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Abstract. Motivated by the goal recognition (GR) and goal recogni-
tion design (GRD) problems in the artificial intelligence (AI) planning
domain, we introduce and study two natural variants of the GR and GRD
problems with strategic agents, respectively. More specifically, we con-
sider game-theoretic (GT) scenarios where a malicious adversary aims to
damage some target in an (physical or virtual) environment monitored
by a defender. The adversary must take a sequence of actions in order
to attack the intended target. In the GTGR and GTGRD settings, the
defender attempts to identify the adversary’s intended target while ob-
serving the adversary’s available actions so that he/she can strengthens
the target’s defense against the attack. In addition, in the GTGRD set-
ting, the defender can alter the environment (e.g., adding roadblocks) in
order to better distinguish the goal/target of the adversary.

We propose to model GTGR and GTGRD settings as zero-sum stochas-
tic games with incomplete information about the adversary’s intended
target. The games are played on graphs where vertices represents states
and edges are adversary’s actions. For the GTGR setting, we show that if
the defender is restricted to playing only stationary strategies, the prob-
lem of computing optimal strategies (for both defender and adversary)
can be formulated and represented compactly as a linear program. For
the GTGRD setting, where the defender can choose K edges to block at
the start of the game, we formulate the problem of computing optimal
strategies as a mixed integer program, and present a heuristic algorithm
based on LP duality and greedy methods. Experiments show that our
heuristic algorithm achieves good performance (i.e., close to defender’s
optimal value) with better scalability compared to the mixed-integer
programming approach.

In contrast with our research, existing work, especially on GRD prob-
lems, has focused almost exclusively on decision-theoretic paradigms,
where the adversary chooses its actions without taking into account the
fact that they may be observed by the defender. As such an assumption
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Fig. 1. Example Problem (left) and with Blocked Actions in Red (right).

is unrealistic in GT scenarios, our proposed models and algorithms fill a
significant gap in the literature.

1 Introduction

Discovering the objective of an agent based on observations of its behavior is a
problem that has interested both artificial intelligence (AI) and psychology re-
searchers for many years [23,7]. In AI, this problem is known as goal recognition
(GR) or, more generally, plan recognition [25]. Plan and goal recognition prob-
lems have been used to model a number of applications ranging from software
personal assistants [16-18]; robots that interact with humans in social settings
such as homes, offices, and hospitals [26,8]; intelligent tutoring systems that
recognize sources of confusion or misunderstanding in students through their in-
teractions with the system [14, 6, 12, 15]; and security applications that recognize
the plan or goal of terrorists [5].

One can broadly summarize the existing research in GR as one that primarily
focuses on developing better and more efficient techniques to recognize the plan
or the goal of the user given a sequence of observations of the user’s actions. For
example, imagine a scenario shown in Figure 1 (left), where an agent is at cell
E3, it can move in any of the four cardinal directions, and its goal is one of three
possible goals G1 (in cell B1), G2 (in cell A5), and G3 (in cell C5). Additionally,
assume that it will move along a shortest path to its goal. Then, if it moves left
to cell E2, then we can deduce that its goal is G1. Similarly, if it moves right to
cell £4, then its goal is either G2 or G3.

Existing research has focused on agent GR models that are non-strategic or
partially strategic: The agent’s objective is to reach its goal with minimum cost,
and the agent does not explicitly reason about its interaction with the observer.
However, when the observer’s recognition of the agent’s goal affects the agent
in some way, then it is in the agent’s best interest to be fully strategic — to



explicitly reason about how the agent’s choice affects the observer’s recognition.
As a result, the observer will need to take into account the agent’s strategic
reasoning when making decisions.

1.1 Game-Theoretic Goal Recognition Problems in Security
Domains

Naturally, GT settings with strategic agents are common in many real-world
(physical and cyber) security scenarios between an adversary and a defender. The
adversary has a set of targets of interests and would be equally happy in attacking
one of them. In physical security domains, the adversary must make a sequence
of physical movements to reach a target; in cyber security domains, this could
be a sequence of actions achieving necessary subgoals to carry out the attack.
In any case, the defender is trying to recognize the adversary’s goal/target. We
coined this the game-theoretic goal recognition (GTGR) problem.

