent that
comprise the private actions they need to perform.

Note that inMA-STRIPS, actions’ effects are deterministic. Richer
multi-agent planning languages that support stochastic effects and
observability exists, such as Decentralized Partially Observable
Markov Decision Processes (Dec-POMDPs) [3]. While the theories
and algorithms developed in the proposed research may carry over
to such planning languages, we limit our scope to deterministic

effects, which is a reasonable abstraction for many real-world prob-
lems that have been studied extensively in the automated planning
and multi-agent systems communities.

2.2 Automated Diagnosis
A diagnosis problem arises when observations indicate that the
system of interest is behaving abnormally. Model-based diagnosis
(MBD) is a popular and principled approach for solving diagnosis
problems that relies on a model characterizing the behavior of the
diagnosed system. This model is referred to as the system description.
A diagnosis problem in the MBD literature is commonly defined
by a tuple ⟨SD,Comps,Obs⟩, where SD is the system description,
Comps is a finite set of components, and Obs is a collection of
observations about the system [11, 12, 29]. The predicate 𝑎𝑏 (𝑐)
denotes the fact that the component 𝑐 ∈ Comps is “abnormal” (or
defective). An MBD problem arises when the assumption that all
components are healthy is inconsistent with SD and Obs (i.e., when⋃

𝑐∈Comps ¬𝑎𝑏 (𝑐) ∪SD∪Obs is inconsistent). A solution to an MBD
problem is a diagnosis, which can be defined as a set of components
Δ ⊆ Comps such that the assumption that these components is
faulty and all other components are healthy is consistent with SD
and Obs: ⋃

𝑐∈Comps\Δ
¬𝑎𝑏 (𝑐)

⋃
𝑐∈Δ

𝑎𝑏 (𝑐) ∪ SD ∪ Obs is consistent (1)

The goal of MBD algorithms is often to identify a minimal diagnosis
or preferred diagnosis in accordance to some criteria.

In the classical work introducing diagnosis from first principles,
SD is a theory representing the relationship between components
and state of the system and Obs consists of observations related to
a single state of the system [11, 12, 29]. However, MBD has been
considered for many other, significantly richer, types of system
description. For example, MBD has been considered for system
descriptions that include knowledge about the components’ fault
modes (this is known as a strong fault model), where a diagnosis
specifies not only which components are faulty but also what type
of fault they exhibit [6, 13, 34]. MBD has also been considered for
discrete-event and dynamic systems, where SD and Obs encode a
transition system and observations along a trajectory of the sys-
tem, respectively [1, 2, 15, 35]. In this case, a diagnosis is a set
of component-time pairs (𝑐, 𝑡), where 𝑐 ∈ Comps and 𝑡 ≥ 0, and
𝑎𝑏 (𝑐, 𝑡) indicates that component 𝑐 is defective (fails) from time
step 𝑡 . Prior work also applied MBD for hybrid and distributed sys-
tems, where the system description composes of a set of variables,
parameters, equations, inputs, and outputs, and observations are
measurements of outputs. In such a case, a diagnosis is a fault repre-
senting the deviation of parameters from their nominal values [5].

More related to the proposed research is prior work that applied
MBD to diagnose a multi-agent system [39]. Typically, two types
of failures have been investigated: Plan failures and coordination
failures. In the former, faults occur due to failed execution of some
actions in the plan. In the latter, faults occur due to disagreements
of the agents on key components of their joint task. Appropriate
algorithms have been proposed for each type of failures.

Multi-Agent Planning and Diagnosis with Commonsense Reasoning DAI ’23, November 30-December 3, 2023, Singapore, Singapore

3 COMMONSENSE MULTI-AGENT STRIPS
Recall that for automated diagnosis methods to perform common-
sense reasoning, it must have access to commonsense knowledge
that was not used in the planning stage, but could have affected
the execution of the plan. Towards that end, we propose the Com-
monsense MA-STRIPS (CMA-STRIPS) model, an extension of the
classical MA-STRIPS model [4] that includes commonsense fluents
and commonsense axioms that may affect the classical planning
problem.

Before describing the CMA-STRIPS model, we first define a com-
monsense fluent as a fluent that is not affected by any action in the
corresponding classical planning problem. More formally:

Definition 3.1 (Commonsense Fluent). A fluent 𝑓 is a commonsense
fluent iff ∀𝑎 ∈ {𝐴𝑖 }𝑖 : 𝑓 ∉ eff(𝑎), where {𝐴𝑖 }𝑖 is the set of actions
in the corresponding classical MA-STRIPS problem.

In other words, these are fluents that represent aspects of the plan-
ning problem that is presumed to remain unchanged throughout
the execution of the plan. For example, the commonsense variant of
the logistics domainmay include a fluent¬flood-l1 representing
the fact that the location 𝑙1 is not flooded.

We now define the CMA-STRIPS model, which is defined by
the tuple ⟨𝐹, 𝐼 ,𝐺, {𝐴𝑖 }𝑖 , 𝑃⟩, where ⟨𝐹, 𝐼 ,𝐺, {𝐴𝑖 }𝑖 ⟩ is similar to its
corresponding regular MA-STRIPS problem, except that they may
include commonsense counterparts:
• 𝐹 = 𝐹𝑟 ∪𝐹𝑐 is a set of fluents, where 𝐹𝑟 is the set of regular fluents
in the MA-STRIPS problem and 𝐹𝑐 is the set of commonsense
fluents.
• 𝐼 ⊆ 𝐹 and 𝐺 ⊆ 𝐹 are the initial and goal states, which may now
include commonsense fluents.
• 𝐴𝑖 is the set of actions that can be performed by agent 𝑖 , whose
pre-conditions pre(𝑎) of action 𝑎 ∈ 𝐴𝑖 may now include com-
monsense fluents. However, by Definition 3.1, the effects eff(𝑎)
of action 𝑎 do not include commonsense fluents. In addition, we
assume that the set 𝐴𝑖 might also include statements declaring
that certain action of agent 𝑖 can interfere or is in conflict with
some actions executed by others if they were to be executed
in parallel. When two actions interfere, the planning algorithm
should not allow them to be executed in parallel; when two
actions are in conflict and one fails then the other also fails.
• 𝑃 = 𝑃𝑟 ∪ 𝑃𝑐 is a set of axioms representing the relationships

between the fluents 𝐹 , where 𝑃𝑟 is the set of regular axioms that
involve regular fluents only and 𝑃𝑐 is the set of commonsense
axioms that involve commonsense fluents as well.

While the classical MA-STRIPS problem definition do not include
regular axioms as they arguably can be compiled away, we choose to
explicitly include axioms in the definition as commonsense axioms
represent intuitive relationships in a concise and clear way. For
example, the commonsense axiom below represents the relationship
that if location 𝑙1 is flooded and it is connected with location 𝑙2 by
road, then the road between the two locations is now blocked:

flood-l1 ∧ connected-l1-l2→ blocked-l1-l2 (2)

With this problem definition in hand, we further restrict the
problem definition to have the following property:

Property 1. If all commonsense fluents in preconditions of actions
hold in the initial state, then a solution for an MA-STRIPS problem is
also a solution for the commonsense variant of the same problem.

