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Abstract—Distributed Constraint Optimization Problems
(DCOPs) are commonly used to model multi-agent coordination
problems. However, empirical evaluations of DCOP algorithms
are typically done in simulation under the assumption that the
communication times between all pairs of agents are identical,
which is unrealistic in many real-world applications. In this
paper, we investigate the impact of empirically evaluating a
DCOP algorithm under the assumption that communication
times between pairs of agents can vary and propose the
use of ns-2, a de-facto simulator used by the computer
networking community, to simulate the communication times.
Additionally, we introduce heuristics that exploit the non-
uniform communication times to speed up DCOP algorithms
that operate on pseudo-trees.

I. INTRODUCTION

Distributed Constraint Optimization Problems (DCOPs) are

problems where agents need to coordinate their value as-

signments to maximize the sum of the resulting constraint

utilities [1, 2]. They are well-suited for modeling multi-agent

coordination problems where the primary interactions are

between local subsets of agents [3, 4, 5, 6, 7]. Unfortunately,

empirical evaluations of DCOP algorithms are typically done

in simulation under the assumption that the communication

time between any pair of agents is identical for all pairs. In

many coordination problems, this assumption is unrealistic.

For example, in a sensor network problem, communication

between pairs of sensors may depend on factors such as the

distance between the sensors and the topology of the environ-

ment. Therefore, in this paper, we extend the DCOP model

to include communication-related information, specifically, the

communication times for each constraint. This model then

allows us to investigate the impact of empirically evaluating

a DCOP algorithm under different assumptions for the com-

munication times. We perform this evaluation with DPOP [8],

one of the more popular complete DCOP algorithms that has

been widely extended by the DCOP community.

Another common practice in the DCOP community is to

use the simulated runtime metric [9] as a proxy to measure

distributed runtime. The community thus implicitly assumes

that there is a high correlation between simulated runtimes

and actual distributed runtimes. In this paper, we empirically

verify this assumption, where we specify the communication

time for each message, defined as the time it takes for the

source node to send a message until the sink node receives it

completely, within the simulated runtime metric. However, it

is often difficult to estimate communication times accurately

as it depends on a combination of factors: communication

protocols, communication medium, interference model, trans-

mission delay, propagation delay, queuing delay, and pro-

cessing delay [10]. Thus, we use Network Simulator 2 (ns-

2) [11], a de-facto simulator used by the computer networking

community [12, 13, 14], to simulate transmission of messages

and measure the communication time of those transmissions.

Using these communication times and actual computation

times, we compute “actual” runtimes, and experimentally

verify the implicit assumption made by DCOP researchers.

To the best of our knowledge, such an experiment has not

been done with realistic networking simulators before.

Finally, we also propose heuristics that can be used to

exploit the non-uniform communication times in a DCOP to

speed up algorithms that operate on pseudo-trees. Complete

and correct DCOP algorithms [1, 8, 15] typically require

some form of ordering for the variables in the DCOP and use

pseudo-trees for this purpose. Additionally, some approximate

DCOP algorithms [16, 17] also use pseudo-trees to order the

DCOP variables. As such, our heuristics can improve a large

class of existing DCOP algorithms. We evaluate our heuris-

tics in random graphs and power network topologies with

communication times that depend on physical distances that

are sampled from two distributions (uniform and Gaussian).

Our experimental results show that (i) the runtime of DPOP

is positively correlated with the depth of its pseudo-tree and

(ii) our heuristics find pseudo-trees with smaller depths than

the existing max-degree heuristic by up to 20%.

II. BACKGROUND

DCOPs: A Distributed Constraint Optimization Problem

(DCOP) is a tuple 〈A,X,D,F,α〉, where:

• A = {ai}
p
i=1 is a set of agents.

• X = {xi}
n
i=1 is a set of decision variables.

• D = {Dx}x∈X is a set of finite domains. Each variable

x ∈ X takes values from the set Dx ∈ D.

• F = {fi}
m
i=1 is a set of constraints, each defined over a

mixed set of decision variables: fi : �x∈xfi Dx → R
+ ∪

{⊥}, where x
fi ⊆ X is the scope of fi and ⊥ is a special



element used to denote that a given combination of values

for the variables in x
fi is not allowed.

• α : X → A is a function that associates each decision

variable to one agent.

