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Abstract
The increasing use of multi-agent systems demands that many challenges be addressed. One such
challenge is diagnosing failed multi-agent plan executions, sometimes in system setups where the
different agents are not willing to disclose their private actions. One formalism for generating
multi-agent plans is the well-known MA-STRIPS formalism. While there have been approaches
for delivering as robust plans as possible, we focus on the plan execution stage. Specifically, we
address the problem of diagnosing plans that failed their execution. We propose a Model-Based
Diagnosis approach to solve this problem. Given an MA-STRIPS problem, a plan that solves it,
and an observation that indicates execution failure, we define the MA-STRIPS diagnosis problem.
We compile that problem into a boolean satisfiability problem (SAT) and then use an off-the-shelf
SAT solver to obtain candidate diagnoses. We further expand this approach to address privacy by
proposing a distributed algorithm that can find these same diagnoses in a decentralized manner.
Additionally, we propose an enhancement to the distributed algorithm that uses information generated
during the diagnosis process to provide significant speedups. We found that the improved algorithm
runs more than 10 times faster than the basic decentralized version and, in one case, runs faster
than the centralized algorithm.
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1 Introduction

In recent years, Multi-Agent Systems (MAS) have seen a significant increase in applications
in different areas such as logistics, transportation, public services, and more. In many MAS
applications, the agents are tasked with meeting a set of predefined goals. To achieve this,
each agent is given a series of actions to perform. This is called a Multi-Agent Plan (MAP).
Figure 1 demonstrates a simple example where the goal is to move a package from a location
in city 1 to a location in city 2, where trucks can travel between locations in the cities and
airplanes can fly between the cities.

Multi-Agent STRIPS (MA-STRIPS) is a well-established formalism for MAP [3, 4, 2].
Most efforts in the MA-STRIPS formalism focused on various planning algorithms and
heuristics. These advances have contributed to generating efficient plans.

When such a plan is executed, however, faults may occur unexpectedly. This may lead
to unmet goals. Some approaches address this challenge during the planning phase by
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8:2 Diagnosing Multi-Agent STRIPS Plans

Figure 1 An illustration of a package delivery problem. Every truck can move between the
locations of its respective city, and the airplane can move only between airports. The goal is to
move the packages between initial locations (closed packages) and goal locations (open packages).

computing robust plans [19]. Execution faults, however, may still occur. In such cases, it is
important to understand which actions or agents failed. This is the task of Fault Diagnosis
[22]. Fault Diagnosis explains the inconsistencies between the expected outcome of a system
run and the observed outcome. It uses knowledge about the problem, the plan, and the
execution.

Our first contribution is to define the problem of diagnosing MA-STRIPS plan execu-
tions. Our second contribution is a centralized MBD-based algorithm called MAS-DX for
solving this problem. Our third contribution addresses privacy concerns, allowing each
agent to keep private information. The algorithm, called Dec-MAS-DX, is a decentralized
MBD-based algorithm that works in three phases. First, the problem is divided into local
problems, where each local problem is relevant to a specific agent. Then, problems are solved
to generate local diagnoses. Finally, the local diagnoses are combined into the final set of
diagnoses. We propose an enhancement to this algorithm that intelligently coordinates the
diagnosis process. As the fourth and final contribution, we provide empirical evaluation
on eight MA-STRIPS domains. We conclude that the centralized algorithm (MAS-DX) has
better runtime overall, while the distributed algorithm (Dec-MAS-DX) can address privacy
and even outperforms in terms of run-time for one of the domains.

2 Literature Review

2.1 Related Work
Within the MA-STRIPS formalism [3, 4, 27], advances have tackled different problems. Some
examples include distributed [20, 2] and heuristic-based [26, 28] planning. A recent work
addressed learning the models of the actions [17].

In this work, we assume the plan is given and focus on the diagnosis part. Diagnosis
of Multi-Agent Systems has been studied in various settings w.r.t. different assumptions
about the agents and how they can fail. Some studies aim to isolate which actions have
failed during execution [8, 23, 7, 16, 29, 18]. Others aim to isolate which agents’ beliefs
made them choose actions that led to coordination failures [6, 11, 12]. We refer to [13] for a
comprehensive survey of previous work in this field.
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A very recent work has considered diagnosing plans within MA-STRIPS formalism [25].
However, they focused on extending the MA-STRIPS language to support common-sense
fluents and how these can be used for diagnosis purposes. We, on the other hand, focus
solely on the diagnosis process.

2.2 Background
MA-STRIPS is a formalism for defining multi-agent planning problems in a classical planning
setting, i.e., where actions are deterministic, and states are represented by sets of discrete
facts.

A planning problem in MA-STRIPS is defined by a tuple Π = ⟨F, k, {Ai}k
i=1, I, G⟩ where

F is a set of fluents, k is the number of agents we are planning for, Ai is the set of actions
agent i can perform, I is the initial state, and G is the desired goal. A fluent f ∈ F represents
a fact that may or may not be true in a given state. The initial state I is the set of all
the true fluents in the initial state, and the goal G is the set of fluents we want to achieve.
Every action a ∈ Ai is defined by a tuple ⟨name(a), pre(a), eff(a)⟩, where name(a) is the
name of the action, pre(a) is the action’s preconditions, and eff(a) is the action’s effects. The
preconditions and effects of an action a are sets of literals, where a literal is either a fluent or
its negation. An action a is applicable in a state s if:

for every literal l ∈ pre(a) such that l = f , the fluent f is in s.
for every literal l ∈ pre(a) such that l = ¬f , the fluent f is not in s.

Applying a to a state s results in a state denoted a(s), where:
s includes fluents f such that l = f is in eff(a).
s does not include fluents f such that l = ¬f is in eff(a).

In a multi-agent setting, it is common for agents to be able to act concurrently. The
concurrent execution of a set of actions is represented by a joint action, which is an k-ary
vector a ∈ {A1 ∪{nop}}×{A2 ∪{nop}}× · · · × {Ak ∪{nop}}, where nop represents a no-op,
i.e., that the corresponding agent does not perform any action. The preconditions and effects
of a joint action can generally be different from the preconditions and effects of its constituent
single-agent actions [1, 24]. For simplicity, we will assume in this work that the preconditions
and effects of a joint action are the corresponding union of the joint action’s constituent
single-agent actions. This assumption limits our approach to MA-STRIPS domains, where
actions do not require more than one agent to be performed. However, the set of MA-STRIPS
domains is still large enough for our approach to be relevant despite this limitation. To avoid
ambiguity, we also require that executed joint actions are well-defined [5], which means that
their effects are consistent.