Recall that a solution is a plan that is feasible in the planning
problem and it transitions the initial state to the goal state. It is
reasonable to assume that the designers of an MA-STRIPS problem
have incorporated all knowledge (commonsense or otherwise) that
is relevant to the planning problem. Therefore, the fluents that are in
preconditions of actions and whose truth value can change during
the execution of a plan must be regular fluents. All other fluents in
preconditions, which are the commonsense fluents, are therefore
assumed to always hold. Consequently, Property 1 holds because
if an action is feasible in an MA-STRIPS problem, it must also be
feasible in the corresponding Commonsense MA-STRIPS problem.
As a corollary to Property 1, one can then use any MA-STRIPS
planner to solve CMA-STRIPS problems.

4 COMMONSENSE MULTI-AGENT DIAGNOSIS
We now describe the observation function of the agents before
formulating the commonsense multi-agent diagnosis problem and
describing our decentralized solution approach for diagnosing the
root causes of abnormal behaviors in this problem.

4.1 Observation Function of Agents
Before describing our decentralizedmulti-agent diagnosis approach,
wemust first describe the knowledge base (KB) of each agent (i.e., the
fluents, actions, and axioms that it knows and can observe). As a
range of possibilities exist, we assume the availability of a domain-
dependent mapping function:

𝑀 : A × 𝐹 ∪ 𝑃 ∪ {𝐴𝑖 }𝑖 → {0, 1} (3)

that indicates whether an agent 𝑘 ∈ A knows about a fluent 𝑓 ∈ 𝐹 ,
axiom 𝑝 ∈ 𝑃 , or action 𝑎 ∈ 𝐴𝑖 of agent 𝑖 .

There is awide range of possible observation functions for agents,
including:
• Local Observations: On one end of the spectrum, minimally, all

agents must be able to observe their own actions and the fluents
that are in the preconditions and effects of those actions. In other
words, for each agent 𝑖 ∈ A,𝑀 (𝑖, 𝑎) = 𝑀 (𝑖, 𝑓) = 1 for all actions
𝑎 ∈ 𝐴𝑖 and fluents 𝑓 ∈ pre(𝑎) ∪ eff(𝑎).

Using the same Logistics domain example again, if agents
have local observations only, then truck 𝑡1 can observe fluents
related to its own drive(t1,l1,l2,c) action for any location
pairs l1 and l2 in city c; the pre-condition at-t1-l1 indicating
that the truck is at l1 and the preconditions connected-l1-l2
and ¬blocked-l1-l2 indicating that the two locations are con-
nected by a road that is not blocked; and the effects ¬at-t1-l1
and at-t1-l2 indicating that the truck is no longer at 𝑙1 and is at
𝑙2 instead. Similarly, it can also observe fluents related to its own
load(o1,t1,l1) action, which loads object 𝑜1 onto truck 𝑡1 at
location 𝑙1; pre-conditions at-o1-l1 and at-t1-l1, indicating
both 𝑜1 and 𝑡1 are at 𝑙1; and effects ¬at-o1-l1 and in-o1-t1,
indicating that 𝑜1 is no longer at 𝑙1 but is inside 𝑡1 instead.
• Global Observations: On the other end of the spectrum, all
agents have global observation and are aware of all actions and
fluents in the problem. In other words, for each agent 𝑖 ∈ A,

DAI ’23, November 30-December 3, 2023, Singapore, Singapore Tran Cao Son, William Yeoh, Roni Stern, and Meir Kalech

𝑀 (𝑖, 𝑎) = 𝑀 (𝑖, 𝑓) = 1 for all actions 𝑎 ∈ 𝐴𝑖 and fluents 𝑓 ∈
𝐹 . This assumption is valid in applications, such as automated
warehouses [21, 42] where there is a global observer that can
communicate their observations with all agents.
In this paper, we make the most restrictive assumption and as-

sume that all agents have local observations only. As such, our
proposed diagnosis algorithm (described later) will require agents
to coordinate and communicate with each other to diagnose faults
that arise. Note that if agents have global observations, then diag-
nosing faults are trivial since all agents have complete knowledge.
Finally, we also assume that an agent knows and can reason about
an axiom if all the fluents in the axiom are observable to the agent.
In other words, for each agent 𝑖 ∈ A, 𝑀 (𝑖, 𝑝) = 1 for all axioms
𝑝 ∈ 𝑃 iff𝑀 (𝑖, 𝑓) = 1 for all fluents 𝑓 ∈ 𝐹 (𝑝), where 𝐹 (𝑝) is the set
of fluents in 𝑝 .

4.2 Problem Formulation
Given a plan 𝜋 of an MA-STRIPS problem, a realization 𝑅 of the
plan is a trajectory 𝑅 = (𝑠0, 𝑎1, 𝑠1, . . . , 𝑎𝑛, 𝑠𝑛), where 𝑠0 = 𝐼 is the
initial (joint) state and 𝑎𝑘 = ×𝑖𝑎𝑘𝑖 is the joint action of all the agents
at time step 𝑘 . Note that 𝑠𝑛 may not be a (joint) goal state as the
agents may fail to reach a goal state should some of their actions
fail.

An agent realization 𝑅𝑖 of the realization for an agent 𝑖

is the projected realization with respect to that agent: 𝑅𝑖 =

(𝑠0
𝑖
, 𝑎1

𝑖
, 𝑠1
𝑖
, . . . , 𝑎𝑛

𝑖
, 𝑠𝑛
𝑖
), where 𝑠0

𝑖
= 𝐼𝑖 is the initial state that is ob-

servable to agent 𝑖 and 𝑎𝑘
𝑖
∈ 𝐴𝑖 is the action of agent 𝑖 at time

step 𝑘 .
An action 𝑎 ∈ 𝐴𝑖 of agent 𝑖 is said to have failed in a realization

of plan 𝜋 if there exists a transition (𝑠, 𝑎, 𝑠 ′) in the agent realiza-
tion such that 𝑠 does not satisfy the pre-conditions pre(𝑎) or 𝑠 ′ is
inconsistent with the effects eff(𝑎). Similarly, an action 𝑎 ∈ 𝐴𝑖 of
agent 𝑖 is said to be faulty if there exists a transition (𝑠, 𝑎, 𝑠 ′) such
that 𝑠 satisfies the pre-conditions pre(𝑎), but 𝑠 ′ is still inconsistent
with the effects eff(𝑎). Note that all failed actions are also faulty
actions, but not vice versa. Finally, all actions that are not faulty
are said to be healthy.

A diagnosis for a plan 𝜋 and joint observation Ω = ×𝑖Ω𝑖 is a sub-
set of agent actions 𝐴𝑓 𝑎𝑢𝑙𝑡𝑦 such that (1) there exists a realization
𝑅 whose agent realizations 𝑅𝑖 correspond to the observations Ω𝑖

for all agents 𝑖 and (2) exactly all actions 𝑎 ∈ 𝐴𝑓 𝑎𝑢𝑙𝑡𝑦 are faulty.

Definition 4.1 (Commonsense Multi-Agent Diagnosis). A Com-
monsense Multi-Agent Diagnosis problem is defined by a tuple
⟨Π, 𝜋,Ω⟩, where Π is a CMA-STRIPS problem, 𝜋 is a solution to Π,
and Ω is the observation for some realization of 𝜋 . A solution to
the problem is a diagnosis for 𝜋 and Ω.

