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Abstract

Distributed Constraint Optimization Problems (DCOPs) are a widely studied frame-
work for coordinating interactions in cooperative multi-agent systems. In classical DCOPs,
variables owned by agents are assumed to be discrete. However, in many applications, such
as target tracking or sleep scheduling in sensor networks, continuous-valued variables are
more suitable than discrete ones. To better model such applications, researchers have pro-
posed Continuous DCOPs (C-DCOPs), an extension of DCOPs, that can explicitly model
problems with continuous variables. The state-of-the-art approaches for solving C-DCOPs
experience either onerous memory or computation overhead and are unsuitable for non-
differentiable optimization problems. To address this issue, we propose a new C-DCOP
algorithm, namely Particle Swarm Optimization Based C-DCOP (PCD), which is inspired
by Particle Swarm Optimization (PSO), a well-known centralized population-based ap-
proach for solving continuous optimization problems. In recent years, population-based
algorithms have gained significant attention in classical DCOPs due to their ability in
producing high-quality solutions. Nonetheless, to the best of our knowledge, this class of
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algorithms has not been utilized to solve C-DCOPs and there has been no work evaluating
the potential of PSO in solving classical DCOPs or C-DCOPs. In light of this observation,
we adapted PSO, a centralized algorithm, to solve C-DCOPs in a decentralized manner.
The resulting PCD algorithm not only produces good-quality solutions but also finds solu-
tion without any requirement for derivative calculations. Moreover, we design a crossover
operator that can be used by PCD to further improve the quality of solutions found. Fi-
nally, we theoretically prove that PCD is an anytime algorithm and empirically evaluate
PCD against the state-of-the-art C-DCOP algorithms in a wide variety of benchmarks.

1. Introduction

Distributed Constraint Optimization Problems (DCOPs) are an important constraint-handling
framework for multi-agent systems in which multiple agents communicate with each other
in order to optimize a global objective. The global objective is defined as the aggregation
of cost functions (i.e., constraints) among the agents. Each of the cost functions involves
a set of variables controlled by the corresponding agents. The structure of DCOPs has
made it suitable for deploying in various real-world problems. It has been widely applied
to solve a number of multi-agent coordination problems including multi-agent task schedul-
ing (Sultanik, Modi, & Regli, 2007), sensor networks (Farinelli, Rogers, & Jennings, 2014),
multi-robot coordination (Yedidsion & Zivan, 2016), etc.

Over the years, several algorithms have been proposed to solve DCOPs, and they
are broadly categorized into exact and non-exact algorithms. Exact algorithms, such as
ADOPT (Modi, Shen, Tambe, & Yokoo, 2005; Yeoh, Felner, & Koenig, 2010), DPOP (Petcu
& Faltings, 2005; Rashik, Rahman, Khan, Mamun-or Rashid, Tran-Thanh, & Jennings,
2020), and PT-FB (Litov & Meisels, 2017) are designed in such a way that they provide
a global optimal solution of a given DCOP. However, since DCOPs are NP-Hard, exact
algorithms experience exponential memory requirements and/or exponential computational
costs as the system grows. On the contrary, non-exact algorithms such as DSA (Zhang,
Wang, Xing, & Wittenburg, 2005), MGM & MGM2 (Maheswaran, Pearce, & Tambe, 2004),
Max-Sum (Farinelli, Rogers, Petcu, & Jennings, 2008; Tassa, Grinshpoun, & Zivan, 2017;
Khan, Tran-Thanh, & Jennings, 2018a; Khan, Tran-Thanh, Ramchurn, & Jennings, 2018c),
CoCoA (van Leeuwen & Pawelczak, 2017), ACO_DCOP (Chen, Wu, Deng, & Zhang, 2018),
D-Gibbs (Nguyen, Yeoh, Lau, & Zivan, 2019), and AED (Mahmud, Choudhury, Khan, Tran-
Thanh, Jennings, et al., 2020b) compromise some solution quality for scalability.

In general, DCOPs assume that the variables of participating agents are discrete. Never-
theless, many real-world applications (e.g., target tracking sensor orientation (Fitzpatrick &
Meetrens, 2003), sleep scheduling of wireless sensors (Hsin & Liu, 2004)) can be best modeled
with continuous variables. Therefore, for discrete DCOPs to be applied in such problems,
we need to discretize the continuous domains of the variables. However, the discretization
process needs to be coarse for a problem to be tractable and must be sufficiently fine to find
high-quality solutions of the problem (Stranders, Farinelli, Rogers, & Jennings, 2009). To
overcome this issue, a continuous version of DCOPs have been proposed (Stranders et al.,
2009), which is later referred to as both Functional DCOPs (Choudhury, Mahmud, Khan,
et al., 2020; Mahmud, Khan, Choudhury, Tran-Thanh, & Jennings, 2020a) and Continuous
DCOPs (C-DCOPs) (Hoang, Yeoh, Yokoo, & Rabinovich, 2020). In this paper, we will refer
to it as C-DCOPs following the most popular convention. There are two main differences
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between C-DCOPs and DCOPs. Firstly, instead of having discrete decision variables, C-
DCOPs have continuous variables that can take any value between a range. Secondly, the
constraint functions are represented in functional forms in C-DCOPs rather than in tabular
forms in DCOPs.

In order to cope with the modification of the DCOP formulation, several C-DCOP al-
gorithms have been proposed. Similar to DCOP algorithms, C-DCOP algorithms are also
classified as exact and non-exact approaches (detailed discussions can be found in Sec-
tion 2). In this paper, we focus on the latter class of C-DCOP algorithms as the ensuing
exponential growth of search space can make exact algorithms computationally infeasible
to deploy in practice. Now, the state-of-the-art algorithms for C-DCOPs are based on ei-
ther inference (Stranders et al., 2009; Voice, Stranders, Rogers, & Jennings, 2010; Hoang
et al., 2020) or local search (Hoang et al., 2020). In the inference-based C-DCOP algo-
rithms, discrete inference-based algorithms, such as Max-Sum and DPOP, have been used
in combination with continuous non-linear optimization methods. And, in the only local
search-based C-DCOP algorithm, the discrete local search-based algorithm DSA has been
extended with continuous optimization methods. However, continuous optimization meth-
ods, such as gradient-based optimization require derivative calculations and are thus not
suitable for non-differentiable optimization problems.

Against this background, we propose a Particle Swarm Optimization (PSO) based C-
DCOP algorithm called PSO-Based C-DCOP (PCD).1 PSO is a stochastic optimization
technique inspired by the social metaphor of bird flocking (Eberhart & Kennedy, 1995). It
has been successfully applied to many optimization problems such as Function Minimiza-
tion (Shi & Eberhart, 1999), Neural Network Training (Zhang, Zhang, Lok, & Lyu, 2007),
and Power-System Stabilizers Design Problems (Abido, 2002). However, to the best of our
knowledge, no previous work has been done to incorporate PSO in distributed scenarios
similar to DCOPs or C-DCOPs. In PCD, agents cooperatively keep a set of particles where
each particle represents a candidate solution and iteratively updates the solutions using a
series of update equations over time. Since PSO requires only primitive mathematical op-
erators such as addition and multiplication, it is computationally less expensive (both in
memory and speed) than the gradient-based optimization methods. Furthermore, PSO is
a widely studied technique with a variety of parameter choices and variants developed over
the years. Hence, the wide opportunity for developing PCD as a robust population-based
algorithm has inspired us to analyze the challenges and opportunities of PSO in C-DCOPs.
Our main contributions are as follows.

• We develop a new algorithm PCD by tailoring PSO. In so doing, we redesign a series
of update equations that utilize the communication topology in a distributed scenario.

• We introduce a new crossover operator that further improves the quality of solutions
found and name the version PCD_CrossOver.

• We analyze the various parameter choices of PCD that balance exploration and ex-
ploitation.

1. A preliminary version of this research has appeared previously (Choudhury et al., 2020). This paper
contains a more efficient approach and comprehensive description of the algorithm and comes with
broader theoretical and experimental analysis to other state-of-the-art C-DCOP algorithms.
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• We provide a theoretical proof of anytime convergence of our algorithm, and show
empirical evaluations of PCD and PCD_CrossOver on various C-DCOP benchmarks.
The results show that the proposed approach finds solutions with better quality by
exploring a large search space compared to existing C-DCOP solvers.

In Section 2, we briefly review related work. In Section 3, we formulate the DCOP
and C-DCOP frameworks as well as introduce PSO. Section 4 illustrates the details of our
proposed PCD framework. Section 5 provides a theoretical proof of the anytime property and
complexity analyses of PCD. In Section 6, we show empirical evaluations of PCD against
existing C-DCOP algorithms. Finally, Section 7 concludes the findings of the paper and
provides insights for future work.

2. Related Work

In this section, we discuss existing state-of-the-art exact and non-exact C-DCOP algorithms.
The only exact algorithm for C-DCOP is the Exact Continuous DPOP (EC-DPOP), which
only provides exact solutions to linear and quadratic cost functions and is defined over
tree-structured graphs only (Hoang et al., 2020). While there are several non-exact algo-
rithms exist, the first non-exact algorithm for C-DCOP is the Continuous Max-Sum (CMS)
algorithm. CMS extends the discrete Max-Sum (Stranders et al., 2009) by approximating
constraint cost functions as piece-wise linear functions. Subsequently, researchers introduced
Hybrid Continuous Max-Sum (HCMS), which extends CMS by combining it with continu-
ous non-linear optimization methods (Voice et al., 2010). However, continuous optimization
methods, such as gradient-based optimization (Sarker, Choudhury, & Khan, 2021; Hen-
drikx, 2021) require derivative calculations and are thus not suitable for non-differentiable
optimization problems. Finally, Hoang et al. (Hoang et al., 2020) made the most recent
contributions to this field. In their paper, the authors proposed four algorithms – one exact
and three non-exact C-DCOP solvers. The exact algorithm is EC-DPOP, which we dis-
cussed earlier. The non-exact algorithms are Approximate Continuous DPOP (AC-DPOP),
Clustered AC-DPOP (CAC-DPOP), and Continuous DSA (C-DSA). Both AC-DPOP and
CAC-DPOP are based on the discrete DPOP algorithm with non-linear optimization tech-
niques. The discrete DPOP algorithm (Petcu & Faltings, 2005) is an inference-based DCOP
algorithm that performs dynamic programming on a pseudo-tree representation of the given
problem. This algorithm only requires a linear number of messages but has an exponential
memory requirement and sends exponentially large message sizes. Since the underlying al-
gorithm for AC-DPOP is DPOP, it also suffers from the same exponentially large message
sizes, which is a limiting factor for communication-constrained applications. Although CAC-
DPOP provides a bound on the message size by limiting the number of tuples to be sent in
the messages, each agent still needs to maintain the original set of tuples in their memory
for better accuracy in calculation. Hence, CAC-DPOP still incurs an exponential memory
requirement. Nevertheless, the authors also provide C-DSA, a local search algorithm based
on DSA. Unlike the DPOP variants, C-DSA’s memory requirement is linear in the number
of variables of the problem and it sends constant-size messages.
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3. Background and Problem Formulation

In this section, we formulate the problem and discuss the background necessary to under-
stand our proposed method. We first describe the general DCOP framework and then move
to the C-DCOP framework, which is our problem of interest in this paper. We then discuss
the centralized PSO algorithm and the challenges in incorporating PSO with the C-DCOP
framework.