Let us describe the security games of interests using Figure 1. Consider the
security scenario in Figure 1 (left), where an agent (i.e., terrorist) wants to reach
its intended target and carry out an attack, while we, the observer (the defender)
try to recognize the agent’s goal as early as possible. Suppose once we recognize
the agent’s goal, we will strengthen the agent’s target to defend against the
attack. The more time we have between recognition and the actual attack, the
less successful the attack will be. In this scenario, it is no longer optimal for
the agent to simply choose a shortest path to its goal, as that could allow the
observer to quickly identify its goal. On the other hand, the agent still wants to
reach its goal in a reasonably short time, as a very long path could allow the
observer time to strengthen all the targets. So, an optimal agent would need
to explicitly reason about the tradeoffs between the cost of its path (e.g., path
length) and the cost of being discovered early.

1.2 Game-Theoretic Goal Recognition Design Problems in Security
Domains

So far we have been discussing the defender’s task on recognizing goals. However,
the task could become very difficult in general. For instance, going back to our
security example in Figure 1, if the agent moves up to D3, the observer cannot
make any informed deductions. In fact, if the agent moves along any one of
its shortest paths to goal G3, throughout its entire path, which is of length 4,
we cannot deduce whether its goal is either G2 or G3! This illustrates one of
the challenges with this approach, that is, there are often a large number of
ambiguous observations that can be a result of a large number of goals. As such,
it is difficult to uniquely determine the goal of the agent until a long sequence
of observations is observed.

The work of [9, 10] proposed an orthogonal approach to modify the underlying
environment of the agent, in such a way that the agent is forced to reveal its goal
as early as possible. They call this problem the goal recognition design (GRD)
problem. For example, if we block the actions (E3,up), (C4,right), (C5,up) in



our example problem, where we use tuples (s, a) to denote that action a is blocked
from cell s, then the agent can make at most 2 actions (i.e., right to E4 then up
to D4) before its goal is conclusively revealed. Figure 1 (right) shows the blocked
actions. This problem finds itself relevant in many of the same applications of
GR because, typically, the underlying environment can be easily modified.

As such, in addition to studying the GTGR problem, we consider the GT-
GRD problem where the observer can modify the underlying environment (i.e.,
adding K roadblocks) as to restrict the actions of the agent.

1.3 Related Work

GR and its more general forms, plan recognition and intent recognition, have
been extensively studied [25] since their inception almost 40 years ago [23]. Re-
searchers have made significant progress within the last decade through syner-
gistic integrations of techniques ranging from natural language processing [27, 3]
to classical planning [20-22] and deep learning [15]. The closest body of work to
ours is the one that uses game-theoretic formulations, including an adversarial
plan recognition model that is defined as an imperfect information two-player
zero-sum game in extensive form [13], a model where the game is over attack
graphs [1], and an extension that allows for stochastic action outcomes [4]. The
main difference between these works and ours is that ours focuses on goal recog-
nition instead of plan recognition.

While GR has a long history and extensive literature, the field of GRD is rela-
tively new. Keren et al. introduced the problem in their seminal paper [9], where
they proposed a decision-theoretic STRIPS-based formulation of the problem.
In the original GRD problem, the authors make several simplifying assumptions:
(1) the observed agent is assumed to execute an optimal (i.e., cost-minimal) plan
to its goal; (2) the actions of the agent are deterministic; and (3) the actions of
the agent are fully observable. Since then, these assumptions have been indepen-
dently relaxed, where agents can now execute boundedly-suboptimal plans [10],
actions of the agents can be stochastic [28], and actions of the agents can be
only partially observable [11]. Further, aside from all the decision-theoretic ap-
proaches above, researchers have also modeled and solved the original GRD
problem using answer set programming [24]. The key difference between these
works and ours is that ours introduced a game-theoretic formulation that can
more accurately capture interactions between the observed agent and the ob-
server in security applications.