4.3 MAD-DR Algorithm
We now describe our Multi-Agent Diagnosis with Decentralized

Reasoning (MAD-DR) algorithm, a decentralized multi-agent algo-
rithm that finds a commonsense multi-agent diagnosis during the
execution of a multi-agent plan. Algorithm 1 shows its pseudocode
for each “self” agent 𝑖 , where it takes as inputs the CMA-STRIPS
problem 𝑃 , its plan 𝜋𝑖 , and its set of neighboring agents 𝑁𝑖 (i.e., the
set of agents that it can communicate with).

Algorithm 1 MAD-DR Algorithm
Input: CMA-STRIPS problem Π, plan 𝜋𝑖 of self agent 𝑖 , and its set

of neighboring agents 𝑁𝑖

1: 𝐴𝑛𝑠 ← ∅ % answers maintained by the agent
2: 𝐿 ← ∅ % inquiries sent to/received from neighbors
3: 𝐿𝐹 ← ∅ % failure answers received from neighbors
4: 𝐿𝑃 ← ∅ % discrepancies inquired by neighbors
5: 𝑠0

𝑖
← initial observable state of the agent

6: for all time steps 0 ≤ 𝑡 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝜋𝑖) do
7: if preconditions 𝑎𝑡

𝑖
are satisfied in 𝑠𝑡

𝑖
then

8: 𝑠𝑡+1
𝑖
← execute 𝑎𝑡

𝑖
from 𝜋𝑖 in current state 𝑠𝑡

𝑖
9: end if
10: if preconditions of 𝑎𝑡

𝑖
are not satisfied in state 𝑠𝑡

𝑖
OR effects

of 𝑎𝑡
𝑖
are not reflected in state 𝑠𝑡+1

𝑖
then

11: compute 𝑄𝑖 (𝑡) and 𝑂𝑤𝑛𝑖 (𝑡)
12: 𝐴𝑛𝑠 ← 𝐴𝑛𝑠 ∪ {(𝑖, 𝑓 , 𝑣, 𝑣 ′, 𝑡) | (𝑓 , 𝑣, 𝑣 ′) ∈ 𝑂𝑤𝑛𝑖 (𝑡)}
13: if 𝑄𝑖 (𝑡) \𝑂𝑤𝑛𝑖 (𝑡) ≠ ∅ then
14: for all (𝑓 , 𝑣, 𝑣 ′) ∈ 𝑄𝑖 (𝑡) \𝑂𝑤𝑛𝑖 (𝑡) do
15: 𝑖 [𝑖𝑛𝑞𝑢𝑖𝑟𝑦 (𝑓 , 𝑣, 𝑣 ′, 𝑡)]𝑘 for 𝑘 ∈ 𝑁𝑖

16: add (𝑖, 𝑘, 𝑓 , 𝑣, 𝑣 ′, 𝑡) to 𝐿 for 𝑘 ∈ 𝑁𝑖

17: end for
18: end if
19: break % stop executing plan 𝜋𝑖
20: end if
21: end for

Algorithm 2 When Receive Message(𝑀)

1: if 𝑀 = 𝑛[𝑖𝑛𝑞𝑢𝑖𝑟𝑦 (𝑓 , 𝑣, 𝑣 ′, 𝑡)]𝑖 and (𝑓 , 𝑣, 𝑣 ′, 𝑡) ∉ 𝐿𝑃 then
2: % receives a new inquiry
3: 𝐴𝑛𝑠, 𝐿, 𝐿𝐹, 𝐿𝑃 = query-1((𝑓 , 𝑣, 𝑣 ′, 𝑡), 𝐴𝑛𝑠, 𝐿, 𝐿𝐹, 𝐿𝑃)
4: else if 𝑀 = 𝑛[𝑖𝑛𝑞𝑢𝑖𝑟𝑦 (𝑓 , 𝑣, 𝑣 ′, 𝑡)]𝑖 and (𝑓 , 𝑣, 𝑣 ′, 𝑡) ∈ 𝐿𝑃 then
5: % receives a repeated (old) inquiry
6: 𝐴𝑛𝑠, 𝐿, 𝐿𝐹, 𝐿𝑃 = query-2((𝑓 , 𝑣, 𝑣 ′, 𝑡), 𝐴𝑛𝑠, 𝐿, 𝐿𝐹, 𝐿𝑃)
7: else if 𝑀 = 𝑘 [𝑎𝑛𝑠𝑤𝑒𝑟 (𝑎𝑔𝑡, 𝑓 , 𝑣, 𝑣 ′, 𝑡 ′)]𝑖 then
8: % receives a positive answer
9: 𝐴𝑛𝑠, 𝐿, 𝐿𝐹, 𝐿𝑃 = positive((𝑎𝑔𝑡, 𝑓 , 𝑣, 𝑣 ′, 𝑡 ′), 𝐴𝑛𝑠, 𝐿, 𝐿𝐹, 𝐿𝑃)
10: else if 𝑀 = 𝑘 [𝑎𝑛𝑠𝑤𝑒𝑟 (⊥, 𝑓 , 𝑣, 𝑣 ′, 𝑡)]𝑖 then
11: % receives a negative answer
12: 𝐴𝑛𝑠, 𝐿, 𝐿𝐹, 𝐿𝑃 = negative((⊥, 𝑓 , 𝑣, 𝑣 ′, 𝑡), 𝐴𝑛𝑠, 𝐿, 𝐿𝐹, 𝐿𝑃)
13: end if

At the start, the agent initializes its sets 𝐴𝑛𝑠 , 𝐿, 𝐿𝐹 , and 𝐿𝑃

(Lines 1-4) that will be used for diagnosis (they will be described
in detail later) as well as initial observable state 𝑠0

𝑖
(Line 5). Then,

at each time step 𝑡 , if the preconditions of its current action 𝑎𝑡
𝑖

are satisfied by its current state 𝑠𝑡
𝑖
, then it executes the action and

transitions to the next state 𝑠𝑡+1
𝑖

(Lines 7-9). If the preconditions are
not satisfied or (in the case where the preconditions are satisfied)
the effects of the action are not reflected in the next state (i.e., there
is a discrepancy between the actual effect and expected effect in
the state), then it means that the action 𝑎𝑡

𝑖
is faulty. Consequently,

the agent starts a diagnosis process (Lines 10-20). If the action
is not faulty, then the agent repeats this process and attempts to
execute its actions in its plan 𝜋𝑖 until it successfully reaches its goal.

Multi-Agent Planning and Diagnosis with Commonsense Reasoning DAI ’23, November 30-December 3, 2023, Singapore, Singapore

Note that we assume that an agent with a faulty action will stop
executing its plan after detecting and diagnosing the fault (Line 19).

We now describe the diagnosis process, which is done using
answer set programming. A diagnosis is needed when an action
𝑎𝑡
𝑖
is faulty, which can arise due to one of the following two condi-

tions:
• Condition 1: Its preconditions are not satisfied by the current
state 𝑠𝑡

𝑖
.

• Condition 2: Its preconditions are satisfied by the current state
𝑠𝑡
𝑖
, but its expected effects are not reflected in the next state 𝑠𝑡+1

𝑖
.

In both cases, the condition can be generalized to one where there
is a discrepancy in one (or more) fluent 𝑓 (that is related to the
preconditions/effects) in the current/next state having a value 𝑣
instead of the expected value 𝑣 . Our MAD-DR algorithm makes use
of this generalization, which we now describe.