▶ Definition 1 (Multi-Agent Plan). For an MA-STRIPS problem Π = ⟨F, k, {Ai}k
i=1, I, G⟩,

A plan π is a sequence of n joint actions a1,a2, ...,an such that (1) a1 is applicable in the
initial state I, (2) for each 1 < t ≤ n, at is applicable in the state at−1(...a1(I)...), and (3)
G ⊆ an(an−1(...a1(I)...)).

Table 1 shows an example of a plan that solves the MA-STRIPS problem presented
in Figure 1. The trucks and the airplane collaborate in order to deliver the packages to
their destinations. Every row in the table outlines a joint action that consists of all the
actions in that row. They can be performed together since we assume the effects of these
actions correspond to the union of the joint action’s constituent single-agent actions. A
counter-example for that is action four of the apn1 and action three of tru2. One of the effects
of the action unload(tru2, p2) is that p2 can be picked by other vehicles in the future. Only
then, apn1 can execute its action load(apn1, p2). Hence, those two actions are physically
impossible to perform simultaneously and cannot be parts of the same joint action.
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8:4 Diagnosing Multi-Agent STRIPS Plans

Table 1 Example of an MA-STRIPS plan.

# Airplane 1 Truck 1 Truck 2

1 nop drive(tru1,loc1) load(tru2,p2)
2 nop load(tru1,p1) drive(tru2,apt2)
3 nop drive(tru1,apt1) unload(tru2,p2)
4 load(apn1,p2) unload(tru1,p1) nop
5 fly(apn1,apt1) nop nop
6 unload(apn1,p2) nop nop
7 load(apn1,p1) load(tru1,p2) nop
8 fly(apn1,apt2) drive(tru1,loc1) nop
9 unload(apn1,p1) unload(tru1,p2) nop

3 Problem Definition

Executing a plan π of n joint actions on an initial state I incurs a series of n + 1 states,
where each state essentially differs from the previous one by the effects of the corresponding
joint action. We call such a series a Trajectory.

▶ Definition 2 (Trajectory). Given an initial state I and a plan π = (a1, . . . ,an), a trajectory
T (I, π) is an alternating sequence of states and joint actions (I = s0,a1, . . . ,an, sn), where
si−1 and si are the states before and after joint action ai, respectively. The triplet (si−1,ai, si)
is referred as the ith transition of the trajectory. In the rest of the paper, unless required for
context, we will denote T (I, π) simply as T .

Since MA-STRIPS domains are deterministic, the initial state I and plan π induce a
unique trajectory where for each state si it holds that si = ai(...a1(I)...). We call this
trajectory the expected trajectory and denote it as Texp(I, π). This trajectory, however, may
not represent the actual execution of the plan. We focus on the cases where, at some point,
the trajectory differs from Texp(I, π). In this work, we assume there are two reasons for this
difference. The first reason is an action that was applicable in the current state but was not
applied or did not have its intended effects. We refer to such an action as a faulty action.
The second reason is an action that is not applicable in the current state. We refer to it as a
conflicted action. Let us formally define them.

▶ Definition 3 (Faulty Action, Conflicted Action). Given a plan π for an MA-STRIPS
problem Π = ⟨F, k, {Ai}k

i=1, I, G⟩, a trajectory T (I, π) and a transition (s,a, s′) ∈ T (I, π),
a single-agent action a ∈ a is said to be faulty if it is applicable in state s, but a(s) ̸= s′,
and is said to be conflicted if it is not applicable in state s. We denote the set of faulty and
conflicted actions in trajectory T as F (T ) and C(T ), respectively.

In this work, we assume that the root causes of conflicted actions are faulty actions
caused by an internal error in one of the agents and not by causes related to the environment.
Consequently, in every trajectory T (I, π) ̸= Texp(I, π), we assume there must be at least one
faulty action.

Multi-agent systems commonly have monitoring mechanisms that collect observations
during plan execution in order to monitor execution and detect discrepancies between
expected and executed trajectories that may lead to system failures. In our work we define
observation as states that had their fluents observed.
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▶ Definition 4 (Observation). An observation O is an alternating sequence of the form
(o0,a1, o1, . . . ,an, on) where oi is a set of literals and ai is a joint action. An observation
is consistent with a trajectory T = (s0, . . . , sn) if they consist of the same sequence of joint
actions and for every i either oi is null (i.e., not observed) or oi = si. Otherwise, we say
that the observation is inconsistent with T .

In this work, we assume that each state is fully observed or not observed. We leave cases
where some of the states’ fluents are observed as future work.

▶ Example 5. For example, consider the third action of tru2 in Table 1 (unload(tru2, p2)).
Observing p2 at apt2 after the action execution is consistent with the plan since one of the
action’s effects is that p2 is at apt2. An example of an inconsistent observation is to observe
that p2 is inside tru2. In that case, the explanation is that tru2 could not carry its action to
unload p2.

In the context of diagnosis, there are 2 main approaches for models used to describe
the behaviour of faulty actions: weak fault model (WFM) and strong fault model (SFM).
Weak fault model does not specify the behaviour of a faulty action and is essentially the
negation of the normal behaviour of an action. Although simpler to implement, WFM usually
means longer run-time for computing a diagnosis due to larger size of different configurations
of faulty actions. Strong fault model, on the other hand, specifies exactly how a faulty
action should behave, and by that imposing restrictions on the states of other actions, thus
contributing to a smaller space of possible faulty action configurations. However, SFM
usually requires additional assumptions about the system, and in cases where there is more
than one candidate fault model, this can actually contribute to much higher complexity of
the diagnosis process.

In this work, we define strong model both for the behaviour of faulty actions and for
conflicted actions, and denote them by Mf and Mc, respectively. In the context of MA-
STRIPS, given an action a, Mf (a) and Mc(a) are sets of literals in the same way that
eff(a) is. Applying a faulty action a on s is denoted as (Mf (a))(s) and the resulting state is
different than the state a(s). The definition of fault and conflict models allows our approach
to be generalized to different MA-STRIPS domains, since then all one has to do is define
the specifics of Mf and Mc. The fault and conflict models we will explore in this work are
noeffect models. It means that if an action is faulty or conflicted, its effect will not occur.
In other words, for such models, Mf = Mc = ∅. Effects that do not occur are regarded as
different from those that should have occurred according to the MA-STRIPS specification.

When a fault in the execution of a plan π from starting state I occurs, the observation O,
collected during the execution, is inconsistent with the expected trajectory Texp(I, π). This
means that for at least one transition (si,a, si+1) in Texp(I, π), it holds that si+1 ̸= oi+1.
This inconsistency indicates that at least one action was faulty when executing π. In that
case, the observation O represents a trajectory T ′ that is different from Texp(I, π). In fact,
whenever a set of actions becomes faulty, this corresponds to a trajectory that is different
from the expected one. Let us define the set of possible trajectories T (I, π):

▶ Definition 6 (The set of possible trajectories). For a starting state I and a plan π, the
set of possible trajectories T (I, π) is the set of every possible trajectory that can result by an
execution of the plan π where some (or none) of the actions are faulty.