1.4 Owur Contributions

As a result of the strategic interaction in the GTGR and GTGRD scenarios,
the concept of cost-minimal plan (the solution concept in GR problem) and
worst-case distinctiveness (the solution concept in GRD problem) are no longer
a suitable solution concept since it does not reflect the behavior of strategic
agents. Instead, our objective here is to formulate game-theoretic models of the



agent’s and observer’s interactions under GR and GRD settings. More specifi-
cally, we propose to model GTGR and GRGRD settings as zero-sum stochastic
games with incomplete information where the adversary’s target is unknown to
the observer. For the GTGR setting, we show that if the defender is restricted to
playing only stationary strategies, the problem of computing optimal strategies
(for both defender and adversary) can be formulated and represented compactly
as a linear program. For the GTGRD setting, where the defender can choose K
edges to block at the start of the game, we formulate the problem of computing
optimal strategies as a mixed integer program, and present a heuristic algorithm
based on LP duality and greedy methods. We perform experiments to show that
our heuristic algorithm achieves good performance (i.e., close to defender’s opti-
mal value) with better scalability compared to the mixed-integer programming
approach.

2 Preliminary: stochastic games

In our two-player zero-sum single-controller stochastic game G, we have a fi-
nite set S of states, and an initial state so € S. The first player acts as an
adversary attempting to reach some target within the environment, while sec-
ond player acts as the observer of the environment. Given a state s € .S, there
exist finite action sets J; and I for the adversary and the observer respectively.
Given a state s € S and j € Js, a single-controller transition function x(s, j)
deterministically maps state and action to a new state. Given a state s € .5,
j € Js, i € I, and intended target of the adversary 6, we define a reward func-
tion r(s,1,7,0) € R. Since this is a zero-sum game, without loss of generality, we
define r as the reward for the observer and the additive inverse of the reward
for the adversary. We consider a two-player zero-sum single-controller stochastic
game where observer has incomplete information. In particular, the game con-
sists of a collection of zero-sum single-controller stochastic games {Gg}gep and
a probability distribution P € A(B) over B. For our setting, we assume that
each stochastic game Gy could have different reward function 7, but all of the
games Gjs have the same sets of states, actions, and transition rules. The game
is played in stages over some finite time. First, a game Gy is drawn according
to P. The adversary is informed of # while the observer does not know 6, but
rather a set of states B of which @ is a part of. At each stage of game ¢ with
current state s; € S, the adversary selects j; € Js and the observer selects i; € I,
and sy41 is reached according to x(s:, ji). However, we assume that the adver-
sary does not know i;, and both of the players do not know 7%(s;, s, j¢). Note
that observer can infer the action of the adversary given the new state since our
transition function is deterministic. Hence, the observer knows j, ¢, and sy41
The strategies of the players can be based on their own history of the previous
states and strategies. In addition, player 1 can condition his strategies based on 6.
We consider a finite timestep to be at most 7. Let h} = (S0, 50, 51,1, -+, J¢t—1, St)
and h? = (50,0, 805 81, -5 Jt—1,%t—1, St) to denote a possible history of length
t of player 1 and player 2 where j, € J;, and i, € I for k = 1,...,t. Let H,



and Hft be the set of all possible histories of length ¢ ended up at state s;.
Then, the sets of deterministic strategies for player 1 and player 2 are there-
fore Ht:OST,sf,Es,h;teHg.t Js, and Ht=0§T,steS,h§teH§t I , respectively. Indeed,
for each possible history, the players need to select some actions. Naturally, the
players mixed strategies are distributions over the deterministic strategies.

Definition 1. Given 6 € B, 0 <t < T, s € S, h;t € Hslt, player 1’s behav-
ioral strategy o1 (6, hit,jst) returns the probability of playing js, € Js, such that
st, e, o1(0,ht,,js,) = 1. (Player 2’s behavioral strategy o5 is defined similarly
and does not depend on 6).