4.3.1 High-Level Description. At a high level, when an agent starts
a diagnosis, it first checks whether it’s own action 𝑎𝑡

𝑖
is abnormal

(Condition 2) or not (Condition 1).
• If it is abnormal, then it knows that its action is part of the cause

of the fault. This cause is possibly incomplete because an action
by a different agent may also be abnormal and is contributing
to the fault. Thus, the agent needs to check if other agents also
have abnormal actions that affected the next state 𝑠𝑡+1

𝑖
.

• If it is not abnormal, then the fault lies with a different agent.
Thus, the agent needs to check if other agents have abnormal
actions that affected the current state 𝑠𝑡

𝑖
.

To do so, the agent sends inquiry messages to its neighboring agents
(e.g., agents within its communication range) asking if its neighbors
know why one (or more) fluent 𝑓 is having a value 𝑣 instead of the
expected value 𝑣 .

When an agent receives such a message, if it knows the reason
(for example, the agent with an abnormal action knows that its
effects did not materialize), then it replies with a positive answer
identifying the faulty agent. If it does not know the reason, then it
will propagate the inquiry to its neighboring agents. If it receives a
positive answer from one of its neighboring agents, it forwards that
positive answer to the agent that sent the inquiry message. If it does
not know the reason and it does not have any neighboring agents
other than the agent that sent the inquiry message, the agent replies
with a negative answer indicating that it does not know the faulty
agent. If an agent receives negative answers from all its neighboring
agents, then it replies with a negative answer to the agent that sent
the inquiry as well.

Under the assumption that the communication graph of the
agents is a (single) connected graph (i.e., there are no disjointed
subgraphs), then the inquiring agent is guaranteed to identify the
faulty agent since, in the worst case, the faulty agent will reply
with a positive answer to its neighboring agent, who will propagate
that answer back to the original inquiring agent. For efficiency,
agents that received the positive answer along the path from the
faulty agent to the inquiring agent will store the faulty informa-
tion (e.g., fluent 𝑓 has value 𝑣 instead of 𝑣 ′ at time step 𝑡 because
of agent 𝑗). That way, if another agent inquires about the same
fault, the agent can reply with the information in a positive answer
immediately instead of propagating to the faulty agent and back.

Algorithm 3 query-1((𝑓 , 𝑣, 𝑣 ′, 𝑡), 𝐴𝑛𝑠, 𝐿, 𝐿𝐹, 𝐿𝑃)
1: add (𝑓 , 𝑣, 𝑣 ′, 𝑡) to 𝐿𝑃
2: add (𝑛, 𝑖, 𝑓 , 𝑣, 𝑣 ′, 𝑡) to 𝐿
3: if ∃𝑎𝑔𝑡, 𝑡 ′.(𝑎𝑔𝑡, 𝑓 , 𝑣, 𝑣 ′, 𝑡 ′) ∈ 𝐴𝑛𝑠 then
4: 𝑖 [𝑎𝑛𝑠𝑤𝑒𝑟 (𝑎𝑔𝑡, 𝑓 , 𝑣, 𝑣 ′, 𝑡 ′)]𝑛
5: else
6: 𝑁 = 𝑁𝑖 (𝑡) \ {𝑝, 𝑞 | (𝑝, 𝑞, 𝑓 , 𝑣, 𝑣 ′, 𝑡) ∈ 𝐿}
7: if 𝑁 = ∅ then
8: 𝑖 [𝑎𝑛𝑠𝑤𝑒𝑟 (⊥, 𝑓 , 𝑣, 𝑣 ′, 𝑡]𝑛
9: else
10: 𝑖 [𝑖𝑛𝑞𝑢𝑖𝑟𝑦 (𝑓 , 𝑣, 𝑣 ′, 𝑡)]𝑘 for 𝑘 ∈ 𝑁
11: end if
12: end if
13: return 𝐴𝑛𝑠, 𝐿, 𝐿𝐹, 𝐿𝑃

Algorithm 4 query-2((𝑓 , 𝑣, 𝑣 ′, 𝑡), 𝐴𝑛𝑠, 𝐿, 𝐿𝐹, 𝐿𝑃)
1: add (𝑛, 𝑖, 𝑓 , 𝑣, 𝑣 ′, 𝑡) to 𝐿
2: if ∃𝑎𝑔𝑡, 𝑡 ′.(𝑎𝑔𝑡, 𝑓 , 𝑣, 𝑣 ′, 𝑡 ′) ∈ 𝐴𝑛𝑠 then
3: 𝑖 [𝑎𝑛𝑠𝑤𝑒𝑟 (𝑎𝑔𝑡, 𝑓 , 𝑣, 𝑣 ′, 𝑡 ′)]𝑛
4: end if
5: return 𝐴𝑛𝑠, 𝐿, 𝐿𝐹, 𝐿𝑃

Algorithm 5 positive((𝑎𝑔𝑡, 𝑓 , 𝑣, 𝑣 ′, 𝑡), 𝐴𝑛𝑠, 𝐿, 𝐿𝐹, 𝐿𝑃)
1: add (𝑎𝑔𝑡, 𝑓 , 𝑣, 𝑣 ′, 𝑡 ′) to 𝐴𝑛𝑠
2: 𝑁 = {𝑥 | 𝑥 ∈ 𝑁𝑖 (𝑡), (𝑝, 𝑞, 𝑓 , 𝑣, 𝑣 ′, 𝑡) ∈ 𝐿, 𝑥 ∈ {𝑝, 𝑞}}
3: 𝑖 [𝑎𝑛𝑠𝑤𝑒𝑟 (𝑎𝑔𝑡, 𝑓 , 𝑣, 𝑣 ′, 𝑡 ′)]𝑘 for 𝑘 ∈ 𝑁
4: return 𝐴𝑛𝑠, 𝐿, 𝐿𝐹, 𝐿𝑃

Algorithm 6 negative((⊥, 𝑓 , 𝑣, 𝑣 ′, 𝑡), 𝐴𝑛𝑠, 𝐿, 𝐿𝐹, 𝐿𝑃)
1: add (𝑘, 𝑣, 𝑣 ′, 𝑡) to 𝐿𝐹
2: 𝑁𝐹 = {𝑥 | (𝑥, 𝑣, 𝑣 ′, 𝑡) ∈ 𝐿𝐹 }
3: if 𝑁𝐹 = 𝑁𝑖 (𝑡) then
4: 𝑁 = {𝑥 | 𝑥 ∈ 𝑁𝑖 (𝑡), (𝑝, 𝑞, 𝑓 , 𝑣, 𝑣 ′, 𝑡) ∈ 𝐿, 𝑥 ∈ {𝑝, 𝑞}}
5: 𝑖 [𝑎𝑛𝑠𝑤𝑒𝑟 (⊥, 𝑓 , 𝑣, 𝑣 ′, 𝑡)]𝑥 for 𝑥 ∈ 𝑁
6: add (𝑖, 𝑣, 𝑣 ′, 𝑡) to 𝐿𝐹
7: add (⊥, 𝑓 , 𝑣, 𝑣 ′, 𝑡) to 𝐴𝑛𝑠
8: end if
9: return 𝐴𝑛𝑠, 𝐿, 𝐿𝐹, 𝐿𝑃

Additionally, due to the decentralized nature of the algorithm,
multiple agents can initiate diagnoses for different faults concur-
rently. Therefore, a single agent may be involved in multiple diag-
noses in parallel. Further, we assume that agents will continue to
execute their plans as long as their actions are not faulty. There-
fore, it is possible for several faulty agents to have stopped and are
either diagnosing their faults or have identified their faults, while
other non-faulty agents continue to execute their plans. These two
characteristics of MAD-DR differ from most existing multi-agent
diagnosis algorithms, which we will further elaborate in the Related
Work section (see Section 5).