Note two things. First, Texp(I, π) ∈ T (I, π) by definition. Second, since this definition is not
in the context of fault and conflict models, it includes trajectories that, given a specific fault
and conflict models, might be impossible. Therefore, we further define the set of trajectories
for fault and conflict models Mf and Mc:
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8:6 Diagnosing Multi-Agent STRIPS Plans

▶ Definition 7 (The set of trajectories for Mf and Mc). For a starting state I, a plan
π, and fault and conflict models Mf and Mc, the set of trajectories T (I, π,Mf ,Mc) is the
set of every trajectory T (I, π) where for every transition (si,a, si+1), either si+1 = oi+1,
(Mf (a))(si) = oi+1 or (Mc(a))(si) = oi+1.

We can now define the MA-STRIPS diagnosis problem. An MA-STRIPS diagnosis
problem arises when the observation O is not consistent with the expected trajectory
Texp(I, π). A diagnosis is then defined to be a set of actions that, if assumed to be faulty or
conflicted, make the O consistent with Texp(I, π). Formally:

▶ Definition 8 (MA-STRIPS Diagnosis problem). An MA-STRIPS diagnosis problem
is defined by a tuple ⟨Π, π,O,Mf ,Mc⟩, where Π = ⟨F, k, {Ai}k

i=1, I, G⟩ is an MA-STRIPS
problem, π is a plan that solves it, O is the observation received by executing π from I, Mf

is the fault model and Mc is the conflict model. A diagnosis problem arises when O is not
consistent with Texp(I, π), or in other words, there exists a transition (si,a, si+1) such that
si+1 ̸= oi+1. A diagnosis for an MA-STRIPS diagnosis problem is a set of single agent actions
ω = {ai1 , ai2 , ...} from the plan π such that there exists a trajectory T ∈ T (I, π,Mc,Mf ) that
is consistent with O where F (T ) = ω.

We continue to describe our approach for solving this problem, which involves modelling
the problem as a SAT problem.

4 Centralized diagnosis approach

In this section, we present MAS-DX, a centralized approach for solving a MA-STRIPS
diagnosis problems. MAS-DX formulates the MA-STRIPS Diagnosis problem as a classical
Model-Based Diagnosis (MBD) problem and then solves it using an off-the-shelf MBD
algorithm [22]. First, we provide a brief background on MBD.

4.1 MBD Background
An MBD problem is a tuple ⟨SD,COMPS,OBS⟩ where SD, COMPS, and OBS denote
the system description, the set of components, and the observations, respectively. In a Weak
Fault Model (WFM) setting, SD takes into account that some components might be faulty
without specifying a fault mode. In that case, the unary predicate h(·) on the components
specifies that h(c) is true if component c is healthy, and ¬h(c) is true if c is not healthy.
When the assumption that all components are healthy is inconsistent with the system model
and observed system behavior, a diagnosis problem arises. This is formalized as follows:

SD ∧
∧

c∈COMP S

h(c) ∧ OBS ⊢ ⊥

where ⊢ means to entail and ⊥ means dissatisfaction. By that, ⊢ ⊥ means that the formula
cannot be satisfied, or in other words, inconsistent.

Diagnosis approaches try to find diagnoses, which are possible ways to explain the above
inconsistency by assuming that some components are not healthy, and that adhere to the
principle of parsimony. Such approaches define diagnosis as a set of components ∆ if:

SD ∧
∧

c∈∆

¬h(c) ∧
∧

c/∈∆

h(c) ∧ OBS ⊬ ⊥
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and where for each ∆′ ⊆ ∆,

SD ∧
∧

c∈∆′

¬h(c) ∧
∧

c/∈∆′

h(c) ∧ OBS ⊢ ⊥

This is also known as minimal subset diagnosis.
Strong fault model, on the other hand, assumes a model f that defines the effects of a

faulty action. In that case, a diagnosis δ will be a set of components such that:

SD ∧
∧

c∈∆

f(c) ∧
∧

c/∈∆

h(c) ∧ OBS ⊬ ⊥

In this work we assume strong fault models, as discussed in section 3. What this essentially
means is that SD extends the healthy behaviour specification with specifications of faulty
behaviour [9].

4.2 MA-STRIPS Diagnosis as MBD

MAS-DX formulates a given MA-STRIPS Diagnosis problem as an MBD problem by specify-
ing SD, COMPS, and OBS as follows. OBS are the sets of literals O = (o0,a1, o1, . . . ,an, on)
observed in the plan execution observation as defined in Definition 4. The system compon-
ents are mapped to the single-agent actions in the plan: COMPS = {{ai,t}k

i=0}n
t=0, where k

denotes the number of agents and n the length of the plan. Three health-state predicates h(·),
f(·) and c(·) over the action space specify whether an action is healthy, faulty, or conflicted.
The system description SD specifies how the fluents of a state in time t change given a
single-agent action at. Fluents that are not in the effects of any single-agent action at time t
retain their current values. Fluents that are in the effects of an action change their values
according to the health state of the action. If the action is normal, the fluent changes its
value according to the effects eff(at). If the action is faulty or conflicted, the fluent changes
its value according to the fault or conflict model, respectively.

To solve the resulting MBD problem, MAS-DX compiles it into a Boolean satisfiability
problem (SAT). A SAT problem is defined by a conjunction of boolean literals, and a solution
is an assignment of true or false values to those literals, such that the entire formula is true
[10]. In the next section, we show how MAS-DX formulates the different parts of our MBD
problem as SAT Boolean formulas.

4.3 MA-STRIPS as SAT

4.3.1 Fluents as SAT variables

Recall that in our MA-STRIPS domain, every state is defined as a set of fluents. Thus, for
every time-step t, we define for each fluent f ∈ F a Boolean variable ft. This allows us to
model every state s as a conjunction of Boolean variables st =

∧
1≤j≤|F | f

j
t . Setting f j

t to
true means that the fluent f j was part of st.

4.3.2 COMPS as SAT variables

Since we want to find the faulty actions, we model COMPS as the set of actions COMPS =
{{ai,t}k

i=0}n
t=0, where k denotes the number of agents and n the length of the plan.
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8:8 Diagnosing Multi-Agent STRIPS Plans

4.3.3 OBS as SAT assignments
We encode every observed fluent by setting its corresponding Boolean variable value to true
or false. Setting f j

t to true represents that fluent f j was observed as part of state st.