Definition 2. A behavioral strateqy o is stationary if and only if it is inde-
pendent of any timestep t and depends only on the current state (i.e., o1(0,
hl,js) = o1(0, hl,js) such that hl and hl have the same last state and oo can
be defined similarly).

Given a sequence {(s¢,it,5;)}1_; of actions and states, the total reward for
player 2 is r = 23:1 79 (s¢,4¢, §¢). Thus, the expected reward 7 (P, sg, 01, 02) =
Epsy.01.0.[7T] is the expectation of rp over the set of stochastic games {Gp}ocp
given the the fixed initial state sq under P, o1, and o3, respectively.

Definition 3. The behavioral strategy oo is a best response to o1 if and only if
for all oy, yr (P, s0,01,02) > yr(P,s0,01,0%). The behavioral strategy o1 is a
best response to oo if and only if for all o, yr (P, so,01,02) < y1(P, 80,07, 02).

For two-player zero-sum games, the standard solution concept is the max-min
solution: max,, min,, yr(P, sg,01,02). One can also define min-max solution
min,, max,, yr(P, so, 01, 02). For zero-sum games, the max-min value, min-max
value, and Nash equilibrium values all coincide [2]. For simultaneous-move games
this can usually be solved by formulating a linear program. In this work, we will
be focusing on computing the max-min solution.

3 Game Model

We begin by describing our settings and introducing the GTGR and GTGRD
models.

3.1 Game-theoretic goal recognition model

Consider a deterministic environment such as the one in the introduction. We
can model the environment with a graph in which the nodes correspond to the
states and the edges connect neighboring states. Given the environment and
the graph, as in many standard GR problems, the agent wants to plan out a
sequence of moves (i.e., determining a path) to reach its target location of the
graph. The target location is unknown to the observer, and the observer’s goals



are to identify the target location based on the observed sequence of moves and
to make preventive measure to protect the target location.

We model this scenario as a two-player zero-sum game, between the agent/
adversary and the observer. Given the graph G = (L, E) of the environment,
the adversary is interested in a set of potential targets B C L and has a starting
position sp € L\ B. The adversary’s aim is to attack a specific target 6 € B,
which is chosen at random according to some prior probability distribution P.
The observer does not know the target 6, and only the adversary knows its target
0. However, the observer knows the set of possible targets B and the adversary’s
starting position sq. For any s € L, we let v(s) is the set of neighbors of s in the
graph G.

The sequential game is played over several timesteps where both players move
simultaneously. Each timestep, the observer selects a potential target in B to
protect, and the agent moves to a neighboring node. We consider the zero-sum
scenario: With each timestep, the adversary and the observer will lose and gain
a value d, respectively. In addition, if the observer protects the correct target
location 6, an additional value of ¢ will be added to the observer and subtracted
from the adversary. The game ends when the attacker reaches its target 6, a value
of u? will be added to the adversary’s overall score, and u? will be subtracted
from the observer’s overall score. Notice that during the play of the game, the
adversary does not observe the observer’s action(s), and the players do not know
of their current scores.

Because of the potentially stochastic nature of the adversary’s moves at each
timestep, and the uncertainty of adversary’s target in the system, our setting
is most naturally modeled as a stochastic game with incomplete information
as defined in Section 2. More specifically, the set of states is L with an initial
state sg. Given a state s € S, v(s) is the action set for the adversary and B is
the action set for the observer. Given a state s € S and j € v(s), the single-
controller transition function x(s,j) = j. Indeed, the transition between states
are controlled by the adversary only and is deterministic: From state s, where
s # 0, given attacker action j € v(s), the next state is j. The state 6 is terminal:
Once reached, the game ends. Given a state s € S, j € v(s), and i € B, we define
the reward function 7%(s, i, j) = 7(s, 1, j, ) from the observer’s point of view as

d jFO&iIF#0
. d—+ | #F0 &i=10
r(s,i,,0) = d_ZQ jie&z#e (1)

d+q—u’ j=0&i=09.