3.1 Distributed Constraint Optimization Problems

Distributed Constraint Optimization Problems (DCOPs) involve multiple agents collaborat-
ing to find a solution that satisfies their aggregated global constraint. Cost functions are
utilized to express these constraints in a DCOP, with each agent having a local cost function
that determines the cost of a specific value combination for its variables based on the degree
of constraint violation. The global cost function is a sum of the local cost functions of all
agents. A DCOP algorithm aims to minimize the global cost function by finding a joint
solution that satisfies the constraints.

A DCOP can be defined as a tuple 〈A,X,D, F, α〉 (Modi et al., 2005) where,

• A is a set of agents {a1, a2, . . . , an}.

• X is a set of discrete variables {x1, x2, . . . , xm}, where each variable xj is controlled
by at least one of the agents ai ∈ A.

• D is a set of discrete domains {D1, D2, . . . , Dm}, where each Di corresponds to the
domain of variable xi.

• F is a set of cost functions (constraints) {f1, f2, . . . , fl}, where each fi ∈ F is defined
over a subset xi = {xi1 , xi2 , . . . , xik} of variables X, called the scope of the function,
and the cost for the function fi is defined for every possible value assignment of xi,
that is, fi: Di1 × Di2 × . . .× Dik → R, where the arity of the function fi is k. In this
paper, we consider only binary cost functions (i.e., there are only two variables in the
scope of all functions).

• α : X → A is a variable-to-agent mapping function (Khan, Tran-Thanh, Yeoh, &
Jennings, 2018b) that assigns the control of each variable xj ∈ X to an agent ai ∈
A. Each agent can hold several variables. However, for the ease of understanding, we
assume each agent controls only one variable in this paper.

An optimal solution of a DCOP is an assignmentX∗ that minimizes the sum of cost functions
as shown in Equation 12:

X∗ = argmin
X

∑
fi∈F

fi(x
i) (1)
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x1

x2 x3 x4

(a) Constraint Graph

f12(x1, x2) = x21 − x22

f13(x1, x3) = x21 + 2x1x3

f14(x1, x4) = 2x21 − 2x24

f34(x3, x4) = x23 + 3x24

∀xi ∈ X : Di = [−10, 10]

(b) Cost Functions

Figure 1: Example of a C-DCOP.

3.2 Continuous Distributed Constraint Optimization Problems

Similar to the DCOP formulation, C-DCOPs can be defined as a tuple 〈A,X,D, F, α〉 (Hoang
et al., 2020). In C-DCOPs, A, F , and α are the same as defined in DCOPs. Nonetheless,
the set of variables X and the set of domains D are defined as follows:

• X is the set of continuous variables {x1, x2, . . . , xm}, where each variable xj is con-
trolled by one of the agents ai ∈ A.

• D is a set of continuous domains {D1, D2, . . . , Dm}, where each Di = [LBi, UBi]
corresponds to the domain of variable xi. In other words, variable xi can take on any
value in the range of LBi to UBi.

As discussed in the previous section, a notable difference between DCOPs and C-DCOPs
can be found in the representation of the cost functions. In DCOPs, the cost functions are
conventionally represented in the form of a table, while in C-DCOPs, they are represented
in the form of a function (Hoang et al., 2020). However, the goal of a C-DCOP remains the
same as depicted in Equation 1. Figure 1 presents an example C-DCOP, where Figure 1a
shows a constraint graph with four variables with each variable xi controlled by an agent
ai. Each edge in the constraint graph represents a cost function and the definition of each
function is shown in Figure 1b. In this particular example, the domains of all variables are
the same – each variable xi can take values from the range [−10, 10].

3.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based optimization3 technique inspired
by the movement of a bird flock or a fish school (Eberhart & Kennedy, 1995). Recently,
PSO has been reported to be effective at solving complex CSPs and COPs in a wide range of
application domains. The applications that related to the former includes scheduling chal-
lenges (Yu, Gao, Wang, & Meng, 2020; Wei, Li, Jiang, Hu, & Hu, 2018), robotics (Dewang,

2. For a maximization problem, the argmin operator should be replaced by the argmax operator.
3. For simplicity, we are going to consider the terms ‘optimization’ and ‘minimization’ interchangeably

throughout the paper.
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Algorithm 1: Particle Swarm Optimization
1 Generate an n-dimensional population P
2 Randomly initialize positions and velocities of each particle
3 while termination condition is not met do
4 foreach Pi ∈ P do
5 calculate the current velocity
6 calculate the next position given current velocity
7 move to next position
8 if fitness of current position < fitness of local best then
9 update local best

10 if fitness of current position < fitness of global best then
11 update global best

Mohanty, & Kundu, 2018; Ever, 2017), and data mining (Ghosh, Karmakar, Sharma, &
Phadikar, 2019). While, supply chain management (Jia, Chen, Tianlong, Zhang, Yuan, Lin,
Yu, & Zhang, 2017), resource allocation (Hao, Wang, & Wang, 2022; Khireddine, Larbi,
Sylia, Gueguen, & Lamine, 2020), and vehicle routing (Marinakis, Marinaki, & Migdalas,
2019; ?) are the notable recent works that address different problems formulated as COPs.

In PSO, each individual of the population is called a particle. PSO solves the problem
by moving the particles in a multi-dimensional search space by adjusting the position and
velocity of each particle. As shown in Algorithm 1, each particle is initially assigned a
random position and velocity (Line 2). A fitness function is defined, which is used to
evaluate the position of each particle. In each iteration, the movement of a particle is
guided by both its local best position found so far in the search space and the global best
position found by the entire swarm (Lines 5-7). The combination of the local and global best
positions ensures that when a global better position is found through the search process,
the particles will move closer to that position and explore the surrounding search space
more thoroughly. Then, the local best position of each particle and the global best position
of the entire population is updated when necessary (Lines 8-11). Over the last couple of
decades, several versions of PSO have been developed. The standard PSO often converges to
a sub-optimal solution since the velocity component of the global best particle tends to zero
after some iterations. Consequently, the global best position stops moving, and the swarm
behavior of all other particles leads them to follow the global best particle. To cope with the
premature convergence property of standard PSO, Guaranteed Convergence PSO (GCPSO)
has been proposed that provides convergence guarantees to a local optima (van den Bergh
& Engelbrecht, 2002).

3.4 Challenges

Over the years, PSO and its improved variant Guaranteed Convergence PSO (GCPSO)
have shown promising performance in centralized continuous optimization problems (Shi &
Eberhart, 1999; van den Bergh & Engelbrecht, 2002). Motivated by its success, we seek to
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x1

x2 x3 x4

Figure 2: A sample BFS pseudo-tree representation of the C-DCOP depicted in Figure 1.

explore its potential in solving C-DCOPs. However, there are several challenges that must
be addressed when developing an anytime C-DCOP algorithm using GCPSO:

• Particles and Fitness Representation: We need to define a representation for
the particles where each particle represents a solution of the C-DCOPs. Moreover,
a distributed method for calculating the fitness for each of the particles needs to be
devised.

• Creating the Population: In centralized optimization problems, creating the initial
population is a trivial task. However, in the case of C-DCOPs, different agents con-
trol different variables. Hence, a method needs to be devised to generate the initial
population cooperatively.

• Evaluation: Centralized PSO deals with an n-dimensional optimization task. In
C-DCOPs, each agent holds one variable and each agent is responsible for solving
the optimization task related to that variable only where the global objective is still
an n-dimensional optimization process. Thus, a decentralized evaluation needs to be
devised.

• Maintaining the Anytime Property: To maintain the anytime property in a C-
DCOP approach, we need to identify the global best particle and the local best position
for each particle. A distribution method needs to be devised to notify all the agents
when a new global best particle or local best position is found. Finally, a decentralized
coordination method is needed among the agents to update the position and velocity
considering the current best position.

In the following section, we devise a novel method that addresses the above challenges and
applies PSO to solve C-DCOPs.

4. The PCD Algorithm

We now turn to describe our proposed Particle Swarm Optimization Based C-DCOP (PCD)
algorithm. To facilitate an easier understanding of the algorithm, we first describe what
each particle represents in the context of C-DCOPs. Like in PSO, each particle in PCD
has two attributes – position and velocity. The position of a particle corresponds to a value
assignment to all variables in the C-DCOP. In other words, it is a solution to a given C-
DCOP. Moreover, each agent also maintains the local best position of the particle. The
velocity of a particle defines the step size that a particle takes in each iteration to change
its position and is influenced by the combination of the direction of its local best and global
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Table 1: Population Representation in PCD

Agent a1 Agent a2 Agent a3 Agent am

Particle P1
P 1
1 .v1 P 2

1 .v2 . . .
Pm
1 .vm

P 1
1 .x1 P 2

1 .x2 Pm
1 .xm

Particle P2
P 1
2 .v1 P 2

2 .v2 . . .
Pm
2 .vm

P 1
2 .x1 P 2

2 .x2 Pm
2 .xm

. . . . . . . . . . . . . . .

Particle PK
P 1
K .v1 P 2

K .v2 . . .
Pm
K .vm

P 1
K .x1 P 2

K .x2 Pm
K .xm

best position. However, unlike in PSO, where a centralized entity controls all particles, each
particle in PCD is controlled in a decentralized manner by all deployed agents. Specifically,
for each particle, each agent controls only the position and velocity corresponding to its
variable.

In PCD, we define population P as a set of particles that are collectively maintained by
all the agents and local population P i ⊆ P as the subset of the population maintained by
an agent ai. For further clarification, we present an example of a population in Table 1.
Here, each row represents a particle Pk = {P 1

k , P
2
k , . . . , P

m
k }, which is the kth solution of the

problem. Each column represents an agent ai and the corresponding attributes that it holds
for each particle. For example, in the table, each agent ai holds two attributes, namely
the position attribute P i

k.xi and the velocity attribute P i
k.vi, for each particle P i

k ∈ P i.
Additionally, we use the following notations:

• Pk.X = {P 1
k .x1, P

2
k .x2, . . . , P

m
k .xm} and Pk.V = {P 1

k .v1, P
2
k .v2, . . . , P

m
k .vm} to repre-

sent the complete position and velocity assignment for each particle Pk, respectively.