4.3.2 Detailed Description. We now describe the pseudocode in
more detail, especially the diagnoses component and the notations
that we use.

DAI ’23, November 30-December 3, 2023, Singapore, Singapore Tran Cao Son, William Yeoh, Roni Stern, and Meir Kalech

When the self agent 𝑖 diagnoses a fault at time step 𝑡 , it initial-
izes 𝑄𝑖 (𝑡), which is the set of discrepancies of the form (𝑓 , 𝑣, 𝑣 ′)
that indicates that 𝑓 has the value 𝑣 but should have the value
𝑣 ′, and 𝑂𝑤𝑛𝑖 (𝑡), which is the set of discrepancies in 𝑄𝑖 (𝑡) that it
knows is due to one of its actions. In other words, if the agent
has an abnormal action 𝑎𝑡

𝑖
(Condition 2), then 𝑂𝑤𝑛𝑖 (𝑡) = 𝑄𝑖 (𝑡).

Otherwise (Condition 1), 𝑂𝑤𝑛𝑖 (𝑡) = ∅. The agent also updates
the set of answers 𝐴𝑛𝑠 it maintains. Each element in 𝐴𝑛𝑠 has the
form (𝑎, 𝑓 , 𝑣, 𝑣 ′, 𝑡), which means that agent 𝑎 is responsible for the
discrepancy (𝑓 , 𝑣, 𝑣 ′) at time step 𝑡 .

We write “ 𝑖 [𝑖𝑛𝑞𝑢𝑖𝑟𝑦 (𝑓 , 𝑣, 𝑣 ′, 𝑡)]𝑘” to indicate that the self agent
𝑖 sends to its neighboring agent 𝑘 an inquiry on the discrepancy in
the value of fluent 𝑓 (𝑣 instead of 𝑣 ′). As we assume that commu-
nication is perfect, this also means that agent 𝑘 receives a mes-
sage 𝑖𝑛𝑞𝑢𝑖𝑟𝑦 (𝑓 , 𝑣, 𝑣 ′, 𝑡) from agent 𝑖 . In response to an inquiry
𝑖𝑛𝑞𝑢𝑖𝑟𝑦 (𝑓 , 𝑣, 𝑣 ′, 𝑡) of agent 𝑖 , an agent 𝑘 can reply with a message
of the form “𝑘 [𝑎𝑛𝑠𝑤𝑒𝑟 (𝑎, 𝑓 , 𝑣, 𝑣 ′, 𝑡)]𝑖” indicating that it knows that
agent 𝑎 is responsible for the difference in value of 𝑓 at time 𝑡 ; or
“𝑘 [𝑎𝑛𝑠𝑤𝑒𝑟 (⊥, 𝑓 , 𝑣, 𝑣 ′, 𝑡)]𝑖” indicating that agent 𝑘 and all its neigh-
boring agents do not know which agent is responsible for it.

Agent 𝑖 also maintains a list 𝐿 of discrepancies and agents that
are interested in learning about the causes of these discrepancies.
Similarly, it also maintains a list 𝐿𝐹 of failure answers received from
neighboring agents and a list 𝐿𝑃 of discrepancies that the agent
received from neighboring agents.

When an agent receives a diagnosis message, it executes Al-
gorithm 2. If it receives a new inquiry for the first time, then it
executes the query-1 function (Algorithm 3). If the agent is the
faulty agent, then it replies with a positive answer identifying itself
as the faulty agent (Lines 3-4). If it does not have any neighboring
agents aside from those that sent it the inquiry, then it replies with
a negative answer (Lines 7-8). Otherwise, it propagates the inquiry
to its neighboring agents (Lines 9-10).

If it receives a repeated (old) inquiry, then it executes the query-2
function (Algorithm 4). If the previous inquiry has been completed
and the faulty agent has been identified, then the agent replies
with a positive answer identifying the faulty agent. If the previous
inquiry hasn’t been completed, then the agent waits for that inquiry
to be completed, after which the inquiring agent will receive an
answer.

If it receives a positive answer, then it executes the positive
function (Algorithm 5), which propagates the positive answer back
to its neighboring agents that sent the inquiry for that answer.

Finally, if it receives a negative answer, then it executes the
negative function (Algorithm 6). If the agent has received nega-
tive answers from all its neighboring agents (sans the neighboring
agents that sent the inquiry), then it propagates the negative answer
back to its neighboring agents that sent the inquiry.

5 RELATEDWORK
Diagnosis of multi-agent systems (MAS) has been extensively stud-
ied in various settings and under different sets of assumptions. For
a comprehensive discussion of prior work in this field, see a recent
survey by Kalech and Natan [19].

Early work by Micalizio et al. [24] used causal models of failures
and system behavior to detect failures online and invoke a diagnosis

engine to isolate their root causes. Similarly, de Jonge et al. [9]
proposed to first detect which actions have failed, referred to as the
primary diagnosis, and then isolate the root cause of these failures,
referred to as secondary diagnosis [9].

The literature on diagnosis of MAS focused on two types of faults:
coordination faults [8, 17, 18, 30] and plan-related faults [14, 25, 31,
36, 37]. The root cause of coordination faults is a conflict between
the beliefs of the agents, while the root cause of plan-related faults
is an agent-intrinsic reason, e.g., a mechanical failure. Our work
falls under the category of plan-related faults.

Most of the existing work on diagnosing MAS assume that while
the agents may not have a centralized controller, the diagnosis
process is centralized [9, 16, 23, 24, 28, 36–38]. Kalech et al. [18]
addressed the problem of distributed diagnosis using a Distributed
Constraint Satisfaction Problem (DisCSP) solver. However, they fo-
cused on coordination faults. Daigle et al. [8] proposed a distributed
diagnosis algorithm but they assumed a small number of agents and
also focused on coordination faults. Roos [30] applied a distributed
reinforcement learning mechanism to respond to observed failures
in multi-agent systems. Yet, their focus is on how to adapt the exist-
ing plan to overcome the failure, not on the diagnosis aspect. Also,
they assumed the agents are self-interested, while in our case they
are collaborative.

Researchers have proposed a distributed approach to diagnose
multi-agent systems for cases where the agents are collaborative but
still seek to preserve some of their information private [25]. They
used a combination of model-based diagnosis and DisCSP, sending
partial beliefs and explanations to each other until a diagnosis is
reached. An alternative approach to distributed diagnosis of MAS
is based on Spectrum-Based Fault Localization (SFL) [26]. While
it scales well and is fairly general, unlike our proposed work, it
cannot utilize knowledge about the agents plan or action models.