While, in theory, the game could go on forever if the adversary never reaches
his target 6, because of the per-timestep cost of d, any sufficiently long path for
the adversary would be dominated by the strategy of taking the shortest path
to . Eliminating these dominated strategies allows us to set a finite bound for
the duration of the game, which grows linearly in the shortest distance to the
target that is furthest away. Even in games where the value of d is set to 0,
the defender could potentially play a uniformly random strategy that imposes a



cost of ﬁ per timestep. Therefore, an adversary strategy taking forever would
achieve a value of —oo against the uniformly random defender strategy. In any
Nash equilibrium the attacker will always reach their target in finite time.

We call this the game-theoretic goal recognition (GTGR) model. All of the

definitions in Section 2 follow immediately for our games.

3.2 Game-theoretic goal recognition design model

As mentioned in the introduction, we also consider the game-theoretic goal recog-
nition design (GTGRD) model. Formally, before the game starts, we allow the
observer to block a subset of at most K actions from the game. In our model,
that corresponds to blocking at most K edges from the graph. In one variant of
the model, blocking an edge effectively removes that edge, i.e. the adversary can
no longer take that action. In another variant, blocking an edge does not prevent
the adversary from taking the action, but the adversary would incur a cost by
taking that action. After placing the blocks, the game proceeds as described in
Section 3.1.

4 Computation

4.1 Game-theoretic goal recognition model

With the game defined, we are interested in computing the solution of the game:
What is the outcome of the game when both players behave rationally? Before
defining rational behavior, we first need to discuss the set of strategies. In a
sequential game, a pure strategy of a player is a deterministic mapping from the
current state and the player’s observations/histories leading to the state, to an
available action. For the adversary, such observations/histories include its own
sequence of prior actions and its target 6; the observer’s observations/histories in-
clude the adversary’s sequence of actions and the observer’s sequence of actions.
A mixed strategy is a randomized strategy, specified by a probability distribu-
tion over the set of pure strategies. The strategies are defined more formally in
Section 2 and Definition 1.

As mentioned earlier, we are interested in computing the max-min solution,
which is equivalent to the max-min value, min-max value, and Nash equilibrium
value of the game. For simultaneous-move games this can usually be solved
by formulating a linear program. However, for our sequential game, each pure
strategy need to prescribe an action for each possible sequence of observations
leading to that state and, as a result, the sets of pure strategies are exponential
for both players.

To overcome this computational challenge, we focus on stationary strategies,
which depend only on the current state (for the adversary, also on €) and not on
the history of observations (see Definition 2). While for stochastic games with
complete information, it is known that there always exist an optimal solution
that consists of stationary strategies [2], it is an open question whether the same



property holds for our setting, which is an incomplete-information game. Nev-
ertheless, there are some heuristic reasons that stationary strategies are at least
good approximations of optimal solutions: The state (i.e., adversary’s location)
already captures a large amount of information about the strategic intention of
the adversary.

An intuitively optimal non-stationary strategy in which the observer assigns
resources to the target with maximal probability, determined through observing
the actions of the adversary, presents additional challenges. An optimal strategy
of this nature would require information regarding adversarys strategy from
the beginning of the game, so as to determine the likelihood of a given action
assuming a particular target for the adversary. Making such assumptions is a
straightforward process when restricting the observer to stationary strategies.
Later in this paper we will demonstrate how given a stationary strategy for the
observer, there exists a best response strategy for the adversary that is also
stationary.

Restricting to stationary strategies, randomized strategies now correspond
to a mapping from state to a distribution over actions. We have thus reduced
the dimension of the solution space from exponential to polynomial in the size
of the graph. Furthermore, our game exhibits the single-controller property: The
state transitions are controlled by the adversary only. For complete information
stochastic games with a single controller, a linear programming (LP) formulation
is known [19]. We adapt this LP formulation to our incomplete information
setting.