• P i.xi = {P i
1.xi, P

i
2.xi, . . . , P

i
K .xi} and P i.vi = {P i

1.vi, P
i
2.vi, . . . , P

i
K .vi} to represent

the position and velocity assignments of each agent ai for all the particles, respectively.

• P i
k.local_fitness to represent the fitness of particle P i

k, that is, the aggregated cost
of constraints associated with the neighbors of agent ai.

• Pk.fitness and P i
k.fitness to represent the complete fitness and the fitness that agent

ai calculates for each particle Pk ∈ P and P i
k ∈ P i, respectively.

• P i.fitness← {P i
1.fitness, P

i
2.fitness, . . . , P

i
K .fitness} to represent the set of P i

k.fitness
for all the particles.

• P i
k.pbest and P

i
k.pbest.fitness to represent the best position of particle P i

k thus far and
the fitness value of that position, respectively.

• P ∗ to represent the global best particle among all particles.
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Algorithm 2: PCD Algorithm
Input : K – Number of particles

w – Inertia weight
c1 – Cognitive constant
c2 – Social constant
maxsc – Threshold for success count
maxfc – Threshold for failure count

12 foreach ai ∈ A do
13 INITIALIZATION()
14 while Termination condition not met do
15 P i.fitness← EVALUATION()
16 P ∗ ← BEST_UPDATE(P i.fitness)
17 t← t+ 1
18 VARIABLE_UPDATE(P ∗)

• P i.gbest and P i.gbest.fitness to represent the position attribute of the global best
particle P ∗ and the fitness value of that position for each agent ai, respectively.

PCD is a PSO-based iterative algorithm that first constructs a Breadth First Search
(BFS) pseudo-tree (Chen, He, & He, 2017), which orders the agents, in a pre-processing
step. Figure 2 illustrates a BFS pseudo-tree constructed from the constraint graph shown
in Figure 1 having x14 as the root. From this point, we use the notation Ni to refer to
the neighboring agents of agent ai in the constraint graph and the notations PRi and
CHi ⊆ Ni to refer to the parent agent and set of children agents of agent ai in the pseudo-
tree, respectively. For example, for agent x3 of Figure 2, N3 = {x1, x4}, PR3 = x1, and
CH3 = ∅.

The pseudocode of our PCD algorithm can be found in Algorithm 2. After constructing
the pseudo-tree, it runs the following three phases:

• Initialization Phase: The agents create an initial population of K particles and
initialize their parameters.

• Evaluation Phase: The agents calculate the fitness value for each particle in a
distributed way.

• Update Phase: Each agent keeps track of the best solution found so far, propagates
this information to the other agents, and updates its value assignment according to
that information.

The agents repeat these last two phases in a loop until some termination condition is met.
We now describe these phases in more detail. In the initialization phase, each agent

ai ∈ A executes the INITIALIZATION procedure (Procedure 3), which consists of the follow-
ing: It first creates a set of K particles P i and initializes the cycle counter t as well as three
other variables sc, fc, and ρ that are used to update the velocity of the particles (Lines 19-
21). It then initializes the velocity P i

k.vi and position P i
k.xi of each particle P i

k ∈ P i to 0 and

4. We use ai and xi interchangeably throughout the paper since each agent controls exactly one variable.
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Procedure 3: INITIALIZATION( )
19 P i ← set of K particles
20 t← sc ← fc ← 0
21 ρ← 1
22 foreach P i

k ∈ P i do
23 P i

k.vi ← 0
24 P i

k.xi ← a random value from Di

25 P i
k.pbest ← null

26 P i
k.pbest.fitness←∞

27 P i.gbest ← null
28 P i.gbest.fitness←∞
29 Send VALUE(P i.xi) to each agent aj ∈ Ni

Procedure 4: EVALUATION( )
30 Wait until VALUE(P j .xj) is received from each agent aj ∈ Ni

31 foreach P i
k ∈ P i do

32 P i
k.local_fitness←

∑
aj∈Ni

fij(P
i
k.xi, P

j
k .xj)

33 Wait until COST(P j .fitness) is received from each agent aj ∈ CHi

34 foreach P i
k ∈ P i do

35 P i
k.fitness← P i

k.local_fitness+
∑

aj∈CHi
P j
k .fitness

36 if ai = root then
37 foreach P i

k ∈ P i do
38 P i

k.fitness← P i
k.fitness/2

39 else
40 Send COST(P i.fitness) to PRi

41 return P i.fitness

a random value in Di, respectively (Lines 23-24). This initialization is aimed at distributing
the initial positions of the particles randomly throughout the search space. It then initializes
the best position P i

k.pbest and the corresponding fitness value P i
k.pbest.fitness of each parti-

cle P i
k ∈ P i to null and infinity, respectively, since the position has not been evaluated yet

(Lines 25-26). Similarly, it initializes the best global position P i.gbest and the corresponding
fitness value P i.gbest.fitness to null and infinity, respectively, as well (Lines 27-28). Finally,
it sends its position assignments for all particles P i.xi in a VALUE message to each of its
neighboring agents (Line 29).

Next, in the evaluation phase, the agents collectively calculate the complete fit-
ness Pk.fitness of each particle Pk using the fitness function shown in Equation 2 in the
EVALUATION procedure (Procedure 4).
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Pk.fitness =
1

2

∑
ai∈A

∑
fj∈F i

fj(Pk.x
j) (2)

F i = {fj ∈ F | xj = {xi, xk}} (3)

Here, F i is the set of constraints whose scope xi includes ai (see Equation 3) and Pk.x
j is the

value assignment of the set of variables in the scope xj of function fj for each particle Pk.
Note that a single agent cannot calculate the complete fitness value. Instead, it is calculated
in a decentralized way by all the agents and then accumulated up the BFS tree towards the
root. Specifically, each agent ai is in charge of computing only

∑
fj∈F i fj(Pk.x

j) for each
particle Pk. Further, note that the cost of each function fj is summed up twice by the two
agents in its scope.5 Therefore, the complete fitness value is divided by two.

To calculate the complete fitness value in a decentralized way, each agent first waits for
VALUE messages from its neighboring agents (Line 30). Upon receiving all the VALUE
messages, it calculates the costs of all its functions f j ∈ F i and aggregates them in local
fitness values P i

k.local_fitness (Line 32). If the agent does not have any children agent,
then it assigns P i

k.local_fitness to P i
k.fitness for all particles P i

k (Line 35) and sends the
set of fitness values of all particles in a COST message to its parent agent (Line 40). If an
agent does have children agents, then it waits for COST messages from all its children agents
(Line 33). After receiving the fitness values from all its children, it aggregates the fitness
values received with its own local fitness values (Line 35) and sends the set of aggregated
fitness values of all particles in a COST message to its parent agent (Line 40).

This process repeats until the root agent receives all COST messages from all its children
agents and calculates the aggregated fitness values. At this point, note that the cost of each
constraint is doubly counted in the aggregated fitness values because the local fitness values
of both agents in the scope of the constraint are aggregated together. Thus, the root agent
divides the aggregated fitness values by two (Line 38) before starting the next phase.

Finally, in the update phase, the agents synchronize on their best local and global par-
ticles in the BEST_UPDATE procedure (Procedure ??) and update the positions and velocities
of their particles in the VARIABLE_UPDATE procedure (Procedure 6).

To synchronize their best local and global particles, the root agent first checks if a better
local position has been found for each particle (Lines 44-46). If this is the case, it updates
the best position P i

k.pbest and its corresponding fitness value P i
k.pbest.fitness before storing

that particle in the set PB (Lines 47-49). The root agent also checks if a better global
position has been found (Line 50). If so, it updates the best global position P i.gbest and
its corresponding fitness value P i.gbest.fitness before storing that particle in a variable P ∗

(Lines 51-53). The root agent then sends both PB and P ∗ in a BEST message to each of
its children agents (Line 60).

When each of its children agents receives the BEST message from the root agent, it
iterates over all the particles Pk in the set PB, and assigns the positions of those particles
as best positions P i

k.pbest of the corresponding particles P i
k in its local copy (Lines 56-57).

Similarly, if a better global particle has been found, it assigns the position of that particle
P ∗.xi as its best global position P i.gbest (Lines 58-59). It then propagates both PB and

5. Recall that we consider only binary cost functions in this paper.
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Procedure 5: BEST_UPDATE(P i.fitness)
42 PB ← ∅
43 P ∗ ← ∅
44 if ai = root then
45 foreach P i

k ∈ P i do
46 if P i

k.fitness < P i
k.pbest.fitness then

47 P i
k.pbest ← P i

k.xi
48 P i

k.pbest.fitness← P i
k.fitness

49 PB ← PB ∪ {P i
k}

50 if P i
k.fitness < P i.gbest.fitness then

51 P i.gbest ← P i
k.xi

52 P i.gbest.fitness← P i
k.fitness

53 P ∗ ← P i
k

54 else
55 Wait until BEST(PB,P ∗) is received from PRi

56 foreach Pk ∈ PB do
57 P i

k.pbest ← Pk.xi

58 if P ∗ 6= ∅ then
59 P i.gbest ← P ∗.xi

60 Send BEST(PB,P ∗) to each agent aj ∈ CHi

61 return P ∗

Procedure 6: VARIABLE_UPDATE(P ∗)
62 Calculate sc and fc using Equations 8 and 9
63 foreach P i

k ∈ P i do
64 if P i

k = P ∗ then
65 Calculate P i

k.vi and P
i
k.xi using Equations 4 and 6

66 else
67 Calculate P i

k.vi and P
i
k.xi using Equations 5 and 6

68 Send VALUE(P i.xi) to each agent aj ∈ Ni

P ∗ that it received in the BEST message to each of its children agents (Line 60). This
process repeats down the pseudo-tree until all agents synchronize their best local and global
particles. Finally, the agents increment their cycle counters by one (Line 17).