Following common conventions, we restrict our attention

to binary constraints and assume that α is a bijection: each

agent controls exactly one variable. Thus, we will use the

terms “variable” and “agent” interchangeably and assume that

α(xi) = ai. However, our approach can be easily general-

ized to the unrestricted version, as we demonstrate with our

Customer-Driven Microgrid (CDMG) application domain in

our experiments.

A solution σ is a value assignment for a set xσ ⊆ X of

variables that is consistent with their respective domains. The

utility F(σ) =
∑

f∈F,xf⊆xσ

f(σ)1 is the sum of the utilities

across all the applicable constraints in σ. A solution σ is

complete if xσ =X. The goal is to find an optimal complete

solution x
∗ = argmax

x
F(x).

Given a DCOP P , G= (X, E) is the constraint graph of

P , where {x, y}∈E iff ∃fi∈F such that {x, y}=x
fi . A DFS

pseudo-tree arrangement for G is a spanning tree T =〈X, ET 〉
of G such that if fi∈F and {x, y}⊆x

fi , then x and y appear

in the same branch of T . Edges of G that are in ET are

called tree edges and edges that are not are called backedges.

Tree edges connect a node with its parent and its children,

while backedges connect a node with its pseudo-parents and

its pseudo-children. The separator of agent ai (denoted by

sep(ai)) is the set of ancestors of ai that are directly connected

(via tree edges or backedges) with ai or with descendants

of ai. We use N(ai) = {aj ∈ A | {xi, xj} ∈ E} to denote

the neighbors of agent ai; and P (ai), C(ai), PP (ai), and

PC(ai) to denote the parent, the set of children, the set of

pseudo-parents, and the set of pseudo-children of agent ai in

the pseudo-tree.

Distributed DFS: Since constructing optimal pseudo-trees

is NP-hard, one typically uses greedy approaches like the

Distributed DFS algorithm [18] to construct pseudo-trees.

This algorithm is commonly used in many implementations

of complete DCOP algorithms including those within the

DCOPolis [9] and FRODO [19] repositories. Both of these

repositories include a large number of common DCOP algo-

rithms and are frequently used by DCOP researchers.

The Distributed DFS algorithm operates as follows: It

assigns a score to each variable according to some heuristic

function. Then, it selects a variable with the largest score as the

root of the pseudo-tree. Once the root is selected, it initiates

a DFS-traversal of the constraint graph, greedily adding the

neighboring variable with the largest score as the child of the

current variable. This process repeats until all variables in the

constraint graph are added to the pseudo-tree.

The variables’ scores can be chosen arbitrarily. A commonly

used heuristic is the max-degree heuristic h(xi):

h(xi) = |N(xi)| (1)

1With a slight abuse of notation, we use F to denote the set of
constraints as well as the overall utility of the DCOP.

which sets a variable’s score to its number of neighbors. In

situations where multiple variables have the same maximal

score, the algorithm breaks ties according to a different

heuristic, such as the variable-ID heuristic, which assigns to

each variable a score that is equal to its unique ID. In our

experiments, we use the max-degree heuristic and break ties

with the variable-ID heuristic as the benchmark heuristic.

DPOP: The Distributed Pseudo-tree Optimization Procedure

(DPOP) [8] is a complete inference algorithm composed of

three phases:

• Pseudo-tree Construction Phase: Agents coordinate to

build a pseudo-tree using Distributed DFS.

• UTIL Propagation Phase: Each agent, starting from the

leafs of the pseudo-tree, computes the optimal sum of util-

ities in its subtree for each value combination of variables

in its separator, and sends the optimal utilities up to its

parent in UTIL messages. The agent computes the optimal

sum of utilities by adding the utilities of its functions with

the variables in its separator and the utilities in the UTIL

messages received from its children agents, and projecting

out its own variables by optimizing over them.

• VALUE Propagation Phase: Each agent, starting from

the pseudo-tree root, determines the optimal value for its

variables and sends the optimal values down to its children

in VALUE messages. The agent determines the optimal

value of its variables based on its UTIL computations and

the value of variables in the VALUE messages.

Network Simulator 2: Building a test-bed for performance

analysis is sometimes not feasible. In addition, the number

of agents in real-world applications often increases with the

complexity of the problems; each with various configuration

for performance analysis. For these reasons, researchers have

created a simulation model of existing network topologies

to study the behavior of agents. Network Simulator 2 (ns-2)

is a discrete event-driven network simulator that resembles

actual network behavior with the ability to support a variety

of communication protocols [11].