We define V(0,s) to be a variable that represents the expected payoff to
the observer at state s and with adversary’s intended target §. We use P(6) to
denote the prior probability of § € B being the adversary’s target such that
> o P(0) = 1. The observer’s objective is to find a (possibly randomized)
strategy that maximizes his expected payoff given the prior distribution over the
target set B, the moves of the adversary, and the adversary’s starting location.
The following linear program computes the utility of the observer in a max-min
solution assuming both players are playing a stationary strategy.

max PO)V (0, s, 2
Vv{fi(s)}'i,s; OV ) @

V(0,5) <> r(s,4,5,0)fi(s) + V(0,5) VO €B,Vs|s#0,%j €v(s) (3)

i€B
V(d,s)=0 when s =6 (4)
> fils) =1 Vs (5)

In the above linear program, (2) is the objective of the observer. The f;(s)’s
represent the probability of the observer taking an action i € B given the state
s. To ensure a well defined probability distribution for each state of the games,
(5) and (6) impose the standard sum-equal-to-one and non-negative conditions



on the probability of playing each action ¢ € B. The Bellman-like inequality (3)
bounds the expected value for any state using expected values of next states
plus the expected current reward, assuming the adversary will choose the state
transition that minimizes the observer’s expected utility. Finally, (4) specifies
the base condition when the adversary has reached their destination and the
game ends. The size of the linear program is polynomial in the size of the graph.

The solution of this linear program prescribes a randomized stationary strat-
egy fi(s) for the observer and, from the dual solutions, one can compute a
stationary strategy for the adversary. In more detail, the dual linear program is

min Z ts (7)

tg > Z )\Z,jr(s,i,j, 0) Vs, i (8)
6.j
Lo PO)+ > A = > X, V0 € B,Vs # 0 (9)
s'#0:s€v(s’) j€ev(s)
0 .
As; >0 V0, s,j (10)

where I;—g, is the indicator that equals 1 when s = sy and 0 otherwise. The
dual variables )\2, ; can be interpreted as the probability that adversary type 6
takes the edge from s to j. These probabilities satisfies the flow conservation
constraints (9): given 6, the total flow into s (the left hand side) is equal to
the probability that type 6 visits s, which should equal the total flow out of s
(the right hand side). The variables ¢5 can be interpreted as the contribution to
defender’s utility from state s, assuming that the defender is choosing an optimal

action at each state (ensured by constraint (8)).

Given the dual solutions A§7j, we can compute a stationary strategy for the
adversary: let m(j|0,s) be the probability that the adversary type 6 chooses
6
j at state s. Then for all # € B and s # 0, ©(jl0,s) = ZAiJ/\g It is
i'€v(s) Ns, 4!

straightforward to verify that by playing the stationary strategy =, the aciversary
type 0 will visit each edge (s, j) with probability /\g)j.

Lemma 1. Given a stationary strategy for the defender, there exists a best re-
sponse strateqy for the adversary that is also a stationary strategy.

Proof (Sketch). Given a stationary defender strategy f;(s), each adversary type 6
now faces a Markov Decision Process (MDP) problem, which admits a stationary
strategy as its optimal solution.

More specifically, since the state transitions are deterministic and fully con-
trolled by the adversary, each type 6 faces a problem of determining the shortest
path from sy to 6, with the cost of each edge (s,j) as ) ;. fi(s)r(s,1,7,0).
Looking into the components of r(s,,7,0), since the adversary reward u’ for
reaching target 6 occurs exactly once at the target 6, it can be canceled out
and the problem is equivalent to the shortest path problem from sg to 6 with



edge cost d+ fy(s)g. Since edge costs are nonnegative the shortest paths will not
involve cycles.

What this lemma implies is that if the defender plays the stationary strategy
prescribed by the LP (2), the adversary cannot do better than the value of the
LP by deviating to a non-stationary strategy.

Corollary 1. If the defender plays the stationary strategy fi(s) given by the
solutions of LP (2), the adversary’s stationary strategy w as prescribed by LP
(7) is a best response, i.e., no non-stationary strategies can achieve a better
outcome for the adversary.