To update the positions and velocities of the particles, we adapt the update equations
used by Guaranteed Convergence PSO (GCPSO) (van den Bergh & Engelbrecht, 2002). At
a high level, each agent ai uses Equations 4 and 5 to update the velocities of the global best
particle P ∗ and other particles P i

k ∈ P i \ {P ∗}, respectively, and uses Equation 6 to update
the positions of all particles P i

k ∈ P i (Lines 64-67). The revised position is bounded within
the acknowledged domain Di:

13
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P ∗.v
(t)
i = −P ∗.x(t−1)i + P i.g

(t−1)
best + wP ∗.v

(t−1)
i + ρ(t)(1− 2r2) (4)

P i
k.v

(t)
i = wP i

k.v
(t−1)
i + r1c1(P

i
k.p

(t−1)
best − P

i
k.x

(t−1)
i ) + r2c2(P

i.g
(t−1)
best − P

i
k.x

(t−1)
i ) (5)

P i
k.x

(t)
i = P i

k.x
(t−1)
i + P i

k.v
(t)
i (6)

In these equations, the superscripts (t) denote the value of the variables at the tth cycle.
Here, w, c1, and c2 are user-defined input parameters to the algorithm; r1 and r2 are two
random values that are uniformly sampled from the range [0, 1] by each agent in each cycle;
and ρ(t) is defined using Equation 7:

ρ(t) =


2ρ(t−1) if s(t−1)c > maxsc

0.5ρ(t−1) else if f (t−1)c > maxfc
ρ(t−1) otherwise

(7)

where maxsc and maxfc are user-defined input parameters of the algorithm; and both sc
and fc are calculated using Equations 8 and 9, respectively:

s(t)c =

{
s
(t−1)
c + 1 if P ∗(t) 6= P ∗(t−1)

0 otherwise
(8)

f (t)c =

{
0 if P ∗(t) 6= P ∗(t−1)

f
(t−1)
c + 1 otherwise

(9)

Intuitively, w represents an inertia weight that defines the influence of the velocity of
the previous cycle on the velocity in the current cycle. The constants c1 and c2 are called
the cognitive and social constants, respectively, in the literature because they affect the
terms P i

k.p
(t−1)
best − P

i
k.x

(t−1)
i and P i.g

(t−1)
best − P

i
k.x

(t−1)
i , which are called cognition and social

components, respectively. The cognition component is called such because it considers the
particle’s own attributes only while the social component is called such because it involves
interactions between two particles. Both of the constants c1 and c2 define the influence of
local and global best positions on the velocity of particles in the current cycle.

The parameter ρ represents the diameter of an area around the global best particle that
particles can explore. Its value is determined by the count of consecutive successes sc and
failures fc. Success is defined when the fitness value of the global best particle improves,
and failure is defined when the fitness value remains unchanged. When there are more
consecutive successes than a threshold maxsc , the diameter ρ doubles to increase random
exploration because the current location of the best particle is promising. On the other
hand, when there are more consecutive failures than a threshold maxfc , the diameter ρ is
halved to focus the search closer around the location of the best particle.

4.1 Crossover

Although PCD provides reasonable anytime solution quality in several benchmark problems
(see details in Section 6.3), the scope for incorporating other genetic operators still exists.
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Procedure 7: CROSSOVER
69 Calculate P i

k.bp using Equation 10
70 Choose two particle P i

a and P i
b .

71 Calculate P i
a.vi and P i

a.xi using Equations 13 and 11
72 Calculate P i

b .vi and P
i
b .xi using Equations 14 and 12

Hence, in this section, we introduce a new crossover operator that further improves the
solution quality of PCD. We refer to this version of PCD with the new crossover operator as
PCD_CrossOver. In centralized hybrid PSO models, arithmetic crossover of position and
velocity vectors have shown promising results (Lovbjerg, Rasmussen, Krink, et al., 2001).
In a centralized scenario, algorithms can execute crossover operations simultaneously for all
the variables. But in a distributed scenario, either the agents need to agree in a cooperative
crossover execution (Chen, Liu, He, & Yu, 2020) and need to exchange information or the
agents can execute crossover operation only for the variables that they hold. In this paper, we
follow the latter approach to not incur additional messaging and synchronization overheads.
We describe the crossover operation in Procedure 7. Specifically, each agent ai uses the
local fitness value P i

k.local_fitness of each particle P i
k in the evaluation phase (Line 32) to

calculate the crossover probability P i
k.bp for each particle P i

k using Equation 10 (Line 69).

P i
k.bp =

|P i
k.local_fitness|∑K

j=1 |P i
j .local_fitness|

(10)

Then, each agent ai selects two random particle P i
a and P i

b from its set P i according
to the crossover probabilities (Line 70), and updates their positions using the following
crossover operations (Line 71, Line 72):

P i
a.x

(t)
i = rP i

a.x
(t−1)
i + (1− r)P i

b .x
(t−1)
i (11)

P i
b .x

(t)
i = rP i

b .x
(t−1)
i + (1− r)P i

a.x
(t−1)
i (12)

where r is a random number from the range [0, 1]. If |Pa.v
(t−1)
i + Pb.v

(t−1)
i | 6= 0, then their

velocities are also updated using the following crossover operations (Line 71, Line 72). The
updated positions are constrained by their domain Di:

P i
a.v

(t)
i =

(
P i
a.v

(t−1)
i + P i

b .v
(t−1)
i

|P i
a.v

(t−1)
i + P i

b .v
(t−1)
i |

)
|P i

a.v
(t−1)
i | (13)

P i
b .v

(t)
i =

(
P i
a.v

(t−1)
i + P i

b .v
(t−1)
i

|P i
a.v

(t−1)
i + P i

b .v
(t−1)
i |

)
|P i

b .v
(t−1)
i | (14)

Otherwise, the velocities are updated using the regular update operations described in Equa-
tions 4 and 5.

15



Choudhury, Sarker, Yaser, Khan, Yeoh, & Khan

Here we give a real-world example of using a Continuous Distributed Constraint Opti-
mization Problem (C-DCOP) the crossover operator to provide velocity updates in a wireless
sensor network (WSN) implementation. Nodes in a WSN work together to collect data from
their surroundings and make decisions based on that data. Each node in the network has a
collection of variables that indicate the local decisions it can make, such as turning a sen-
sor on or off or modifying its transmission power. When applying a crossover operator for
velocity update, two-child nodes can trade some of their decision variables, and the parent
node can inherit the combined features of the two children. For example, if one child node
has a high transmission power and the other child node has a high battery level, the parent
node can inherit both features to optimize its decision-making process. The position update
would then update the node’s decision variables based on the calculated velocity.

4.2 Example Partial Trace

We now provide a partial trace of our PCD algorithm on the example C-DCOP of
Figure 1. Assume that the number of particles K = 4. In the initialization phase, the
agents cooperatively build the BFS pseudo-tree shown in Figure 2, after which each agent
ai is aware of its set of neighboring agents Ni, its set of children agents CHi, and its parent
agent PRi:

N1 = {a2, a3, a4};CH1 = {a2, a3, a4};PR1 = ∅ (15)
N2 = {a1};CH2 = ∅;PR2 = a1 (16)
N3 = {a1, a4};CH3 = ∅;PR3 = a1 (17)
N4 = {a1, a3};CH4 = ∅;PR4 = a1 (18)

Each agent ai then creates a set of particles P i = {P i
1, P

i
2, P

i
3, P

i
4} and initializes their

position and velocity attributes P i
k.xi and P

i
k.vi for all particles P

i
k ∈ P i. Assume that they

are initialized using the assignments below:

P1.X = {x1 = −1.0, x2 = 1.2, x3 = −2.0, x4 = 2.0} (19)
P2.X = {x1 = −2.0, x2 = 2.0, x3 = −1.0, x4 = 1.0} (20)
P3.X = {x1 = 0.0, x2 = 1.0, x3 = 2.0, x4 = −2.0} (21)
P4.X = {x1 = 1.1, x2 = −1.0, x3 = 1.5, x4 = 0.5} (22)
P1.V = P2.V = P3.V = P4.V = {v1 = 0.0, v2 = 0.0, v3 = 0.0, v4 = 0.0} (23)

Then, each agent ai sends its position assignments P i.xi in a VALUE message to each of its
neighboring agents in Ni:

• Agent a1 sends a VALUE(P 1.x1) message to each of its neighboring agents a2, a3, and
a4, where P 1.x1 = {P 1

1 .x1, P
1
2 .x1, P

1
3 .x1, P

1
4 .x1} = {−1.0,−2.0, 0.0, 1.1}.

• Agent a2 sends a VALUE(P 2.x2) message to its neighboring agent a1, where P 2.x2 =
{P 2

1 .x2, P
2
2 .x2, P

2
3 .x2, P

2
4 .x2} = {1.2, 2.0, 1.0,−1.0}.
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Table 2: Local Fitness Scores

Agent a1 Agent a2 Agent a3 Agent a4

Particle P1 -1.44 -0.44 21.00 10.00
Particle P2 14.00 0.00 12.00 10.00
Particle P3 -9.00 -1.00 16.00 8.00
Particle P4 6.64 0.21 7.51 4.92

Table 3: Fitness Scores

Agent a1 Agent a2 Agent a3 Agent a4

Particle P1 14.56 -0.44 21.00 10.00
Particle P2 18.00 0.00 12.00 10.00
Particle P3 7.00 -1.00 16.00 8.00
Particle P4 9.60 0.21 7.51 4.92

• Agent a3 sends a VALUE(P 3.x3) message to each of its neighboring agents a1 and a4,
where P 3.x3 = {P 3

1 .x3, P
3
2 .x3, P

3
3 .x3, P

3
4 .x3} = {−2.0,−1.0, 2.0, 1.5}.

• Agent a4 sends a VALUE(P 4.x4) message to each of its neighboring agents a1 and a3,
where P 4.x4 = {P 4

1 .x4, P
4
2 .x4, P

4
3 .x4, P

4
4 .x4} = {2.0, 1.0,−2.0, 0.5}.

In the evaluation phase, each agent ai waits for the VALUE messages from its neigh-
boring agents. Upon receiving the VALUE messages from all of its neighboring agents, it
calculates the local fitness value P i

k.local_fitness for each particle P i
k ∈ P i. For exam-

ple, after receiving VALUE(P 1.x1) and VALUE(P 3.x3) from agents a1 and a3, respectively,
agent a4 calculates P 4

1 .local_fitness for particle P 4
1 as follows (see Figure 1 for the set of

cost functions of our example C-DCOP):

P 4
1 .local_fitness = f14

(
P 1
1 .x1, P

4
1 .x4

)
+ f34

(
P 3
1 .x3, P

4
1 .x4

)
(24)

= 2
(
P 1
1 .x1

)2 − 2
(
P 4
1 .x4

)2
+
(
P 3
1 .x3

)2
+ 3

(
P 4
1 .x4

)2 (25)

= 2 (−1)2 − 2 (2)2 + (−2)2 + 3 (2)2 (26)
= 10 (27)

Table 2 tabulates the values of P i
k.local_fitness for each particle P i

k of each agent ai.
After computing the local fitness values, since agent a4 does not have any child agent,

it assigns its local fitness value P 4
k .local_fitness of each particle P 4

k ∈ P 4 to that particle’s
regular fitness value P 4

k .fitness and sends that information to its parent agent a1 in a COST
message. Similarly, agents a2 and a3 also do the same as they too do not have any child
agent. Table 3 tabulates the values of P i

k.fitness for each particle P i
k of each agent ai, and

the COST messages sent by the agents are below:

• Agent a2 sends a COST(P 2.fitness) message to its parent agent a1, where P 2.fitness =
{P 2

1 .fitness, P
2
2 .fitness, P

2
3 .fitness, P

2
4 .fitness} = {−0.44, 0.00,−1.00, 0.21}.
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• Agent a3 sends a COST(P 3.fitness) message to its parent agent a1, where P 3.fitness =
{P 3

1 .fitness, P
3
2 .fitness, P

3
3 .fitness, P

3
4 .fitness} = {21.00, 12.00, 16.00, 7.51}.