In our experiments, we use ns-2 version 2.35. The com-

munication between nodes occurs through a wireless com-

munication channel with omni-directional antennas and uses

the Two Ray Ground radio propagation model with a 11Mb/s

communication bandwidth. The simulator uses the Medium

Access Control (MAC) IEEE 802.11 protocol in the data

link layer; a static and fixed routing protocol in the network

layer, where the routing tables of all the nodes involved in

the communication are loaded with the shortest paths to the

destination; the Transmission Control Protocol (TCP) in the

transport layer; and the Constant Bit Rate (CBR) application

with a bit rate of 0.1Mb/s and packet size of 500 bytes in the

application layer.

III. MOTIVATING APPLICATION

We use the comprehensive Customer-Driven Microgrid

(CDMG) optimization problem described by Gupta et al. [20]

to motivate our work. In this problem, there is a neighborhood



of homes, each capable of generating energy, consuming

energy, and transmitting energy to its neighboring homes. Each

home is represented by an agent and its generation, consump-

tion, and transmission capabilities are variables controlled by

that agent. The domain of these variables are thus the range

of energy that can be generated, consumed, and transmitted.

Two neighboring agents are constrained with one another if

they can transmit energy to each other. Furthermore, there are

also constraints that enforce Kirchhoff’s law, that the sum of

energy flowing into an agent and the energy produced by that

agent must equal the sum of energy consumed by that agent

and the amount of energy flowing out of that agent.

Like in most DCOP literature, Gupta et al. [20] also

assume that the communication time is uniform across all

homes. However, in practice, the communication time may

not be uniform and depends largely upon the underlying

communication topologies and communication technologies

used by the agents. For example, most homes today are

equipped with smart meters that are used to measure the

amount of energy flowing into and out of the homes. These

smart meters communicate over a wireless network to an

aggregator, which then transmits the information to the energy

provider potentially through other aggregators.

Researchers have proposed a hierarchical architecture,

where homes are connected to aggregators in a star topology

and aggregators are connected to each other in a mesh topol-

ogy [21]. It is argued that this configuration is necessary for the

microgrid to meet reliability, self-configuring, and self-healing

requirements of smart grid applications. Thus, we also assume

this communication model, and the communication between

any two agents must go through at least one aggregator and

the communication times depend on the distance between the

agents and the aggregator.

IV. VARIABLE COMMUNICATION TIMES

We extend the DCOP model to include communication-related

information, specifically, the communication times for each

constraint. Therefore, this new DCOP is defined by a tuple

〈A,X,D,F,C,α〉, where A, X, D, F, and α are as described

for regular DCOPs; and C = {ci}
m
i=1 is the set of communica-

tion times, where ci ∈ C specifies the communication time for

agents in the scope x
fi of constraint fi ∈ F to communicate

with one another.

Definition 1 (Communication Time): The communication

time for a constraint is the time it takes for the source node

to send a message until the sink node receives it completely,

where both the source and sink nodes are in the scope of the

constraint.

In other words, we assume that agents can only communi-

cate with neighboring agents that they share constraints with,

and the time of those communication is specific to each con-

straint. Each communication time ci can either be a constant,

indicating that there is no uncertainty in the communication

time, or a probability distribution, indicating that the actual

communication time is sampled from that distribution. In our

experiments, we investigate two distributions – uniform and

Gaussian. The objective is still identical to that of DCOPs, to

find an optimal complete solution that maximizes the sum of

utilities over all constraints.

Aside from the common assumptions that messages sent are

never lost and they are received in the same order that they

were sent, all off-the-shelf DCOP algorithms do not make any

additional assumption on the communication times. Therefore,

they can be used to solve our problem with non-uniform

communication times. However, the new communication time

specifications may impact the efficiency of DCOP algorithms

in several ways compared to when they run on problems with

uniform communication times.