While it is still an open question whether the defender has an optimal sta-
tionary strategy, we have shown that if we restrict to stationary strategies for
the defender, it is in the best interest of the adversary to also stick to stationary
strategies and our LP (2) does not overestimate the value of the game.

4.2 Game-theoretic goal recognition design model

One can solve this GTGRD problem by brute-force, i.e., try every subset of edges
to block and then for each case solve the resulting LP. The time complexity of
this approach grows exponentially in K. Instead, we can encode the choice of
edge removal as integer variables added to the LP formulation, resulting in a
mixed-integer program (MIP). For example, we could replace (3) with

V(0,5) <> r(s,1,5,0)fi(s) + V(0,5) + M=(s, ) (11)
i€B

where M is a positive number, and z(s,j) is a 0-1 integer variable indicating
whether the action/edge from s to j is blocked. M thus represents the penalty
that the attacker incurs if he nevertheless chooses to take the edge from s to j
while it is blocked. By making M sufficiently large, we can make the actions of
crossing a blocked edge dominated and therefore effectively removing the edges
that we block. We also add the constraint > ; z(s, ) < K.

Dual-based greedy heuristic. The MIP approach scales exponentially in the
worst case as the size of the graph and K grows. We propose a heuristic method
for selecting edges to block. We first solve the LP for goal recognition and its
dual. In particular, we look at the dual variable /\g’ ; for the constraint (3). This
dual has the standard interpretation as the shadow price: it is the rate of change
to the objective if we infinitesimally relax constraint (3).

Looking at the MIP, in particular constraint (11), we see that by blocking off
an action from s to j we are effectively relaxing the corresponding LP constraints
(3) indexed by 6, s, j for all € B. These are the adversary’s incentive constraints
for going from s to j, for all adversary types 6.

Utilizing the shadow price interpretation of the duals, the sum of the duals
corresponding to the edge from s to j: > 4 /\Z,j gives the rate of change to the



objective (i.e. defender’s expected utility) if the edge (s,7) is blocked by an in-
finitesimal amount. Choosing the edge that maximizes this, arg maxs ; >y 5 )\g’ j
we get the maximum rate of increase of our utility. These rates of changes hold
only when the amount of relaxation (i.e., M) is infinitesimal. However, in prac-
tice we can still use this as a heuristic for choosing edges to block.!

When K > 1, we could choose the K edges with the highest dual sums. Al-
ternatively, we can use a greedy approach: pick one edge with the maximum dual
sum, place a block on the edge and solve the updated LP for goal recognition, and
pick the next edge using the updated duals, and repeat. In our experiments, the
latter greedy approach consistently achieved significantly higher expected utili-
ties than the former. Intuitively, by re-solving the LP after adding each edge, we
get a more accurate picture of the adversary’s adaptations to the blocked edges.
Whereas the rates of changes used by the former approach are only accurate
when the adversary do not adapt at all to the blocked edges (see footnote 1).
Our greedy heuristic is summarized as follows.

—forve=1...K:

e Solve LP (2), updated with the current blocked edges. If edge (s, )
blocked, the corresponding constraint (3) indexed s,j,6 for all 8 are
modified so that M is added to the right hand side. Get the primal and
dual solutions.

e Take an edge (s*,j*) € argmax, ;Y 4c5 A, and add it to the set of
blocked edges.

— return the set of blocked edges, and the primal solution of the final LP as
the defender’s stationary strategy.

5 Experiments

Experiments were run on a machine using OSX Yosemite version 10.10.5, with
16 GB of ram and a 2.3 GHz Intel Core i7 processor, and were conducted on
grid environments such as the one seen in Figure 2. In these environments, the
adversary is allowed to move to adjacent nodes connected by an edge. S denotes
the starting location of the adversary while T'1 and 72 denote the locations of
two potential targets.

In Figure 2, targets T1 and T2 each have a equal likelihood of being the
adversary’s intended target. The adversary’s timestep penalty d and completion
reward 1 are both set to 0. The defender’s reward for correctly guessing the
adversary’s intended target g is set to 10. The attacker penalty value for crossing
an edge penalized by the observer is set to 10. The observer is permitted to
penalize 3 edges.