• Agent a4 sends a COST(P 4.fitness) message to its parent agent a1, where P 4.fitness =
{P 4

1 .fitness, P
4
2 .fitness, P

4
3 .fitness, P

4
4 .fitness} = {10.00, 10.00, 8.00, 4.92}.

As the root agent a1 has children agents, it waits for the COST messages from its children
agents. Upon receiving the COST messages from all of its children agents, it calculates the
fitness value P 1

k .fitness for each particle P 1
k ∈ P 1. For example, it calculates P 1

1 .fitness
for particle P 1

1 as follows:

P 1
1 .fitness = P 1

1 .local_fitness+ P 2
1 .fitness+ P 3

1 .fitness+ P 4
1 .fitness (28)

= −1.44 + (−0.44) + 21.00 + 10.00 (29)
= 29.12 (30)

As the cost from each cost function in the C-DCOP is doubly counted, the root agent
divides its fitness value of each of its particles by two. For example, it updates P 1

1 .fitness
for particle P 1

1 as follows:

P 1
1 .fitness =

1

2
P 1
1 .fitness =

1

2
29.12 = 14.56 (31)

In the update phase, since this is the first iteration, each particle P 1
k of the root

agent a1 has a better local position. Thus, the best position P 1
k .pbest of each particle P 1

k is
updated to the particle’s current position P 1

k .x1 and all the particles are added into the set
PB. Similarly, a better global position is found. Thus, the best global position P 1.gbest is
updated to the position P 1

3 .x1 of the best particle P 1
3 and that particle is assigned to the

variable P ∗. The agent then sends both PB and P ∗ in a BEST message to its children
agents a2, a3, and a4:

• Agent a1 sends a BEST(PB, P ∗) message to its children agents a2, a3, and a4, where
PB = {P 1

1 , P
1
2 , P

1
3 , P

1
4 } and P ∗ = P 1

3 .

All non-root agents a2, a3, and a4 wait for the BEST messages from their parent agent
a1. Upon receiving the BEST message, for each particle Pk ∈ PB in the BEST message,
each agent assigns the position Pk.xi as the best local position P i

k.pbest of the corresponding
particle P i

k. Since PB contains all four particles, the best local positions of all four particles
are updated. Similarly, each agent ai also updates the best global position P i.gbest to the
position P ∗.xi = P i

3.xi of the best particle P ∗ in the BEST message. Table 4 tabulates the
values of the best local positions P i

k.pbest for each particle P i
k and the best global position

P i.gbest of each agent ai.
Each agent ai then increments its cycle counter t = 1 before starting the process of

updating the positions P i
k.xi and velocities P i

k.vi of its particles P i
k. To do so, each agent

first calculates sc, fc, and ρ using Equations 8, 9, and 7, respectively. In the following,
assume that we set maxsc = 15, maxfc = 5, w = 0.72, c1 = 1.49, c2 = 1.49.6 Since a

6. We discuss the choice of parameter values in detail in Section 6.2
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Table 4: P i
k.pbest and P

i.gbest of Agent ai and Particle P i
k after BEST Update

(a) P i
k.pbest for each Agent ai

Agent a1 Agent a2 Agent a3 Agent a4

Particle P1 -1.00 1.20 -2.00 2.00
Particle P2 -2.00 2.00 -1.00 1.00
Particle P3 0.00 1.00 2.00 -2.00
Particle P4 1.10 -1.00 1.50 0.50

(b) P i.gbest for each Agent ai

Agent a1 Agent a2 Agent a3 Agent a4

Particle P ∗ 0.00 1.00 2.00 -2.00

new P ∗ is found in this cycle, the agent sets s(1)c = 1 (see Equation 8) and f
(1)
c = 0 (see

Equation 9). And since 0 = s
(0)
c 6> maxsc = 15 and 0 = f

(0)
c 6> maxfc = 5, ρ(1) = ρ(0) = 1

(see Equation 7), each agent ai updates the positions P i
k.xi and velocities P i

k.vi of its particles
P i
k using Equations 4 to 6. For example, agent a1 updates the position and velocity of its

best global particle P 1
3 as follows:

P 1
3 .v

(t)
1 = −P 1

3 .x
(0)
1 + P 1.g

(0)
best + wP 1

3 .v
(0)
1 + ρ(1)(1− 2r2) (32)

= 0 + 0 + 0.72 · 0 + 1(1− 2 · 0.4) (33)
= 0.20 (34)

P 1
3 .x

(1)
1 = P 1

3 .x
(0)
1 + P 1

3 .v
(1)
1 = 0 + 0.2 = 0.20 (35)

and the position and velocity of a non-best global particle P 1
1 as follows:

P 1
1 .v

(1)
1 = wP 1

1 .v
(0)
1 + r1c1(P

1
1 .p

(0)
best − P

1
1 .x

(0)
1 ) + r2c2(P

1.g
(0)
best − P

1
1 .x

(0)
1 ) (36)

= 0.72 · 0 + 0.7 · 1.49(−1− (−1)) + 0.4 · 1.49(0− (−1)) (37)
= 0.60 (38)

P 1
1 .x

(1)
1 = P 1

1 .x
(0)
1 + P 1

1 .v
(1)
1 = −1 + 0.60 = −0.40 (39)

Table 5 tabulates the updated position P i
k.x

(1)
i and velocity P i

k.v
(1)
i for each particle P i

k of
each agent ai.

We now describe an example of the crossover operation in PCD_CrossOver variant.
Using the local fitness values calculated in Table 2, each agent ai calculates its crossover
probability P i

k.bp for each of its particles P i
k using Equation 10. For example, agent a1

calculates P 1
1 .bp for particle P 1

1 as follows:
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Table 5: Updated Particle Position and Velocity

Agent a1 Agent a2 Agent a3 Agent a4

Particle P1
v1 = 0.60 v2 = 1.19 v3 = 0.20 v4 = -0.66
x1 = -0.40 x2 = -0.81 x3 = 0.20 x4 = 0.44

Particle P2
v1 = -0.12 v2 = -0.60 v3 = 0.20 v4 = 1.19
x1 = 1.08 x2 = 1.40 x3 = 1.20 x4 = 0.19

Particle P3
v1 = 2.38 v2 = 1.79 v3 = 0.20 v4 = 0.30
x1 = 0.38 x2 = 0.79 x3 = 2.20 x4 = 1.80

Particle P4
v1 = -2.38 v2 = -1.79 v3 = 0.20 v4 = -1.49
x1 = -0.38 x2 = -0.79 x3 = -1.80 x4 = -0.99

Table 6: Crossover Probabilities

Agent a1 Agent a2 Agent a3 Agent a4

Particle P1 0.046 0.267 0.372 0.304
Particle P2 0.450 0.000 0.212 0.304
Particle P3 0.290 0.606 0.283 0.243
Particle P4 0.214 0.127 0.133 0.149

P 1
1 .bp =

| − 1.44|
| − 1.44|+ |14|+ | − 9|+ |6.64|

= 0.046 (40)

Table 6 tabulates the crossover probabilities P i
k.bp for each particle P i

k of each agent ai.
Using these probabilities, each agent ai selects two random particles P i

a and P i
b and

update their positions and velocities using Equations 11 to 14. For example, agent a1
selects particles P 1

2 and P 1
4 and updates their positions as follows:

P 1
2 .x

(1)
1 = rP 1

2 .x
(0)
1 + (1− r)P 1

4 .x
(0)
1 (41)

= 0.3 · −2 + (1− 0.3)1.1 (42)
= 0.17 (43)

P 1
4 .x

(1)
1 = rP 1

4 .x
(0)
1 + (1− r)P 1

2 .x
(0)
1 (44)

= 0.3 · 1.1 + (1− 0.3)(−2) (45)
= −1.07 (46)

where r = 0.3. Their velocities are not updated because |P 1
2 .v

(0)
1 + P 1

4 .v
(0)
i | = |0 + 0| = 0.
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5. Theoretical Analysis

In this section, we first prove PCD is an anytime algorithm, that is, the quality of the best
solution improves and never degrades over time. We then discuss the complexity of PCD
in terms of its communication and memory requirements. In this section, we use the term
iteration to refer to communication steps, which is the time needed for messages sent by an
agent to be received by its neighboring agents.

Lemma 1 At iteration t+ h, the root agent aroot is aware of the P root.pbest and P root.gbest
up to iteration t, where h is the height of the pseudo-tree.

Proof. To prove the lemma, we show that, at iteration t + h, the root agent has enough
information to calculate P root.pbest and P root.gbest up to iteration t. That is, the root
agent can calculate the fitness of each particle. However, the root agent requires the COST
messages from all the agents in CHroot in order to calculate the fitness of each particle using
Equation 2. To get these messages, the root agent has to wait for at most h iterations since
the height of the pseudo-tree is h. Consequently, at iteration t+h, the root agent is capable
of calculating the fitness of each particle up to iteration t. �

Lemma 2 At iteration t+2h, each agent ai is aware of P i.pbest and P i.gbest up to iteration
t, where h is the height of the pseudo-tree.

Proof. It will take at most h iterations for the BEST message that contains (PB,P ∗) from
the root agent to reach all other agents since h is the height of the pseudo-tree. Therefore,
combining this observation and Lemma 1, it will take at most t+ h+ h = t+ 2h iterations
for each agent to be aware of P.pbest and P.gbest up to iteration t. �

Theorem 1 PCD is an anytime algorithm.

Proof. From Lemma 2, at iteration t + 2h and t + 2h + δ, where δ ≥ 0, each agent is
aware of P i.pbest and P i.gbest up to iterations t and t + δ, respectively. Since P i.pbest and
P i.gbest only get updated if a better solution is found, P i.pbest.fitness and P i.gbest.fitness
at iteration t + 2h + δ is no larger than P i.pbest.fitness and P i.gbest.fitness at iteration
t+2h, respectively. In other words, the cost of the solution is monotonically non-increasing
over time. Hence, PCD is an anytime algorithm. �

Theorem 2 For a binary constraint graph G = (A,E), the number of messages of PCD in
each cycle is O(|E|+ |A|).

Proof. In each cycle:

• The INITIALIZATION procedure requires 2|E| messages, where |E| is the number of
edges in the constraint graph, since each agent sends a VALUE message to each of its
neighbors.

• The EVALUATION procedure requires |A| − 1 messages since each agent, except for the
root agent, sends a COST message to its parent agent.
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• The BEST_UPDATE procedure requires |A|−1 messages since each agent, except for the
root agent, receives a BEST message from its parent agent.