6 EXPERIMENTAL EVALUATION
We now describe our experimental evaluations.

6.1 Domains
We experiment with the logistics domain [22] and the multi-agent
pathfinding (MAPF) domain [42]. In the logistics domain, we con-
sider airplanes and trucks as agents. As airplanes can fly between
cities, we assume that each airplane can communicate with (and
knows the existence of) all other airplanes and all trucks (and vice
versa). However, as each truck can only move within the city it is
in, we assume that each truck can communicate with other trucks
within the same city only. In other words, trucks in different cities
cannot communicate with each other. In the MAPF domain, we
assume that each agent can communicate with (and knows the
existence of) all other agents in the problem since it is often as-
sumed that every agent can move within a same set of locations.
We experiments with the following domains:
• Logistics (two cities, one airplane, two trucks, six ob-
jects/packages): In this problem, the initial state is given in Fig-
ure 1 (left) with truck t1 and objects obj11, obj12, obj13 are
in pos1; truck t2 and objects obj21, obj22, obj23 are in pos2;
airplane apn1 is at airport apt2; and static information such as
position pos1 and airport apt1 are in city 1 and pos2 and airport

Multi-Agent Planning and Diagnosis with Commonsense Reasoning DAI ’23, November 30-December 3, 2023, Singapore, Singapore

21
22

23

pos2

apt2

T2
11

12

pos1

apt1

13T1

11

21 23

pos1

apt1
13

GoalInitial State

Figure 1: Logistics

apt2 are in city 2. Figure 1 (right) shows the goal, which is to
have objects obj11 and obj13 at airport apt1 and objects obj21
and obj23 at position pos1.
It is easy to see that this problem needs at least 13 steps to

solve: Truck t2 needs to load objects obj21 and obj23, drive
to the airport apt2, unload the two objects (5 steps); Airplane
apn1 then needs to load the two objects, fly to airport apt1, and
unloads them (5 steps); Truck t1 then needs to load the two
objects, drive to position pos1, and unload them (5 steps). In
the meantime, truck t1 can deliver the two objects obj11 and
obj13 to the airport apt1. Note that because we allow agents to
execution actions in parallel, some actions that are required to
complete the goal can overlap. Specifically, the last step of truck
t2 and the first step of airplane apn1 can be done in parallel.
Similarly, the last step of airplane apn1 and the first step of truck
t1 can be done in parallel. Therefore, the optimal plan length for
this goal is 13.
• Multi-Agent Pathfinding (MAPF) (3 agents in a 9 × 9 grid-
world): To ease the creation of situations that require diagnosis,
we force the paths to the goals of all agents to intersect at the
center of the grid by blocking all but the middle cell of the middle
column of the grid and generate the initial and goal of every
robot on opposite sides of the middle column (see Figure 2).

6.2 Implementation
The system1 is implemented using SWI-Prolog2 and clingo.3
Specifically, the environment simulator and the agent controller
are written in SWI-Prolog and the computation of the state of the
worlds after the execution of actions by agents, the diagnosis mod-
ule, the computation of plans implemented by different clingo
modules.

The environment simulator is responsible for computing the
next state of the world by receiving the action occurrences from the
agents and calling the clingo module that computes the next state
of the world. The environment also randomly generates errors, pre-
venting some actions to be successfully completed.4 The generated
errors need to be taken into consideration in the next state compu-
tation. Naturally, there are different ways to deal with unsuccessful
execution of an action, such as ignoring it and continuing with the
next action; or just abandoning the execution of the plan. In this
paper, we adopt the view that the latter view: Once the execution of
1Available at https://github.com/tcson62/dai.
2https://www.swi-prolog.org/
3https://potassco.org/
4For simplicity, we assume that this is provided as an input to the simulator.

Figure 2: MAPF Configuration (Red/Green: start/end posi-
tions of agents)

an action by an agent is unsuccessful, then all subsequent actions
will be unsuccessful. This view is influenced by the MAPF domain
in which an error occurrence often means that the robot is out of
order. The simulator is also responsible for providing the agents
with their local observations (see Section 4.1). For example, in the
logistics domain, truck t1 does not know about the existence of
truck t2 and, therefore, will not know about the truth value of the
fluent 𝑎𝑡 (𝑡2, 𝑝𝑜𝑠2) that indicates that t2 is at pos2.

The agent controller implements the main algorithm MAD-DR
and all the necessary procedures described in Section 4.3. The
communication between agents is facilitated by the tipc library
provided by SWI-Prolog. The agent controller is responsible for
executing the agent’s plan. At each step, it sends to the simulator the
action that needs to be executed; the agent controller receives the
observations, compares them with its hypothetical state, identifies
the need for diagnoses, and communicate with other agents to
identify the cause if a diagnosis is needed.

The clingo modules have been developed so that it can han-
dle commonsense fluents. For example, the default value 𝑡𝑟𝑢𝑒 of
a commonsense fluent 𝑓 is encoded by an the rule ℎ(𝑓 , 𝑡) ←
𝑐𝑜𝑚𝑚𝑜𝑛𝑠𝑒𝑛𝑠𝑒 (𝑓), 𝑛𝑜𝑡 𝑎𝑏 (𝑓 , 𝑡) and used in these modules. Abnor-
mal situations (atoms of the form 𝑎𝑏 (𝑓 , 𝑡)) can be randomly gen-
erated and integrated with the error generation module of the
simulator.

6.3 Experimental Results
To set up the experiments, we use a clingomodule to generate valid
concurrent plans for the agents. For example, Table 1 shows the plan
for the three agents in the Logistics problem where ’–’ denotes that
the agent is idle. The actions are simplified to ease the presentation.
The clingo module computes the plan with the minimal horizon
for all agents to achieve the goal of the problem. However, it does
not optimize the individual plans, i.e., some of the agents might
execute spurious actions (e.g., the airplane does not need to fly back
and forth between two airports). We now describe the results of
our experiments for each of our configuration domains.

https://github.com/tcson62/dai
https://www.swi-prolog.org/
https://potassco.org/

DAI ’23, November 30-December 3, 2023, Singapore, Singapore Tran Cao Son, William Yeoh, Roni Stern, and Meir Kalech

Table 1: Plans for Logistics

Airplane 1 Truck 1 Truck 2
1 fly(apt2, apt1) – load(obj23, pos2)
2 fly(apt1, apt2) load(obj13, pos1) load(obj21, pos2)
3 fly(apt2, apt1) load(obj11, pos1) drive(pos2, apt2)
4 fly(apt1, apt2) drive(pos1, apt1) unload(obj23, apt2)
5 load(obj23, apt2) unload(obj11, apt1) unload(obj21, apt2)
6 load(obj21, apt2)) unload(obj13, apt1) drive(apt2, pos2)
7 fly(apt2, apt1) drive(apt1, pos1) –
8 unload(obj21, apt1) drive(pos1, apt1) –
9 unload(obj23, apt1) load(obj21, apn1) –
10 load(obj13, apt1) load(obj23, apn1) –
11 unload(obj13, apt1) drive(apt1, pos1) –
12 load(obj13, apt1) unload(obj21, pos1) load(obj22, pos2)
13 unload(obj13, apt1) unload(obj23, pos1) –

6.3.1 Logistics. To see the cascading effects of action failures, we
decided to test with the case that truck t2 fails at timestep 1. Fol-
lowing our choice described earlier, this implies that all its actions
(in subsequent timesteps) will be unsuccessful. The external input
to the simulator contains one atom of the form ab("t2", 1) that
indicates that action #1 of agent truck t2 is abnormal (i.e., failed).
We make the following observations:
• Truck t2:

* It notices that its first three actions (#1, #2, #3) failed (their
preconditions are satisfied but their effects did not materialize).