4.3.4 SD as a conjunction of SAT formulas
Defining SD essentially means defining how the values of the temporal variables ft change in
every time step t. This is determined by the health state of an action ai,t. To that end, we
model SD as a conjunction of Boolean formulas.

For each action ai,t, we define how each health state entails the values of fluents in the
preconditions of the action. Formally:
1. h(ai,t)→

∧
fj∈pre(ai,t) f

j
t

2. f(ai,t)→
∧

fj∈pre(ai,t) f
j
t

3. c(ai,t)→ ¬(
∧

fj∈pre(ai,t) f
j
t )

Note that normal and faulty actions entail the same fluent values. This is because what
differentiates the two health states is whether the effects occur according to the plan or the
fault model.

For each action, the health predicates are mutually exclusive, meaning that exactly one
of them must be true:
4. h(ai,t)⊗ f(ai,t)⊗ c(ai,t)

The second group of formulas we define are the transition formulas. For each variable f j
t ,

we specify how its value changes in the next state st+1. We distinguish between four types
of variables in time step t:

variables not in any action effects at time t.
variables in action effects of a normal action at time t.
variables in action effects of a faulty action at time t.
variables in action effects of a conflict action at time t.

For each variable type, we define the transition formulas. We begin by defining the
transition of variables that are not in any action effects. We do not assume any exogenous
events in our work and therefore, in that case the values stay the same as the values of the
previous state. Formally:

5.
∧

fj /∈
⋃k

i=1
eff(ai,t) f

j
t+1 ↔ f j

t

Values of variables that are in the effects of normal actions are set in the next state to
the values according to the actions’ effects. Formally:

6. h(ai,t)→
∧

fj∈eff(ai,t) f
j
t+1

Values of variables included in faulty and conflicted actions are set in the next state to
the values according to the respective fault and conflict models. Formally:
7. f(ai,t)→ Φf (i, t)

8. c(ai,t)→ Φc(i, t)
where Φf (i, t) and Φc(i, t) represent the formulas encoding the fault and conflict models Mf

and Mc.
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The fault and conflict models are general and can be defined independently from the
model of the system description. In this work, we explore the noeffect fault and conflict
models, defined as such:
9. Φf (i, t)→

∧
fj∈eff(ai,t) ft+1 ↔ ft

10. Φc(i, t)→
∧

fj∈eff(ai,t) ft+1 ↔ ft

Using those formulas, we define the complete SD model:

SD =
n∧

t=1

(( ∧
fj /∈

⋃k

i=1
eff(ai,t)

f j
t+1 ↔ f j

t

)
∧

(
h(ai,t)→

∧
fj∈eff(ai,t)

f j
t+1

)
∧

(
f(ai,t)→ Φf (i, t)

)
∧

(
c(ai,t)→ Φc(i, t)

)
∧

(
h(ai,t)⊗ f(ai,t)⊗ c(ai,t)

))
MAS-DX solves the resulting SAT problem using an off-the-shelf SAT solver, and yields

a set of boolean assignments that satisfy the SD model. Each one of these assignments can
be translated into a diagnosis. Given an assignment ψ and a variable ai,t, action ai that
was executed in time t is healthy if h(ai,t) = true, faulty if f(ai,t) = true, and conflicted if
c(ai,t) = true. Actions with a faulty health state are the diagnosis of the problem.

▶ Example 9. As an example, consider Table 1. Let us assume that action 2 of agent 2
(a2,2 = drive(tru2, apt2)) failed, causing action a2,3 to become conflicted. Because of that,
agent 0 (the airplane) will not execute actions a0,4, a0,6, since the package p2 will not be at
the airport. Consequently, agent 1 (truck 1) will fail its actions a1,7, a1,9, and the package p2
will be observed inside agent 2 at the time of the task execution. In this scenario, MAS-DX
will assign a faulty health state to action a2,2, since the preconditions will be valid, but the
effects will not be as expected. This will be done using formulas 2, 47 in the problem model.
MAS-DX will continue assigning health state values in the same manner, returning a solution
where action a2,2 is faulty and actions a2,3, a0,4, a0,6, a1,7, a1,9 are conflicted.

4.3.5 Proofs of soundness and completeness
▶ Theorem 10 (Soundness). Every variable assignment returned by MAS-DX corresponds to
a valid diagnosis.

Proof. Let ψ be an assignment of health state values returned by MAS-DX. To prove the
theorem, we show that the values of the health states of the actions are consistent with the
observations. In ψ, the values of the observations are already set at the time of the problem
modelling. Meaning that {f1

0 , . . . , f
|F |
0 , . . . , f1

t , . . . , f
|F |
t , . . . , f1

t′ , . . . , f
|F |
t′ , . . . , f1

n, . . . , f
|F |
n }

which are the values of the fluents in the observed states are set (which means some states
that are not observed do not have set values).

Following Formula 4, for every time step and for every agent, exactly one of the health
state variables h(ai,t), f(ai,t), c(ai,t) is true, where ai,t is the action that agent i was planned
to execute at time step t. In addition, Formulas 1− 3, 6− 8 mean that the fluent variables of
the preconditions and the effects are consistent with the chosen health states. These fluents
are fluents with indices t and t + 1 that correspond to states St and St+1. In turn, those
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equations mean that each value of these fluents is consistent with the actions in time steps
t− 1 and t+ 1. In addition, fluents that are not part of effects or preconditions in time step
t, get in time step t+ 1 the same values. This is ensured by Formula 5.

Following the same logic, the values reach consistency with the fluent values that were set
as part of the observation, during the modelling of the problem. This means that the health
state values are consistent with the observations, which is the definition of a diagnosis. ◀

▶ Theorem 11 (Completeness). MAS-DX returns a variable assignment for every valid
diagnosis.

Proof. Suppose a valid diagnosis d for which the assigned action health state values are
consistent with the observations, and for which, the observations consist of the following
observed states: {S0, . . . , St, . . . , St′ , . . . , Sn}. MAS-DX encodes them as fluent variables
with set values {f1

0 , . . . , f
|F |
0 , . . . , f1

t , . . . , f
|F |
t , . . . , f1

t′ , . . . , f
|F |
t′ , . . . , f1

n, . . . , f
|F |
n }.