1 Another perspective: from the previous section we see that )\Z’j is the probability
that adversary type 0 traverses the edge s, j. Then if the adversary and defender do
not change their strategies after the edge (s, 7) is blocked, the defender would receive
an additional utility of M >, p )\Z’j from the adversary’s penalty for crossing that
edge.



Fig. 2. An Instance of GTGR/GTGRD Games Used in Experiments.

5.1 A Comparison of MIP and Greedy Solutions

As seen in Figure 3 and Figure 4, the mixed integer program and greedy heuris-
tic can yield different results. The mixed integer program yields an expected
outcome of 43.3 for the observer, while utilizing the greedy heuristic yields an
outcome of 40.0 for the observer. The default expected outcome for the observer
(in which no edges are penalized) is 30.0. The following experiments averaged
the results of similar grid problems.

EE
ettt

Fig. 3. MIP Solution Fig. 4. Greedy Solution

5.2 Running Time and Solution Quality

Results from the following experiments were averaged over 1000 grid environ-
ments. For each experiment, the adversary’s timestep penalty d and completion



reward u? were set to 0. For each environment, the starting location of the ad-
versary and all targets are placed randomly on separate nodes. Additionally,
each target 6 is assigned a random probability P(0) such that »7, 5 P(0) = 1.
In all of our figures below, the greedy heuristic for the GTGRD is graphed in
orange, the MIP is graphed in blue, and the default method (LP) for GTGR
is graphed in grey, in which the game is solved with no penalized edges. The
defenders reward for correctly guessing the adversary’s intended target ¢ was set
to 10. The attacker penalty value for crossing an edge penalized by the observer
was set to 10. Each game, the observer was permitted to penalize 2 edges.
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Various Potential Target Sizes In this set of experiments, we want to in-
vestigate the effect of different potential target sizes (i.e., |B|) to the running
time (Figure 5) and solution quality (Figure 6) of our algorithms. The results
are averaged over 1000 simulations of 6 by 6 grids. Each game, the observer was
permitted to penalize 2 edges.
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As indicated in Figure 5, the MIP running time increases exponentially while
the greedy heuristic running time remains sublinear as we increase the number of
potential targets. Moreover, the solution quality (measured by defender’s utility)
as seen in Figure 6 suggests that MIP’s solution is closely aligned with our greedy
heuristics. This gives evidence that our greedy heuristic provides good solution
quality while achieving high efficiency. It is no surprise that the defender’s utility
is higher in the GTGRD setting compared to those of GTGR.

Various Instance Sizes In this set of experiments, we investigate the effect of
different instance sizes (i.e., grids) to the running time (Figure 7) and solution
quality (Figure 8) of our algorithms.

Unlike our earlier observations on various target sizes, the average running
times for both the MIP and our greedy heuristic increase significantly as we
increase the instance sizes (see Figure 7). This is not surprising as now we have
more variables and constraints in the integer programs. Despite this, the de-
fender’s utilities generated by greedy heuristic are relatively similar to those
generated using MIP (see Figure 8).
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Various Number of Barriers/Blocks In this set of experiments, we want
to investigate the effect of different number of barriers (i.e., K) to the running
time (Figure 5) and solution quality (Figure 6) of our algorithms in the GTGRD
models. The results are averaged over 1000 simulations of 6 by 6 grids.

It turns out that as we increase the number of barriers, the running times of
our greedy heuristic are longer than the MIP as shown in Figure 9. Nonetheless,
as in the earlier experiments, both algorithms have similar solution quality as
shown in Figure 10.

Various Edge Penalties Finally, consider the effect of different edge penalties
to the solution quality of our greedy heuristic. The results are averaged over 1000
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simulations of 6 by 6 grids. As indicated in Figure 11, the solution gap between
the MIP and greedy heuristic as we increase the edge penalty.
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