• The VARIABLE_UPDATE procedure requires 2|E| messages since each agent sends a
VALUE message to each of its neighbors.

Since each cycle of PCD is composed of either the INITIALIZATION or VARIABLE_UPDATE
procedures – INITIALIZATION procedure in the first cycle and VARIABLE_UPDATE in sub-
sequent cycles – as well as the EVALUATION and BEST_UPDATE procedures, the number of
messages per cycle is thus 2|E|+ |A| − 1 + |A| − 1 = O(|E|+ |A|). �

Theorem 3 The total message size complexity per agent of PCD in each cycle is O(K|A|),
where K is the total number of particles.

Proof. Each agent in PCD sends three types of messages: VALUE, COST, and BEST
messages. Each of these messages contains a constant amount of information for each of the
K particles. Hence, the size of each message is O(K). At each cycle, each agent ai sends
at most |Ni| VALUE messages, one COST message, and |CHi| BEST messages. Therefore,
the total number of messages an agent sends is at most |Ni|+ 1+ |CHi|. In the worst case,
|Ni| ≈ |A| and |CHi| ≈ |A|. Consequently, the total number of message sent by an agent
is O(|A| + 1 + |A|) = O(|A|). Therefore, in each cycle, the total message size per agent is
O(K|A|). �

6. Experimental Results

We now provide our results from empirical evaluations of PCD. First, we study the effect of
different parameter choices to fine tune the parameters. This is because the performance of
PCD depends on the choice of its various parameter values and whether crossover operations
are used to improve the algorithm further. Then, we compare the fine-tuned version of PCD
against the state-of-the-art C-DCOP algorithms7 – namely HCMS (Voice et al., 2010), AC-
DPOP (Hoang et al., 2020), and C-DSA (Hoang et al., 2020) – on four benchmark problems
– random graphs, random trees, scale-free networks, and random sensor network problems.

6.1 Benchmark Problems

We evaluate PCD on four types of benchmark problems: Random Graphs, Random Trees,
Scale-Free Networks, and Random Sensor Network Problems.
Random Graphs: We use the Erdős-Rényi topology (Erdős & Rényi, 1960) to construct
random graphs. We use two settings for random graphs – sparse, where each pair of nodes
in the graph has a probability of 0.2 to have an edge between them, and dense, where the
edge probability is 0.6. We set the number of agents |A|, which corresponds to the number
of nodes in the graph, to 50 and the domain Di of each agent ai to [−50, 50]. We use binary
quadratic functions of the form ax2 + bxy + cy2 as cost functions, where the coefficients a,
b, and c are all randomly chosen between [−5, 5].

7. Although Hoang et al. (Hoang et al., 2020) proposed three non-exact C-DCOP algorithms, we only
compare with AC-DPOP and C-DSA here because they are reported to provide the best solutions
among the approximate algorithms proposed in their paper.
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Random Trees: We follow Hoang et al. (Hoang et al., 2020) and include random trees as
one of the benchmark problems since the memory requirement of AC-DPOP is smaller on
trees; it is exponential in the tree width of the graph (Hoang et al., 2020). The experimental
configurations are similar to the random graph setting, except that we ensure that no cycles
are formed.
Scale-Free Networks: In scale-free networks, the problem settings are similar to Random
Graphs, except we use the Barabsi-Albert (BA) network topology model (Barabási & Albert,
1999) to generate our constraint networks. To construct the network, initially, we randomly
connect a set of agents. We then connect a new agent with a set of m randomly selected
existing agents with a probability proportional to the current link numbers. For our problem,
we set number of agents |A| = 100 andm = 3 and the domainDi of each agent ai to [−20, 20].
Other experimental configurations are same as the random graph setting. The purpose of
adding this experiment is to observe the impact of different network topologies (random
graph, scale-free and random tree) and larger number of agents on the performance of PCD
and PCD_CrossOver.
Random Sensor Network Problems: The fourth benchmark problem is motivated by
an example sensor network problem, where the sensors are trying to maximize the signal
strength of their radio communication (Nguyen, Yeoh, & Lau, 2012; Nguyen et al., 2019).
This problem is motivated by real-world applications where a meshed communication net-
work needs to be established by first responders of an emergency rescue operation (e.g., in
a city ravaged by an earthquake or a hurricane) or by soldiers in the battlefield. In such a
problem, the sensors are arranged in an 8 × 8 rectangular grid and can make small move-
ments within its cell in the grid. Therefore, the number of agents (i.e., sensors) |A| is 64.
The domain Di of each agent ai is set to the cell size [0, 10].

The strength of the radio communication between two sensors ai and aj is inversely
proportional to their squared distance d(ai, aj)2 and is subject to interference λ(ai, aj) from
obstacles between the sensors. We thus define the utility f(ai, aj) between two sensors
(ai, aj) as follows:

f(ai, aj) =
C

d(ai, aj)2 · λ(ai, aj)
(47)

λ(ai, aj) = (rxi − xi)2 + (ryi − yi)2 + (rxj − xj)2 + (ryj − yj)2 + ηij (48)

where rxi and ryi are random numbers sampled from the domain of agent ai, ηij is random
noise chosen between the range [1, 10] for each pair of sensors ai and aj , and C is a constant
value of 10,000.

In all of the settings described above, we evaluate all the algorithms on 25 independently-
generated problem instances and 20 times on each problem instance. For fairness, we use
the simulated runtime metric (Sultanik, Lass, & Regli, 2008) to measure the runtime of the
algorithms. The experiments are carried out on a computer with an Intel Core i5-6200U
CPU with 2.3GHz processor and 8GB RAM. Our implementation is available in both Java8

and Python9.

8. https://github.com/moumitachoudhury/PCD
9. https://github.com/SaminYaser/PCD
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(b) PCD_CrossOver

Figure 3: Solution quality of PCD and PCD_CrossOver with different population sizes K
on sparse random graphs.

6.2 Fine-tuning Parameters

PCD and its variant PCD_CrossOver have several parameters including the number of par-
ticleK, inertia weight w, cognitive constant c1, social constant c2, and thresholdsmaxfc and
maxsc . In all our experiments, we follow the recommendations from the literature (van den
Bergh & Engelbrecht, 2002) and set maxfc = 5 and maxsc = 15. We now discuss how we
choose the other parameter values.

To determine the value of the number of particles K, we conduct a preliminary exper-
iment, where we compare the quality of solutions found by PCD and PCD_CrossOver for
different values of K. Figures 3 and 4 plot the results on sparse and dense random graphs,
respectively. In general, the quality of solutions improves with increasing K since a larger
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Figure 4: Solution quality of PCD and PCD_CrossOver with different population sizes K
on dense random graphs.

population size allows for more diversity in the swarm. However, this comes at the cost
for longer runtimes before the algorithms converge. Given these empirical observations, we
choose to set K = 200 in all our subsequent experiments as it allows the algorithms to
converge to reasonably good solutions – it is in fact very close to the best solutions with
K = 4000 on dense random graphs – as well as converge to them relatively quickly compared
to the other values of K. To determine the values of w, c1, and c2, we use two design choices:

• AdaptiveW: Here, we linearly decrease w using Equation 49:
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Figure 5: Solution quality of PCD and PCD_CrossOver with AdaptiveW or Constriction
Factor on random graphs.

w =
(wmax − wmin) · t

tmax
(49)

where wmax and wmin are the maximum and minimum values of w and tmax is the
maximum number of cycles. To determine the values of wmax and wmin, we experi-
mented with different pairs of values typically used in experiments of centralized PSO
(Shi & Eberhart, 1999, 1998; Carlisle & Dozier, 2000), and found that the best results
are when wmax = 1.4 and wmin = 0.4. For the c1 and c2 values, we set them to
c1 = c2 = 1.49, which have been a popular choice in the centralized PSO model (Eber-
hart & Shi, 2000; Van den Bergh & Engelbrecht, 2010).

26



A Particle Swarm Inspired Approach for Continuous DCOPs

• Constriction Factor: Here, we follow the literature (Clerc, 1999), where, instead of
using Equation 5 to update the velocity of particles, we use Equation 50 instead:

P i
k.v

(t)
i = w(P i

k.v
(t−1)
i + r1c1(P

i
k.p

(t−1)
best − P

i
k.x

(t−1)
i ) + r2c2(P

i.g
(t−1)
best − P

i
k.x

(t−1)
i )) (50)

w =
2

2− φ−
√

(φ2 − 4φ)
(51)

φ = c1 + c2 > 4 (52)

To satisfy the constraint in Equation 52, we choose c1 = c2 = 2.05 to get φ = 4.1
and w = 0.7298 because this set of parameter values has been proven to be a con-
vergent parameter configuration for the centralized GCPSO model (Van den Bergh &
Engelbrecht, 2010).

We then conduct another preliminary experiment, where we compare these two design
choices for both PCD and PCD_CrossOver on random graphs. Figure 5 plots the results.
It is clear that the parameters values tuned using AdaptiveW result in better solutions
compared to when they are tuned using the constriction factor approach for both PCD and
PCD_CrossOver and in both sparse and dense random graphs. Therefore, for all subsequent
experiments, we use the AdaptiveW approach to tune the w, c1, and c2 parameter values.

6.3 Comparisons with the State of the Art

In this section, we empirically compare PCD and PCD_CrossOver to existing state-of-
the-art C-DCOP algorithms – HCMS (Voice et al., 2010) as well as C-DSA and AC-
DPOP (Hoang et al., 2020) on the four benchmark problems described in Section 6.1. We
follow the literature (Hoang et al., 2020) to determine the parameter values of HCMS, AC-
DPOP, and DSA. Specifically, HCMS and AC-DPOP both maintain 3 discrete points per
variable, where each discrete point is chosen randomly from the domain range. AC-DPOP
moves each of its points 20 times, where each move is executed by solving a set of gradient
equations; and C-DSA uses DSA-B with p = 0.6. We set the learning rate of HCMS to
0.01, which is the best value found in our experiments. Moreover, when appropriate we
have taken the mean of K parallel runs to compare with our population-based approaches.
Finally, it is worth noting that all the differences in the quality of solutions found by the
algorithms that we highlight below are statistically significant with p-values that are less
than 0.01.

Figure 6 shows the results of our PCD and PCD_CrossOver algorithms as well as the
existing HCMS and C-DSA algorithms on random graphs. We omit the results of AC-DPOP
because it ran out of memory in this setting. In both sparse and dense random graphs,
PCD_CrossOver converges to a better solution compared to all the existing algorithms
including PCD. Specifically, PCD_CrossOver improves PCD by 11.7% in sparse graphs and
10.4% in dense graphs, thereby demonstrating the significance of the crossover procedure
described in Section 4.1. Moreover, PCD_CrossOver finds solutions that are better than
existing algorithms by about 3.0% − 13.1% on sparse graphs and 7.6% − 24.1% on dense
graphs after one second.
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Figure 6: Solution quality of PCD, PCD_CrossOver, HCMS, and C-DSA on random graphs.