Suppose that according the d, the first faulty action is action ai,t. Throughout the
assignment process, MAS-DX assigns variables to actions and state fluents such that all
actions before ai,t are healthy and all fluents up to f1

t , . . . , f
|F |
t change according to formulas

1, 5, 6. At time t, MAS-DX considers the fluents f1
t , . . . , f

|F |
t that represent state St. Their

values, are consistent with the formulas defining the preconditions of action ai,t. Thus, this
action can not be conflicted, and the other two options are faulty or healthy. Each option
influences the values of the fluents f1

t+1, . . . , f
|F |
t+1 that are part of the effects of ai,t. From

this point on, MAS-DX continues to set different values to state variables, representing the
states St+1, . . . Sn. Following the same process, MAS-DX will check its value assignment
with all of the fluents that represent the observed states, and since d is a valid diagnosis, one
of these checks will satisfy all of the value assignments. ◀

5 Distributed Diagnosis Approach

MAS-DX is designed to be executed by a central diagnoser that has full access to the
information defining the diagnosis problem. The leading assumption here is that the system
has all the relevant information in one place, or, that once a diagnosis process begins,
the agents voluntarily submit any private information that is required. Thanks to that
assumption, MAS-DX is able to model the entire problem as MBD and solve it.

Relaxing such an assumption allows addressing problems where the system description
(e.g., the actions of the agents and the fluents) is not available to a central diagnoser. However,
the approach we propose in section 4 is not suitable for such cases. Consider, for example,
Figure 1. There could be a case where the trucks do not share information about their
private actions with an outside diagnoser. We could try to use a diagnoser per truck, but
then the private information of other trucks will not be available, which will lead to incorrect
modelling of each one of the per-truck diagnosers.

To address this, we propose Dec-MAS-DX, a distributed diagnosis approach for solving
MA-STRIPS diagnosis problems. In Dec-MAS-DX, each agent is associated a diagnoser, that
models the information available to the agent (private and public). Dec-MAS-DX consists of
two main parts. The first part, where each agent attempts to infer diagnoses based on the
public information combined with its private information. That information includes the
fluents and actions relevant to that agent. At this point, the computed diagnoses are not
yet correct - there are duplicates and some diagnoses contradict each other. In the second
part, the agents combine these diagnoses in order to converge to diagnoses that are not
contradicting each other, and also do not have duplicates.
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5.1 Local MA-STRIPS Diagnosis
Prior work on MA-STRIPS used the notion of private and public fluents and actions for each
agent [14, 15]. A fluent is private for agent i if it does not appear in the preconditions or
effects of any other agent’s action. An action is private for agent i if its preconditions and
effects only include fluents that are private for that agent. We draw from this definition to
define in a similar manner the notions of relevant fluents and relevant actions.

Unlike private fluents and actions, relevant fluents and actions are defined with respect
to the specific plan the agents attempted to execute. This distinction is important for two
reasons. First, it means that the plan π, generated as the solution to an MA-STRIPS problem
Π, has a major role in defining how the SAT modelling will look like. Second, it means that
different plans will define different sets of actions and fluent as relevant to different agents.

▶ Definition 12 (Relevant Fluent). A fluent f ∈ F is defined as relevant to agent i if
∃a ∈ Ai : f ∈ pre(a) ∪ eff(a) ∨ ¬f ∈ pre(a) ∪ eff(a). We denote the set of relevant fluents to
agent i as Ri(F ).

▶ Definition 13 (Relevant Action). An action a is defined as relevant to agent i if ∃f ∈
Ri(F ) : f ∈ pre(a) ∪ eff(a) ∨ ¬f ∈ pre(a) ∪ eff(a). We denote the set of actions relevant to
agent i as Ri(A), where A =

⋃k
i=1 Ai is the union of the agents’ actions.

Considering these definitions, we can look at the parts of Π and π relevant to agent i. We
call this the local view of agent i. The part of the MA-STRIPS planning problem relevant
to agent i is Πi = ⟨Ri(F ), k,Ri(A), I, G⟩, and the plan πi is defined as a sequence of joint
actions ai

1,ai
2, ...,ai

n where each joint action ai
t is a subset of the joint action at that includes

only actions a ∈ at that are relevant to agent i. Actions in at that are not in Ri(A) are
replaced by {nop} in at.

We can now define the local MA-STRIPS Diagnosis problem for agent i using only its
relevant fluents and actions.

▶ Definition 14 (Local MA-STRIPS Diagnosis Problem). A Local MA-STRIPS Diagnosis
problem for agent i is a tuple (Πi, πi, O,Mf ,Mc) where Πi = ⟨Ri(F ), k,Ri(A), I, G⟩ defines
the parts of Π relevant to agent i, πi is the series of joint actions of plan π that contain only
actions relevant to agent i, Oi is the observation received by executing π from I that includes
only fluents relevant to agent i, Mf is the fault model and Mc is the conflict model. A local
MA-STRIPS diagnosis problem arises when Oi is not consistent with Texp(I, π). A diagnosis
for that problem is a set of single agent actions ωi = {aj1 , aj2 , ...} from πi such that there
exists a trajectory T ∈ T (I, π,Mc,Mf ) that is consistent with Oi where Fi(T ) = ωi.

5.2 Local MA-STRIPS Diagnosis as MBD
Dec-MAS-DX formulates a given local MA-STRIPS diagnosis problem as MBD by specifying
SD, COMPS and OBS in a similar way done by MAS-DX, with some important differences.

The first difference is that the components and fluents of the local MA-STRIPS Diagnosis
problem for agent i are defined with relation to the local view of agent i. The problem for agent
i is modelled as the tuple (SDi,OBSi,COMPSi) where OBSi are the sets of literals observed
in the plan execution that are positive or negative fluents in Ri(F ). The system components
are mapped to the actions relevant to agent i: COMPSi = {{ai,t}k

i=0}n
t=0 s.t. ai,t ∈ Ri(A).

The second difference is with the health states defining each component. Here, we need
to separate Ri(A) into two sets - actions that are executed by agent i and actions that are
executed by other agents but are relevant to agent i. Formally:
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▶ Definition 15 (Internal Action, External action). Given the local diagnosis problem
(Πi, πi, O,Mf ,Mc) for agent i, an Internal Action is an action a ∈ Ri(A) such that a ∈ Ai,
and external action is an action a ∈ Ri(A) such that a /∈ Ai. We denote the set of
internal and external actions for agent i as Ii(A) and Ei(A), respectively. It holds that
Ii(A) ∪ Ei(A) = Ri(A) and Ii(A) ∩ Ei(A) = ∅.

The health states for actions in Ii(A) are defined by the same three health-state predicates
as before: h(·), f(·) and c(·). The same predicates cannot be used for actions in Ei(A). The
reason is the fact that such actions are external to agent i, and by definition, only part of
the fluents in their preconditions are actually visible to i in its local view (see Definitions 12,
13). To address this, we introduce additional three health state predicates, corresponding to
the original three: external healthy, external faulty and external conflicted, and we denote
them as eh(·), ef(·) and ec(·), respectively.

Given these changes, SDi specifies how the fluents of a state change according to the
health states of the actions relevant to agent i. In the next section we specify how we encode
those changes as SAT boolean formulas.