* It realizes that the next two actions (#4 & #5) also failed but
these failures are consequences of its own previous failed
actions.

* It also notices that its last action (#12) failed (the precondition
is satisfied but its effects did not materialize).

* It does not send any diagnosis inquiries to other agents.
• Airplane apn1:

* The agent notices that it needs to start a diagnosis at step #5,
when its loading action failed; it sends an inquiry about the
reason for the missing object obj23 in airport apt2 to both
trucks t1 and t2.

* The agent receives the answer from truck t1 that it does not
know the reason for the missing object.

* The agent also receives a message from truck t2 indicating
that the reason is because some of its actions failed, namely the
loading of the object at position pos2 (#1) and the unloading
of the object at airport apt2 (#4).

* The agent also realizes its action #6 also failed and starts a
diagnosis process to identify the reason for the missing object
obj21 in airport apt2; similar to the other missing object, it
learns that the reason is because of truck t2.

* Finally, the agent realizes that its actions in steps #8 and #9
also failed, but realizes that it is a consequence of the failures
of its own previous actions #5 and #6 and, thus, does not send
any diagnosis inquiries to other agents.

• Truck t1:
* The agent does not report any need for diagnosis until step
#9.

* The agent sends an inquiry to airplane apn1 about the missing
object obj21 at airport apt1.

* The agent receives a response from airplane apn1 that the
reason is because some of its actions failed, namely the loading
of the object at airport apt2 (#5) and the unloading of the
object at airport apt1 (#8).

* The agent also realizes its action #10 also failed and starts a
similar diagnosis to identify the reason for the missing object
obj23 in airport apt1; similar to the other missing object, it
learns that the reason is because of airplane apn1.

* Finally, the agent needs a diagnosis at steps #12 and #13, but
realizes that it is a consequence of the failures of its own
previous actions #9 and #10 and, thus, does not send out any
diagnosis inquiries to other agents.

Overall, the number of messages sent for diagnosis is minimal
(2 from truck t1 and 4 from airplane apn1). We also ran the
experiment with other configurations: 1 error, 2 errors, and 3
errors. We observe the similar patterns for this experiment and
omit the description for brevity.

6.3.2 MAPF. In this domain, we inject an error for the first agent
that moves out of the center cell in the grid when traversing from
one side of the grid to the other. As a result, the agent will remain
in that center cell and block other agents from reaching their goals.
For this experiment, agent a2 moves out of the center cell in step
#9, and we encode this error through the atom ab("a2", 9). We
make the following observations:
• Agent a2 starts a diagnosis in step #10, which is when its action
to move out of the center cell failed; however, it does not send
out any diagnosis inquiries to other agents as it realizes that it is
the root cause of the failure.
• Agent a3 starts a diagnosis in step #11, which is when its action

to move into the center cell failed. It sends diagnosis inquries to
agents a1 and a2 to learn why the center cell is not empty when
it is supposed to be.
• Agent a1 responds that it does not know why, but agent a2
responds indicating that it is because its action to move out of
the cell failed.
• Finally, agent a1 starts a diagnosis in step #12, which is when its

action to move into the center cell failed. Similar to the previous
case, it sends diagnosis inquiries to the other two agents and
agent a2 responds indicating that it is because its action to move
out of the cell failed.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we extended Multi-Agent STRIPS (MA-STRIPS) to
Commonsense MA-STRIPS (CMA-STRIPS), which is a model that
includes commonsense fluents and axioms. We consider the diagno-
sis problem in this setting and develop a decentralized multi-agent
diagnosis algorithm called Multi-Agent Diagnosis with Decentral-
ized Reasoning (MAD-DR) for CMA-STRIPS. We also present a
proof-of-concept implementation of the algorithm with a simulator
that allows for the agents to identify diagnoses when their actions
fail. We describe our experimental evaluation of the algorithm
with two popular multi-agent domains – logistics and multi-agent
pathfinding. The experimental evaluation shows that the algorithm

Multi-Agent Planning and Diagnosis with Commonsense Reasoning DAI ’23, November 30-December 3, 2023, Singapore, Singapore

performs reasonable well but also leaves several interesting issues
for the future. First, the question of whether SWI-Prolog is the best
choice for the development of a scalable and efficient decentralized
diagnosis engine needs to be evaluated. Second, as we have men-
tioned earlier, our assumption that the failure of an action implies
failure of the agent might need to be relaxed for some applications.
Third, creating CMA-STRIPS benchmarks with commonsense fea-
tures and axioms is also an activity that should be conducted.

ACKNOWLEDGMENTS
This research is partially supported by the National Science Foun-
dation (NSF) of the United States under awards 1914635 and
2232055; the US-Israel Binational Science Foundation (BSF) un-
der award 2022189; and the National Institute of Standards and
Technology (NIST) of the United States via cooperative agreement
70NANB21H167. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the
sponsoring organizations, agencies, or the United States govern-
ment.

REFERENCES
[1] Marcello Balduccini and Michael Gelfond. 2003. Diagnostic Reasoning with

A-Prolog. Theory and Practice of Logic Programming 3, 4-5 (2003), 425–461.
[2] Chitta Baral, Sheila McIlraith, and Tran Cao Son. 2000. Formulating Diagnos-

tic Problem Solving Using an Action Language with Narratives and Sensing.
In Proceedings of the International Conference on Principles of Knowledge and
Representation and Reasoning (KR). 311–322.

[3] Daniel Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. 2002.
The Complexity of Decentralized Control of Markov Decision Processes. Mathe-
matics of Operations Research 27, 4 (2002), 819–840.

[4] Ronen I. Brafman and Carmel Domshlak. 2008. From One to Many: Planning
for Loosely Coupled Multi-Agent Systems. In Proceedings of the International
Conference on Automated Planning and Scheduling (ICAPS). 28–35.

[5] Aníbal Bregón, Matthew J. Daigle, Indranil Roychoudhury, Gautam Biswas, Xeno-
fon D. Koutsoukos, and Belarmino Pulido. 2014. An Event-based Distributed
Diagnosis Framework Using Structural Model Decomposition. Artificial Intelli-
gence 210 (2014), 1–35.

[6] Vittorio Brusoni, Luca Console, Paolo Terenziani, and Daniele Theseider Dupré.
1998. A Spectrum of Definitions for Temporal Model-based Diagnosis. Artificial
Intelligence 102, 1 (1998), 39–79.

[7] Rohan Chandra and Dinesh Manocha. 2022. GamePlan: Game-Theoretic Multi-
Agent Planning with Human Drivers at Intersections, Roundabouts, and Merging.
IEEE Robotics and Automation Letters 7, 2 (2022), 2676–2683.

[8] Matthew Daigle, Xenofon Koutsoukos, and Gautam Biswas. 2006. Distributed
Diagnosis of Coupled Mobile Robots. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). 3787–3794.

[9] Femke de Jonge, Nico Roos, and Cees Witteveen. 2009. Primary and Secondary
Diagnosis of Multi-Agent Plan Execution. Autonomous Agents and Multi-Agent
Systems 18, 2 (2009), 267–294.