Table 7: Solution quality of PCD, PCD_CrossOver, HCMS, and C-DSA on random graphs
with different number of agents.

PCD_CrossOver PCD HCMS C-DSA

|A| = 30 p = 0.2 -504,082 -469,093 -423,383 -493,730
p = 0.6 -1,166,414 -1,042,611 -1,055,878 -1,096,852

|A| = 50 p = 0.2 -1,151,581 -1,030,328 -974,416 -1,118,344
p = 0.6 -2,897,026 -2,623,534 -2,730,943 -2,334,385

|A| = 70 p = 0.2 -2,129,397 -1,858,646 -2,049,757 -1,636,508
p = 0.6 -5,157,537 -4,494,102 -5,060,671 —

Table 7 shows further comparisons on random graph settings varying the number of
agents. For this experiment, we run each algorithm for 1500ms using 30, 50, and 70 agents,
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Figure 7: Solution quality of PCD, PCD_CrossOver, HCMS, C-DSA, and AC-DPOP on
random trees.
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Figure 8: Solution quality of PCD, PCD_CrossOver, HCMS, and C-DSA on Scale-Free
Graph.

each with both sparse (edge probability 0.2) and dense (edge probability 0.6) settings. For
smaller graphs (i.e., |A| = 30), in both sparse and dense settings, the closest competitor of
PCD_CrossOver is C-DSA. For larger graphs and sparse settings, the trends remain the
same as the smaller instances. However, as the density and graph size increases, C-DSA
takes more time than the competing algorithms and HCMS becomes the closest competitor of
PCD_CrossOver. In all the settings, PCD_CrossOver outperforms the existing algorithms
given the same time. We omit the result for C-DSA in |A| = 70, p = 0.6, as it does not
produce any output within the given time. A key insight we can draw from this experiment
is that neither the graph size nor the density has any adverse effect on the performance of
PCD_CrossOver in random graph settings.
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Figure 9: Solution quality of PCD, PCD_CrossOver, HCMS, and C-DSA on random sensor
network problems.

Figure 7 shows the results of our PCD and PCD_CrossOver algorithms as well as the
existing HCMS, C-DSA, and AC-DPOP algorithms on random trees. The observations and
trends from the experiments on random graphs are comparable to random trees as well,
where PCD_CrossOver converges to the best solution compared to all other algorithms.
Specifically, PCD_CrossOver improves PCD by 16.2% and finds solutions that are better
than existing algorithms by about 6.3%− 8.3% after one second. Figure 8 shows the perfor-
mance comparison for scale-free networks in a larger graph setting (|A| = 100). Although,
PCD, C-DSA, and HCMS show similar performances, PCD_CrossOver outperforms the
existing algorithms by a margin of 22.28% for HCMS and 14.56% for C-DSA.

In addition, we perform the one-way ANOVA with post-hoc Tukey HSD test for all
random graphs, random trees, and random sensor network problems. While we accomplish
this, we take into account 4 heuristics (PCD, PCD Crossover, HCMS, and C-DSA) as
treatments, each of which shows how well it does in comparison to the ideal mapping. The
observed p-value for the one-way ANOVA F-statistic for each experiment is less than 0.05,
indicating that one or more treatments are significantly different. Then, using a post-hoc
test (Tukey HSD), we find that PCD and PCD Crossover’s performance is significantly
different from each of the remaining samples on its own (i.e., p 0.01).

Finally, Figure 9 shows the results of our PCD and PCD_CrossOver algorithms as well
as the existing HCMS and C-DSA algorithms on random sensor network problems. Similar
to random graphs, we omit the results of AC-DPOP because it also ran out of memory in
this setting. However, unlike the previous two problem settings, we change the optimization
problem from one that minimizes the cost of solutions to one that maximizes the cost of
solutions to stay consistent with actual sensor networks, where the goal is to maximize signal
strengths. The general trends from the previous two problem settings are also applicable
here. To be exact, PCD_CrossOver also converges to the best solution compared to all other
algorithms. Due to the crossover operator, offspring particles benefits from both parents.
This permits a good exploration of the search space between particles, as such, facilitating
the attainment of such an outcome. However, interestingly, PCD also finds better solutions
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than HCMS and C-DSA in this problem setting. In contrast, they all converge to solutions of
similar quality in the previous two problem settings. Specifically, PCD_CrossOver improves
PCD by 6.1%, and both PCD_CrossOver and PCD outperform HCMS and C-DSA by about
12.6%− 17.3% and 6.9%− 11.9%, respectively.

Therefore, the results in these four problem settings clearly demonstrate that PCD_CrossOver
finds better solutions than existing state-of-the-art C-DCOP algorithms, highlighting the
promise of particle swarm optimization based approaches to solve continuous C-DCOPs.

7. Conclusions and Future Work

Distributed Constraint Optimization Problems (DCOPs) have been used to model a number
of multi-agent coordination problems. However, its use of discrete variables prevents it
from accurately modeling problems with continuous variables. To overcome this limitation,
researchers have proposed Continuous DCOPs (C-DCOPs), where the key change is that the
variables are now continuous instead of discrete, as well as a number of algorithms to solve
them. However, existing C-DCOP algorithms primarily rely on gradient-based optimization
methods that require derivative calculations. Consequently, they are not suitable for non-
differentiable optimization problems.

To remedy this limitation, we proposed a new approach that generalizes the centralized
particle swarm optimization algorithm to a decentralized setting. The new algorithm, called
PCD, and its variant that uses crossover operations, called PCD_CrossOver, maintains a set
of particles in a decentralized manner, where each particle represents a candidate solution.
They iteratively “move” the particles using a series of update equations, which corresponds
to updating the solutions maintained over time. Upon termination, the algorithms return
the best position over all particles and time steps, which corresponds to the best solution
found. We provide theoretical proof for the anytime behavior of our algorithms and show
empirical evidence that it outperforms existing state-of-the-art C-DCOP algorithms on four
different benchmarks.

In the future, we plan to further investigate the potential of other population-based
algorithms, such as Artificial Bee Colony (ABC) (Karaboga & Basturk, 2007) and Cuckoo
Search (CS) (Yang & Deb, 2009), to solve DCOPs and C-DCOPs. Furthermore, we want to
study different variants of PSO (e.g., Cooperative PSO (Van den Bergh & Engelbrecht, 2004)
and Hybrid PSO (Angeline, 1998)) and the effect of applying other genetic operators that
have been proposed over the last few decades to improve the solution quality of PSO. We are
keenly interested in the successful deployment of particle swarm-based algorithms for solving
real-world distributed constraint optimization problems. However, we recognize the critical
importance of ensuring privacy (Kogan, Tassa, & Grinshpoun, 2022; Tassa, Grinshpoun, &
Yanai, 2021) in the algorithmic design and implementation. Thus, we believe that further
analysis of the privacy-preserving aspect of particle swarm-based algorithms is necessary for
their successful application in practical scenarios. In the future, we would like to investigate
the effects of different topologies on the performance of our algorithms. We are also interested
in exploring whether our algorithms can be generalized to solve multi-objective C-DCOPs,
which, to the best of our knowledge, have not yet been explored.
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8. Availability of data and materials

The codes used to implement the model described in this paper can be found in the GitHub
repository "PCD," which can be accessed via the following links:

1. Java: https://github.com/moumitachoudhury/PCD

2. Python: https://github.com/SaminYaser/PCD

The codes in these repositories can be used to replicate simulation results similar to
those presented in this paper. Furthermore, upon reasonable request, the data presented in
this paper may be made directly available to the requester.

9. Credit Authorship Contribution Statement

Moumita Choudhury: Conceptualization, Methodology, Writing – Original Draft, Soft-
ware, Formal Analysis, Visualization. Amit Sarker: Data Curation, Formal Analysis,
Validation. Samin Yaser: Writing – Review & Editing, Software. Md. Maruf Al Alif
Khan: Software, Validation. William Yeoh: Writing – Original Draft, Writing – Review
& Editing, Investigation. Md. Mosaddek Khan: Conceptualization, Supervision, Project
Administration, Funding acquisition, Writing – Review & Editing.

10. Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

11. Acknowledgements

This research is mainly supported by the ICT Innovation Fund of Bangladesh Government.
A preliminary version of this research has appeared previously (Choudhury et al., 2020).
This paper provides a more efficient approach and comprehensive description of the algo-
rithm, as well as a broader theoretical and experimental comparison to other cutting-edge
C-DCOP algorithms.

References

Abido, M. (2002). Optimal design of power-system stabilizers using particle swarm opti-
mization. IEEE transactions on energy conversion, 17 (3), 406–413.

Angeline, P. J. (1998). Using selection to improve particle swarm optimization. In
1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE
World Congress on Computational Intelligence (Cat. No. 98TH8360), pp. 84–89. IEEE.

Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. science,
286 (5439), 509–512.

Carlisle, A., & Dozier, G. (2000). Adapting particle swarm optimization to dynamic envi-
ronments. In International conference on artificial intelligence, Vol. 1, pp. 429–434.
Citeseer.

32



A Particle Swarm Inspired Approach for Continuous DCOPs

Chen, Z., He, Z., & He, C. (2017). An improved dpop algorithm based on breadth first search
pseudo-tree for distributed constraint optimization. Applied Intelligence, 47 (3), 607–
623.

Chen, Z., Liu, L., He, J., & Yu, Z. (2020). A genetic algorithm based framework for local
search algorithms for distributed constraint optimization problems.. Auton. Agents
Multi Agent Syst., 34 (2), 41.

Chen, Z., Wu, T., Deng, Y., & Zhang, C. (2018). An ant-based algorithm to solve dis-
tributed constraint optimization problems. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence.

Choudhury, M., Mahmud, S., Khan, M. M., et al. (2020). A particle swarm based algorithm
for functional distributed constraint optimization problems.. In AAAI, pp. 7111–7118.

Clerc, M. (1999). The swarm and the queen: towards a deterministic and adaptive particle
swarm optimization. In Proceedings of the 1999 congress on evolutionary computation-
CEC99 (Cat. No. 99TH8406), Vol. 3, pp. 1951–1957. IEEE.

Dewang, H. S., Mohanty, P. K., & Kundu, S. (2018). A robust path planning for mobile robot
using smart particle swarm optimization. Procedia Computer Science, 133, 290–297.
International Conference on Robotics and Smart Manufacturing (RoSMa2018).

Eberhart, R. C., & Shi, Y. (2000). Comparing inertia weights and constriction factors
in particle swarm optimization. In Proceedings of the 2000 congress on evolutionary
computation. CEC00 (Cat. No. 00TH8512), Vol. 1, pp. 84–88. IEEE.

Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. In Proceedings of the
IEEE international conference on neural networks, Vol. 4, pp. 1942–1948. Citeseer.

Erdős, P., & Rényi, A. (1960). On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5 (1), 17–60.

Ever, Y. K. (2017). Using simplified swarm optimization on path planning for intelligent
mobile robot. Procedia Computer Science, 120, 83–90. 9th International Conference on
Theory and Application of Soft Computing, Computing with Words and Perception,
ICSCCW 2017, 22-23 August 2017, Budapest, Hungary.

Farinelli, A., Rogers, A., & Jennings, N. R. (2014). Agent-based decentralised coordination
for sensor networks using the max-sum algorithm. Autonomous agents and multi-agent
systems, 28 (3), 337–380.

Farinelli, A., Rogers, A., Petcu, A., & Jennings, N. R. (2008). Decentralised coordination of
low-power embedded devices using the max-sum algorithm. In Proceedings of the 7th
international conference on Autonomous agents and multiagent systems, pp. 639–646.
IFAAMAS.

Fitzpatrick, S., & Meetrens, L. (2003). Distributed sensor networks a multiagent perspective,
chapter distributed coordination through anarchic optimization..

Ghosh, P., Karmakar, A., Sharma, J., & Phadikar, S. (2019). CS-PSO based Intrusion
Detection System in Cloud Environment: Proceedings of IEMIS 2018, Volume 1, pp.
261–269.

33



Choudhury, Sarker, Yaser, Khan, Yeoh, & Khan

Hao, Z., Wang, X., & Wang, J. (2022). A study of jamming resource allocation based on a
hyperheuristic framework..

Hendrikx, H. (2021). Accelerated methods for distributed optimization. Theses, Université
Paris sciences et lettres.

Hoang, K. D., Yeoh, W., Yokoo, M., & Rabinovich, Z. (2020). New algorithms for continuous
distributed constraint optimization problems. In Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems, pp. 502–510.

Hsin, C.-f., & Liu, M. (2004). Network coverage using low duty-cycled sensors: random &
coordinated sleep algorithms. In Proceedings of the 3rd international symposium on
Information processing in sensor networks, pp. 433–442. ACM.

Jia, Y.-H., Chen, W.-n., Tianlong, G., Zhang, H., Yuan, H., Lin, Y., Yu, W.-J., & Zhang,
J. (2017). A dynamic logistic dispatching system with set-based particle swarm opti-
mization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, PP, 1–15.

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical func-
tion optimization: artificial bee colony (abc) algorithm. Journal of global optimization,
39 (3), 459–471.

Khan, M. M., Tran-Thanh, L., & Jennings, N. R. (2018a). A generic domain pruning
technique for gdl-based dcop algorithms in cooperative multi-agent systems. In Pro-
ceedings of the 17th International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pp. 1595–1603. IFAAMAS.

Khan, M. M., Tran-Thanh, L., Yeoh, W., & Jennings, N. R. (2018b). A near-optimal node-
to-agent mapping heuristic for gdl-based dcop algorithms in multi-agent systems. In
Proceedings of the 17th International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), pp. 1613–1621. IFAAMAS.

Khan, M. M., Tran-Thanh, L., Ramchurn, S. D., & Jennings, N. R. (2018c). Speeding up
gdl-based message passing algorithms for large-scale dcops. The Computer Journal,
61 (11), 1639–1666.

Khireddine, A., Larbi, T., Sylia, Z., Gueguen, C., & Lamine, B. (2020). New strategy for
resource allocation using pso-pfs hybrid. International Journal of Wireless and Mobile
Computing, 18, 175.

Kogan, P., Tassa, T., & Grinshpoun, T. (2022). Privacy preserving dcop solving by medi-
ation. In Dolev, S., Katz, J., & Meisels, A. (Eds.), Cyber Security, Cryptology, and
Machine Learning, pp. 487–498, Cham. Springer International Publishing.

Litov, O., & Meisels, A. (2017). Forward bounding on pseudo-trees for dcops and adcops.
Artificial Intelligence, 252, 83–99.

Lovbjerg, M., Rasmussen, T. K., Krink, T., et al. (2001). Hybrid particle swarm optimiser
with breeding and subpopulations. In Proceedings of the genetic and evolutionary
computation conference, Vol. 2001, pp. 469–476. San Francisco, USA.

Maheswaran, R. T., Pearce, J. P., & Tambe, M. (2004). Distributed algorithms for dcop: A
graphical-game-based approach.. In ISCA PDCS, pp. 432–439.

34



A Particle Swarm Inspired Approach for Continuous DCOPs

Mahmud, S., Khan, M. M., Choudhury, M., Tran-Thanh, L., & Jennings, N. R. (2020a).
Learning optimal temperature region for solving mixed integer functional dcops. In
Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJ-
CAI), pp. 2628–275.

Mahmud, S., Choudhury, M., Khan, M., Tran-Thanh, L., Jennings, N. R., et al. (2020b).
Aed: An anytime evolutionary dcop algorithm. Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems, 2020.

Marinakis, Y., Marinaki, M., & Migdalas, A. (2019). A multi-adaptive particle swarm
optimization for the vehicle routing problem with time windows. Information Sciences,
481, 311–329.

Modi, P. J., Shen, W.-M., Tambe, M., & Yokoo, M. (2005). Adopt: Asynchronous distributed
constraint optimization with quality guarantees. Artificial Intelligence, 161 (1-2), 149–
180.

Nguyen, D. T., Yeoh, W., & Lau, H. C. (2012). Stochastic dominance in stochastic dcops
for risk-sensitive applications. In Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems-Volume 1, pp. 257–264.

Nguyen, D. T., Yeoh, W., Lau, H. C., & Zivan, R. (2019). Distributed gibbs: A linear-
space sampling-based dcop algorithm. Journal of Artificial Intelligence Research, 64,
705–748.

Petcu, A., & Faltings, B. (2005). A scalable method for multiagent constraint optimization.
In Proceedings of the 19th International Joint Conference on Artificial Intelligence.

Rashik, M., Rahman, M. M., Khan, M. M., Mamun-or Rashid, M., Tran-Thanh, L., &
Jennings, N. R. (2020). Speeding up distributed pseudo-tree optimization procedures
with cross edge consistency to solve dcops. Applied Intelligence, 1377–1746.

Sarker, A., Choudhury, M., & Khan, M. M. (2021). A local search based approach to solve
continuous dcops. In Proceedings of the 20th International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), pp. 1127–1135.

Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In 1998 IEEE inter-
national conference on evolutionary computation proceedings. IEEE world congress on
computational intelligence (Cat. No. 98TH8360), pp. 69–73. IEEE.

Shi, Y., & Eberhart, R. C. (1999). Empirical study of particle swarm optimization. In
Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.
99TH8406), Vol. 3, pp. 1945–1950. IEEE.

Stranders, R., Farinelli, A., Rogers, A., & Jennings, N. R. (2009). Decentralised coordination
of continuously valued control parameters using the max-sum algorithm. In Proceedings
of the 8th International Conference on Autonomous Agents and Multiagent Systems-
Volume 1, pp. 601–608. IFAAMAS.

Sultanik, E., Modi, P. J., & Regli, W. C. (2007). On modeling multiagent task scheduling as a
distributed constraint optimization problem.. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence, pp. 1531–1536.

35



Choudhury, Sarker, Yaser, Khan, Yeoh, & Khan

Sultanik, E. A., Lass, R. N., & Regli, W. C. (2008). Dcopolis: a framework for simulating
and deploying distributed constraint reasoning algorithms. In Proceedings of the 7th
international joint conference on Autonomous agents and multiagent systems: demo
papers, pp. 1667–1668.

Tassa, T., Grinshpoun, T., & Yanai, A. (2021). Pc-syncbb: A privacy preserving collusion
secure dcop algorithm. Artificial Intelligence, 297, 103501.

Tassa, T., Grinshpoun, T., & Zivan, R. (2017). Privacy preserving implementation of the
max-sum algorithm and its variants. Journal of Artificial Intelligence Research, 59,
311–349.

van den Bergh, F., & Engelbrecht, A. P. (2002). A new locally convergent particle swarm
optimiser. In Proceedings of the IEEE International conference on systems, man and
cybernetics, Vol. 3, pp. 6–pp. IEEE.

Van den Bergh, F., & Engelbrecht, A. P. (2004). A cooperative approach to particle swarm
optimization. IEEE transactions on evolutionary computation, 8 (3), 225–239.

Van den Bergh, F., & Engelbrecht, A. P. (2010). A convergence proof for the particle swarm
optimiser. Fundamenta Informaticae, 105 (4), 341–374.

van Leeuwen, C. J., & Pawelczak, P. (2017). Cocoa: A non-iterative approach to a local search
(a) dcop solver. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence.

Voice, T., Stranders, R., Rogers, A., & Jennings, N. R. (2010). A hybrid continuous max-
sum algorithm for decentralised coordination.. In Proceedings of the 19th European
Conference on Artificial Intelligence, pp. 61–66.

Wei, H., Li, S., Jiang, H., Hu, J., & Hu, J. (2018). Hybrid genetic simulated annealing algo-
rithm for improved flow shop scheduling with makespan criterion. Applied Sciences,
8 (12).

Yang, X.-S., & Deb, S. (2009). Cuckoo search via lévy flights. In 2009 World congress on
nature & biologically inspired computing (NaBIC), pp. 210–214. IEEE.

Yedidsion, H., & Zivan, R. (2016). Applying dcop_mst to a team of mobile robots with
directional sensing abilities: (extended abstract). In Proceedings of the 2016 Inter-
national Conference on Autonomous Agents & Multiagent Systems, pp. 1357–1358.
IFAAMAS.

Yeoh, W., Felner, A., & Koenig, S. (2010). Bnb-adopt: An asynchronous branch-and-bound
dcop algorithm. Journal of Artificial Intelligence Research, 38, 85–133.

Yu, H., Gao, Y., Wang, L., & Meng, J. (2020). A hybrid particle swarm optimization
algorithm enhanced with nonlinear inertial weight and gaussian mutation for job shop
scheduling problems. Mathematics, 8 (8).

Zhang, J.-R., Zhang, J., Lok, T.-M., & Lyu, M. R. (2007). A hybrid particle swarm
optimization–back-propagation algorithm for feedforward neural network training. Ap-
plied mathematics and computation, 185 (2), 1026–1037.

36



A Particle Swarm Inspired Approach for Continuous DCOPs

Zhang, W., Wang, G., Xing, Z., & Wittenburg, L. (2005). Distributed stochastic search and
distributed breakout: properties, comparison and applications to constraint optimiza-
tion problems in sensor networks. Artificial Intelligence, 161 (1-2), 55–87.

37