5.3 Local MA-STRIPS as SAT
5.3.1 Fluents as SAT variables
For every time-step t, we define for each fluent f ∈ Ri(F ) a boolean variable ft. This allows
us to model every state s as a conjunction of Boolean variables st =

∧
1≤j≤|Ri(F )| f

j
t . Setting

f j
t to true means that the fluent f j was part of st.

5.3.2 COMPS i as SAT variables
We model COMPS i as the set of actions COMPS i = {{ai,t}k

i=0}n
t=0 s.t. ai,t ∈ Ri(A), where

k denotes the number of agents and n the length of the plan.

5.3.3 OBS i as SAT assignments
We encode every observed fluent by setting its corresponding boolean variable value to true
or false. Setting f j

t to true represents that fluent f j was observed as part of state st.

5.3.4 SDi as a conjunction of SAT formulas
We model SD as a conjunction of Boolean formulas in a similar way we modelled MAS-DX,
except for some changes.

For each action ai,t ∈ Ii(A), we define how healthy, faulty, and conflicted health states
entail the values of fluents in the preconditions of the action. Formally:

11. h(ai,t)→
∧

fj∈pre(ai,t) f
j
t

12. f(ai,t)→
∧

fj∈pre(ai,t) f
j
t

13. c(ai,t)→ ¬(
∧

fj∈pre(ai,t) f
j
t )

We do not specify such formulas for the actions ai,t ∈ Ei(A), since by definition, the agent
does not know the full set pre(ai,t) of its external actions. In other words, the variables
eh(ai,t), ef(ai,t) and ec(ai,t) do not entail anything about the preconditions of the action.

For each temporal action ai,t ∈ Ii(A), the health predicates are mutually exclusive,
meaning that exactly one of them must be true. The same is done for actions ai,t ∈ Ei(A):

12. h(ai,t)⊗ f(ai,t)⊗ c(ai,t)
13. eh(ai,t)⊗ ef(ai,t)⊗ ec(ai,t)
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We define the transition formulas similarly to MAS-DX, but with relation to the local
view of agent i. In addition, we add transition formulas for the innocent and guilty health
states.We begin with transition of variables f j ∈ Ri(F ) that are not in any action effects:

14.
∧

fj∈Ri(F ) s.t. fj /∈
⋃k

i=1
eff(ai,t) f

j
t+1 ↔ f j

t

Values of variables f j ∈ Ri(F ) that are in the effects of normal actions are set in the
next state to the values according to the actions’ effects. Formally:

15. h(ai,t)→
∧

fj∈Ri(F ) s.t. fj∈eff(ai,t) f
j
t+1

Values of variables included in faulty and conflicted actions are set in the next state to
the values according to the respective fault and conflict models. Formally:

16. f(ai,t)→ Φf (i, t)
17. c(ai,t)→ Φc(i, t)
where Φf (i, t) and Φc(i, t) represent the formulas encoding the fault and conflict models Mf

and Mc.
We encode similar formulas for actions ai,t ∈ Ei(A):

18. eh(ai,t)→
∧

fj∈Ri(F ) s.t. fj∈eff(ai,t) f
j
t+1

19. ef(ai,t)→ Φf (i, t)
20. ec(ai,t)→ Φc(i, t)

The fault and conflict models are the same as described previously, but here they effect
only the relevant fluents.
9. Φf (i, t)→

∧
fj∈Ri(F ) s.t. fj∈eff(ai,t) ft+1 ↔ ft

10. Φc(i, t)→
∧

fj∈Ri(F ) s.t. fj∈eff(ai,t) ft+1 ↔ ft

Using those formulas, we define the complete SD model:

SDi =
n∧

t=1

(( ∧
fj∈Ri(F ) s.t. fj /∈

⋃k

i=1
eff(ai,t)

f j
t+1 ↔ f j

t

)
∧

(
h(ai,t)→

∧
fj∈Ri(F ) s.t. fj∈eff(ai,t)

f j
t+1

)
∧

(
f(ai,t)→ Φf (i, t)

)
∧

(
c(ai,t)→ Φc(i, t)

)
∧

(
h(ai,t)⊗ f(ai,t)⊗ c(ai,t)

)
∧

(
eh(ai,t)→

∧
fj∈Ri(F ) s.t. fj∈eff(ai,t)

f j
t+1

)
∧

(
ef(ai,t)→ Φf (i, t)

)
∧

(
ec(ai,t)→ Φc(i, t)

)
∧

(
eh(ai,t)⊗ ef(ai,t)⊗ ec(ai,t)

))
Solving this model for agent i will result in sets of health state assignments to the actions

relevant to agent i. At this point, some assignments are incorrect due to the partial knowledge
that agent i has. The next stage in this approach is to combine the diagnoses of the agents
to achieve global diagnoses, which means a set of correct health state assignments that can
explain the local observations of all of the agents.
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Algorithm 1 computeGlobal.

Input: T - plan size
Input: k - agents number
Input: {LDi}k

i=1 - sets of local diagnoses
Result: GD - a set of global diagnoses

1 sort {LDi}k
i=1 by local diagnoses number

2 GD ← LD1
3 for i ∈ [2, ..., k] do
4 NGD ← ∅
5 for gd ∈ GD do
6 for ld ∈ LDi do
7 ngd← combine(k, T, gd, ld)
8 if ngd ̸= None ∧ ngd /∈ NGD then
9 NGD ← NGD ∪ ngd

10 GD ← NGD
11 return GD

5.4 Combining the Diagnoses
At this point, each agent i has a set of local diagnoses LDi = {ldi,1, ldi,2, ...}. Each such
local diagnosis contains one assigned health state to each action in Ri(A). At this stage,
some agents might have local diagnoses that disagree about the health state of some actions.
The next stage is to combine those local diagnosis sets into one set of global diagnoses, where
the agents agree on the health states of the actions.

Algorithm 1 presents this process. The algorithm sorts the agents by the number of local
diagnoses from lowest to highest (line 1) and initializes the global diagnosis set as the set
of local diagnoses of the first agent (line 2). Then, the algorithm iteratively goes over the
agents (Line 3). For every agent, it tries to combine every global diagnosis with every local
diagnosis of that agent (Lines 5-7). If the global and local diagnoses agree on their health
states, the combination is successful, and the algorithm records the updated diagnosis (Lines
8-9). Finally, the algorithm saves the list of updated global diagnoses (line 10). At the end
of the iteration of the last agent, the set of global diagnoses is returned.