[10] Johan de Kleer and Kurt Konolige. 1989. Eliminating the Fixed Predicates from a
Circumscription. Artificial Intelligence 39, 3 (1989), 391–398.

[11] Johan de Kleer, Alan K. Mackworth, and Raymond Reiter. 1992. Characterizing
Diagnoses and Systems. Artificial Intelligence 56, 2-3 (1992), 197–222.

[12] Johan de Kleer and Brian C. Williams. 1987. Diagnosing Multiple Faults. Artificial
Intelligence 32, 1 (1987), 97–130.

[13] Orel Elimelech, Roni Stern, and Meir Kalech. 2018. Structural Abstraction for
Model-based Diagnosis with a Strong Fault Model. Knowledge-Based Systems 161
(2018), 357–374.

[14] Orel Elimelech, Roni Stern, Meir Kalech, and Yedidya Bar-Zev. 2017. Diagnosing
Resource Usage Failures inMulti-Agent Systems. Expert Systems with Applications
77 (2017), 44–56.

[15] Alexander Feldman, Ingo Pill, Franz Wotawa, Ion Matei, and Johan de Kleer.
2020. Efficient Model-Based Diagnosis of Sequential Circuits. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI). 2814–2821.

[16] Meir Kalech and Gal A. Kaminka. 2005. Towards Model-Based Diagnosis of
Coordination Failures. In Proceedings of the National Conference on Artificial
Intelligence (AAAI). 102–107.

[17] Meir Kalech and Gal A Kaminka. 2007. On the Design of Coordination Diagnosis
Algorithms for Teams of Situated Agents. Artificial Intelligence 171, 8-9 (2007),
491–513.

[18] Meir Kalech, Gal A Kaminka, Amnon Meisels, and Yehuda Elmaliach. 2006. Diag-
nosis of Multi-Robot Coordination Failures Using Distributed CSP Algorithms. In
Proceedings of the National Conference on Artificial Intelligence (AAAI). 970–975.

[19] Meir Kalech and Avraham Natan. 2022. Model-Based Diagnosis of Multi-Agent
Systems: A Survey. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI). 12334–12341.

[20] Ngai Meng Kou, Cheng Peng, HangMa, T. K. Satish Kumar, and Sven Koenig. 2020.
Idle Time Optimization for Target Assignment and Path Finding in Sortation
Centers. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).
9925–9932.

[21] Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Satish Kumar,
and Sven Koenig. 2021. Lifelong Multi-Agent Path Finding in Large-Scale Ware-
houses. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).
11272–11281.

[22] Drew M McDermott. 2000. The 1998 AI Planning Systems Competition. AI
Magazine 21, 2 (2000), 35–35.

[23] Roberto Micalizio. 2013. Action Failure Recovery via Model-Based Diagnosis and
Conformant Planning. Computational Intelligence 29, 2 (2013), 233–280.

[24] Roberto Micalizio, Pietro Torasso, and Gianluca Torta. 2004. On-line Monitoring
and Diagnosis of Multi-Agent Systems: A Model based Approach. In Proceedings
of the European Conference on Artificial Intelligence (ECAI). 848–852.

[25] Avraham Natan and Meir Kalech. 2022. Privacy-Aware Distributed Diagnosis of
Multi-Agent Plans. Expert Systems with Applications 192 (2022), 116313.

[26] Avraham Natan, Meir Kalech, and Roman Barták. 2023. Diagnosis of Intermittent
Faults in Multi-Agent Systems: An SFL Approach. Artificial Intelligence 324 (2023),
103994.

[27] Raz Nissim and Ronen I. Brafman. 2012. Multi-Agent A* for Parallel and Dis-
tributed Systems. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS). 1265–1266.

[28] Lúcio S. Passos, Rui Abreu, and Rosaldo J. F. Rossetti. 2015. Spectrum-based Fault
Localisation for Multi-Agent Systems. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI). 1134–1140.

[29] Raymond Reiter. 1987. A Theory of Diagnosis from First Principles. Artificial
Intelligence 32, 1 (1987), 57–95.

[30] Nico Roos. 2018. Learning-Based Diagnosis and Repair. Communications in
Computer and Information Science 823 (2018), 1–15.

[31] Nico Roos and Cees Witteveen. 2009. Models and Methods for Plan Diagnosis.
Autonomous Agents and Multi-Agent Systems 19, 1 (2009), 30–52.

[32] Jens Schulz, Kira Hirsenkorn, Julian Löchner, Moritz Werling, and Darius
Burschka. 2017. Estimation of Collective Maneuvers through Cooperative Multi-
Agent Planning. In Proceedings of IEEE Intelligent Vehicles Symposium (IV). 624–
631.

[33] Roni Tzvi Stern, Meir Kalech, Alexander Feldman, and Gregory M. Provan. 2012.
Exploring the Duality in Conflict-Directed Model-Based Diagnosis. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI). 828–834.

[34] Peter Struss and Oskar Dressler. 1989. "Physical Negation" Integrating Fault
Models into the General Diagnostic Engine. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI). 1318–1323.

[35] Michael Thielscher. 1997. A Theory of Dynamic Diagnosis. Electronic Transactions
on Artificial Intelligence 1 (1997), 73–104.

[36] Gianluca Torta and Roberto Micalizio. 2018. SMT-based Diagnosis of Multi-Agent
Temporal Plans. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS). 2097–2099.

[37] Gianluca Torta, Roberto Micalizio, and Samuele Sormano. 2019. Explaining Fail-
ures Propagations in the Execution of Multi-Agent Temporal Plans. In Proceedings
of the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS). 2232–2234.

[38] Gianluca Torta, Roberto Micalizio, and Samuele Sormano. 2019. Temporal Multi-
agent Plan Execution: Explaining What Happened. In Proceedings of the Interna-
tional Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent
Systems (EXTRAAMAS). 167–185.

[39] Wiebe Van der Hoek and Michael Wooldridge. 2008. Multi-Agent Systems.
Foundations of Artificial Intelligence 3 (2008), 887–928.

[40] Brian C. Williams and P. Pandurang Nayak. 1996. A Model-based Approach to
Reactive Self-Configuring Systems. In Proceedings of the National Conference on
Artificial Intelligence (AAAI). 971–978.

[41] Peter Wurman, Raffaello D’Andrea, and Mick Mountz. 2007. Coordinating Hun-
dreds of Cooperative, Autonomous Vehicles in Warehouses. In Proceedings of the
National Conference on Artificial Intelligence (AAAI). 1752–1760.

[42] Peter Wurman, Raffaello D’Andrea, and Mick Mountz. 2008. Coordinating Hun-
dreds of Cooperative, Autonomous Vehicles in Warehouses. AI Magazine 29, 1
(2008), 9–20.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

	Abstract
	1 Introduction
	2 Background
	2.1 Multi-Agent STRIPS (MA-STRIPS)
	2.2 Automated Diagnosis

	3 Commonsense Multi-Agent STRIPS
	4 Commonsense Multi-Agent Diagnosis
	4.1 Observation Function of Agents
	4.2 Problem Formulation
	4.3 MAD-DR Algorithm

	5 Related Work
	6 Experimental Evaluation
	6.1 Domains
	6.2 Implementation
	6.3 Experimental Results

	7 Conclusions and Future Work
	Acknowledgments
	References