▶ Example 16. As an example, consider Table 1 again. Let us assume that action 2 of
agent 2 (a2,2 = drive(tru2, apt2)) failed, causing action a2,3 to become conflicted. Because
of that, agent 0 could not execute action a0,4 = load(apn1, p2). Agent 0 can not determine
whether a2,3 is faulty or conflicted because it does not know about action a2,2, which is
not relevant to agent 0. Hence, agent 0 outputs two diagnoses. In one, f(a2,3) is true, and
in another c(a2,3) is true. Both diagnoses are inserted into the global diagnoses set to be
updated. When these diagnoses are examined by agent 2, it removes the diagnosis where
f(a2,3) is true. The remaining diagnosis (c(a2,3)) is corresponding to the local diagnosis of
agent 2, where f(a2,2) and c(a2,3) are true.

Algorithm 2 outlines the process of the combination of two diagnoses. For clarity, we
denote the different health predicates as H(aj,t). For example Hld(aj,t) denotes the calculated
health state of action a of agent j at time t, according to diagnosis ld. In addition, we extend
the equality between health states to include equality between internal and external versions
of a health state, for the pairs h(·) and eh(·), f(·) and ef(·), c(·) and ec(·). This way, if
an agent diagnosed his internal action ai,t as healthy (h(·)), and another agent diagnosed
the same (now external from his local view) action as externally healthy (eh(·)), then the
algorithm will get a false value in line 4.
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Algorithm 2 combine.

Input: k - agent number
Input: T - plan length
Input: gd - global diagnosis
Input: ld - local diagnosis
Result: updated global diagnosis

1 ngd← gd

2 for i ∈ [1, ..., k] do
3 for t ∈ [1, ..., T ] do
4 if Hgd(ai,t) ̸= Hld(ai,t) then
5 return None
6 else if ∄Hgd(ai,t) ∧ ∃Hld(ai,t) then
7 Hgd(ai,t)← Hld(ai,t)
8 return ngd

The algorithm iterates over all of the agents and time-steps in the plan (Lines 2-3). For
every agent and step, in case the health states in the global diagnosis is different than the
health state of the local diagnosis, the combining fails, and the algorithm returns no updated
global diagnosis (Lines 4-5). Otherwise, if the global diagnosis does not have a health state
concerning an action ai,t and the local diagnosis does have it, then the health state of ai,t

in the global diagnosis is updated according to the value in the local diagnosis (Lines 6-7).
Once the algorithm finishes iterating (Line 8), it returns the updated global diagnosis.

5.5 Proofs of completeness and privacy
We prove completeness by showing that Dec-MAS-DX returns the same set of diagnoses as
MAS-DX. We first define the Projected MA-STRIPS Diagnosis problem:

▶ Definition 17 (Projected MA-STRIPS Diagnosis problem). Let DX = (Π, π,O,Mf ,Mc) be
a given MA-STRIPS diagnosis problem and Ag ⊆ {1, . . . , k} be a set of agents. We define
the Projected MA-STRIPS Diagnosis problem DxAg as the projection of DX that includes
only fluents and actions relevant to at least one of the agents in Ag.

The problem DxAg can be viewed as a diagnosis problem by itself. Hence, we can model
it as a SAT model in the same way we model a local MA-STRIPS diagnosis problem. We
denote this model as DX-ModelAg. We next prove the following theorem:

▶ Theorem 18 (Invariant: Consistency of combined diagnosis). After agent i finishes combining
the set of local diagnoses LDi with the set of global diagnoses GDi−1, the set of global diagnoses
GDi includes the exact diagnosis set received by solving the SAT model DX-Model1,...,i.

Proof. By induction on the number of agents.
Base (agent 1): For the first agent the diagnoses in LD1 are inserted directly GD1. Hence,

GD1 is the set of diagnoses obtained by solving the SAT model DX-Model1.
Inductive Hypothesis: Assume for agent i.
Inductive Step: Consider agent i + 1, its set of local diagnoses LDi+1 and the set of

global diagnoses GDi received from agent i. Let there be a global diagnosis gd ∈ GDi and a
local diagnosis ld ∈ LDi+1 that agent i+ 1 currently tries to combine. Consider the health
values Hgd(ai′,t) and Hld(ai′,t) of some action for agent i′ at some time t according to gd
and ld, respectively. We consider three cases:
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1. The health variable is H(ai′,t) has a value in ld but does not have a value in gd. In this
case, action ai′,t is not relevant for any of the agents 1, ..., i, and because of that, the
global diagnosis does not keep a health state value. By the inductive hypothesis, that
means that in DX-Model1,...,i there is no variable representing ai′,t. In the local model
of agent i + 1 there is a variable for action ai′,t, and there are constraints related to
this variable. Hence, when adding the variable and the constraints to DX-Model1,...,i one
possible diagnosis will be gd with the addition of the value of Hld(ai′,t) as set in ld. The
Combine method of Dec-MAS-DX (given in Algorithm 2) returns the same diagnosis.

2. The health value of H(ai′,t) in gd and ld is the same. In this case, the existence of a
health value for ai′,t both in gd and ld implies that the variable for that action exists both
in DX-Model1,...,i and the local model of agent i+ 1. Additionally, Hgd(ai′,t) = Hld(ai′,t)
implies that the health state value for action ai′,t in gd is consistent with the constraints
in the model of agent i+ 1. This means that if the constraints related to action ai′,t in
the model of agent i+ 1 are added to DX-Model1,...,i, the diagnosis gd will be generated.
In that case, the diagnosis gd is consistent with DX-Model1,...,i+1.

3. The health value of H(ai′,t) in gd and ld is not the same. Similarly to case 2, the
existence of a health value for ai′,t both in gd and ld implies that the variable for that
action exists both in MA-STRIPS-DX1,...,i and the local model of agent i+ 1. However,
Hgd(ai′,t) ̸= Hld(ai′,t) implies that the health value of ai′,t that is consistent with the
constraints of MA-STRIPS-DX1,...,i is not consistent with the constraints of the local
model of agent i+ 1 and hence, the set of values in gd combined with the value Hld(ai′,t)
are not part of a diagnosis, consistent with MA-STRIPS-DX1,...,i+1. In that case, the
combine method of Dec-MAS-DX does not continue with the combination process and
returns none instead, indicating that the combination of gd and ld is not valid. ◀

▶ Theorem 19 (Completeness). Dec-MAS-DX returns all the diagnoses.

Proof. We prove completeness by showing that Dec-MAS-DX returns the same set of
diagnoses as our centralized algorithm, MAS-DX.

From Theorem 18 it follows that when agent k finishes combining the diagnoses, the global
diagnoses it returns is the set of diagnoses corresponding to the set of diagnoses returned
by solving DX-Model1,...,k, which is the same as the centralized model. Hence, the global
diagnoses returned by agent k are the same as the diagnoses returned by MAS-DX. ◀

▶ Theorem 20 (Privacy). If a fluent f is only relevant to a single agent, then no other agent
can infer its value during the diagnosis process.

This statement about privacy stems from the fact that the value of this fluent is not in the
local view of any other agent. Moreover, whether the value of this fluent is true or false
has no direct impact on the applicability or health state of any action of any other agents.
Otherwise, it would have been relevant. Note that some fluents that are public, in terms of
MA-STRIPS, may still be only relevant to one agent due to the concrete plan the agents
were trying to execute.

5.6 Enhancing the Distributed Algorithm
In our Dec-MAS-DX algorithm, once the problem is divided, each local problem has fewer
variables in its local MBD formulation but also fewer constraints. This expands the search
space, especially for agents that have a lot of external relevant actions.

To address this, we propose an enhanced version of Dec-MAS-DX, which we call Dec-
MAS-DX+, in which the agents decide on a computation order based on the upper bound
of possible diagnoses of each agent. This number can easily be deduced from the number
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of possible health assignments of each agent’s relevant actions. If agent i is the one with
the lowest bound, it begins its local diagnosis process. Upon finishing, agent i updates the
possible health states of its relevant actions. For example, if all of the local diagnoses state
that action ai,t is healthy, then agent i updates the possible health values of action ai,t to
exclusively healthy. This update includes external actions that are visible to other agents.
Then, the remaining agents use the updated possible health states to compute an updated
upper bound for the number of diagnoses and decide which agent to perform the local
diagnosis next, and so on. At the end of this process, the agents perform the combination
process as shown in Algorithm 1, in order to get the final set of global diagnoses.

6 Evaluation

6.1 Experimental Setup
We evaluated our algorithms on eight MA-STRIPS domains blocksworld, depot, diverlog,
logistics, rovers, satellite, taxi and zenotravel taken from the Competition of Distributed and
Multiagent Planners.1 For each domain, we experimented with ten problems of different
difficulty levels. For each problem, we used an off-the-shelf planning algorithm to generate a
plan.2 Then, for each such problem, we injected f ∈ {1, 2, 3, 4, 5} faulty actions. For each
number of faults, we simulated 10 faulty plan executions. For each instance, we observed
o ∈ {1, 10, 20, 100} percentage of states, where 1% denotes that we observed the initial and
final states, and 100% denotes that we observed every state. In total, we got 2000 instances
for every domain. We used the Java Choco library [21] to model the MBD problems as
Constraint Satisfaction Problems (CSP) and solve them. We decided to use this library since
it is convenient to use and because internally it translates the CSP to SAT.

We then ran each of the algorithms we proposed. Namely, we run the centralized MAS-
DX, as well as the distributed algorithms Dec-MAS-DX and Dec-MAS-DX+ (the enhanced
version of Dec-MAS-DX that intelligently prioritizes the agents). We limited every instance
to run for no more than 10 seconds. We measured the run-time of solving the problems.

6.2 Results
Table 2 presents the average run-time in milliseconds for each algorithm in each domain. We
can observe that MAS-DX significantly outperforms in the domains blocksworld, depot, rovers,
taxi and zenotravel (highlighted in bold) and does not outperform in the driverlog logistics and
rovers domains. The reason is that the level of interaction between the actions of the agents
differs among the different domains. In the domains where MAS-DX outperforms, the actions
of one agent highly interact with the actions of other agents. This is due to many fluents in
the plan that are relevant to a number of agents. Therefore, the separation of the central
problem to local problems will result in the local problems becoming under-constrained
due to many actions becoming external in the local views of the agents. This expands the
diagnosis search space, meaning that more local diagnoses will be found. To demonstrate
this, we measured the number of local diagnoses found by the agent with the slowest runtime
as shown in Table 3. Results show that the decentralized algorithms performed worse in
domains with a significantly large number of local diagnoses.

1 http://agents.fel.cvut.cz/codmap/
2 https://api.planning.domains/
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Table 2 Average run-time in milliseconds of the different algorithms for each domain.

Domain MAS-DX Dec-MAS-DX Dec-MAS-DX+

blocksworld 31 4656 3001
depot 782 2994 2010
driverlog 72 71 67
logistics00 142 136 13
rovers 18 1819 1567
satellite 21 11 18
taxi 12 2249 119
zenotravel 7 3104 2307

Table 3 Average number of local diagnoses computed by the slowest agent in each algorithm.

Domain MAS-DX Dec-MAS-DX Dec-MAS-DX+

blocksworld 3 4721 3275
depot 115 2534 1434
driverlog 14 14 14
logistics00 66 177 7
rovers 3 3350 3057
satellite 1 1 1
taxi 5 4274 148
zenotravel 1 5062 4622

At this stage, we emphasize that the purpose of Dec-MAS-DX and Dec-MAS-DX+ is to
address privacy. In both algorithms, each agent is familiar only with the actions relevant to
it. We assume that information concerning private actions is not known publicly. Hence,
since the process of modeling and solving only accesses the actions of the diagnosing agent
and other publicly known actions, no private actions are being shared. This makes the
decentralized algorithms relevant to applications where a number of self-interested entities
collaborate to achieve a common goal that benefits all of them but where disclosing private
information is not desirable.

Another thing to be observed is that Dec-MAS-DX+ significantly improves Dec-MAS-DX
in almost every domain. In many cases, distributing the problem leads to uneven distribution
of external actions among the agents. This means that for some agents, the local diagnosis
space is significantly higher than for others. By solving the local problems for agents with a
lower number of external actions first and then using the diagnosis information when solving
the local problems of other agents, Dec-MAS-DX+ significantly decreases the run-time
of the agent with the largest diagnosis space. This decrease in runtime is so large that it
compensates for the serial manner in which Dec-MAS-DX+ works. Specifically in the logistics
domain, this speedup improvement, combined with the fact that the number of external
actions is low, leads to Dec-MAS-DX+ outperforming MAS-DX by an order of magnitude.

7 Conclusions and Future Work

In this work, we presented the problem of MA-STRIPS diagnosis and proposed two approaches
for solving the problem. The first approach, MAS-DX, works centrally by modeling the
system as a single MBD problem and then solving it. The second approach, Dec-MAS-DX,
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addresses privacy requirements by solving a decentralized version of the problem, where
agents do not share private information. It first models the local views of the agents to
MBD problems of smaller sizes and concurrently solves them, and then computes the global
diagnoses by executing a serial process for combining the local diagnoses. Additionally, we
proposed an enhancement called Dec-MAS-DX+ that improves Dec-MAS-DX. Empirical
evaluation shows that the centralized approach is faster than the distributed approach in most
domains, but the benefit of the distributed approach is that it preserves private information.

For future work, we intend to expand our empirical evaluation to other problems and also
propose an analysis of the problems in which the distributed approach may run faster. In
addition, we aim to generalize our work to multi-agent plans in richer planning formalisms
that support stochastic effects and partial observability.
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