Complete DCOP algorithms typically require that the vari-

ables in the problem be ordered according to some complete

ordering, in which case the variables are ordered into a

chain, or some partial ordering, in which case the variables

are ordered into a pseudo-tree; a large number of com-

plete algorithms, including DPOP [8], ADOPT [1], and their

many variants, operate on pseudo-trees. Additionally, some

incomplete algorithms such as Distributed UCT [16] and

Distributed Gibbs [17] also operate on pseudo-trees. As such,

the properties of these algorithms are highly dependent on

the properties of the underlying pseudo-tree. For example,

DPOP’s memory requirement and message size complexity

is O(exp(w∗)), where w∗ is the induced width of the pseudo-

tree, and its required number of message is O(d∗), where d∗

is the depth of the pseudo-tree. On the other hand, ADOPT’s

memory requirement and message size complexity is O(d∗),
but its required number of messages is O(exp(d∗)). Since

communication times are no longer uniform across all edges

of the pseudo-tree, we generalize the definition of depth of

pseudo-trees to a generalized depth definition:

Definition 2 (Generalized Depth): The generalized depth

of a pseudo-tree is the largest sum of communication times

ci ∈ C across all constraints over all branches of the pseudo-

tree. More specifically, the generalized depth d̂∗ is defined

recursively by:

d̂∗ = d̂root (2)

d̂xi
= max

fk∈F:{xi,xj}∈x
fk∧xj∈C(xi)∪PC(xi)

ck + d̂xj
(3)

where fk is the constraint between xi and its child or pseudo-

child xj , ck is the communication time associated with that

function, and d̂xj
is the generalized depth of the sub-tree

rooted at xj .

It is straightforward to see that this generalized depth definition

subsumes the previous depth definition for pseudo-trees with

uniform communication times of 1.

A. Impact on DPOP

Using this definition, we investigate the relationship be-

tween the runtimes of algorithms and the generalized depth

of their underlying pseudo-trees. We use DPOP as a case

study in this paper. Specifically, we investigate two types



Constraint Density p1 0.2 0.3 0.4 0.5 0.6 0.7

Maximum Separator Size 3.5 5.8 7.3 8.5 9.6 10.2
Largest Message Size (Bytes) 8,165.8 120,056.5 1,068,614.1 5,127,311.2 14,953,595.6 14,953,599.8
Largest Number of Packets 16.6 240.6 2,137.7 10,255.4 29,907.8 29,907.7

TABLE I: Maximum Separator Size, Largest Message Size, and Largest Number of Packets

of runtimes: (1) Simulated Runtimes [9], a commonly used

runtime metric within the DCOP community, which assume

that the communication times between all pairs of agents are

identical; and (2) “Actual” Runtimes, which are computed via

Network Simulator 2.0 (ns-2) [11], a de-facto simulator used

by the computer networking community [12, 13, 14].

We generate problem instances with random graph topolo-

gies [22]. We vary the number of variables |X| = {10, 20}2

and the constraint density p1 = {0.2, . . . , 0.7},3 and set the

domain size of all variables |Di| = 3. For all these instances,

we assume that the communication time of each constraint

fi ∈ F to be the product

ci = C · di (4)

where C is a constant and di is the physical distance between

the two variables that are in the scope x
fi of the constraint.

We sample the x- and y-coordinates of each variable from

two possible truncated distributions – uniform and Gaussian

N (50, 25) – from the range [1, 100]. In other words, the

variables are randomly distributed over a 100 × 100 square

meter area. We generate 20 instances for each configuration,

resulting in 160 instances in total, for this experiment.

We solve these problems using DPOP implemented on the

FRODO simulation framework [19], and store the computation

time of each agent in the UTIL and VALUE propagation

phases as well as the size of messages that the agents

transmitted to each other. Using the assumed communication

times computed using Equation 4, we measure the simulated

runtimes of DPOP in these runs.4

We then represent these instances in ns-2, where the two

variables in the scope x
fi of the same function fi are physi-

cally separated exactly by the distance di. In order to simulate

the exact same trace of execution of the agents in ns-2, we

need to set two parameters in ns-2, namely the computation

time of each agent and the size of messages sent by each

agent. Both of these parameters are stored from the runs on

FRODO earlier. To mimic an agent’s computation time in ns-

2, we apply an equal delay at the agent before it starts its

communication. For example, assume that the computation

time of an agent is 10ms during the UTIL propagation phase.

Then, in ns-2, after it receives all messages from its children,

we enforce that it waits for 10ms before it sends its UTIL

message to its parent. We also set the number of packets an

2We did not generate larger instances as DPOP cannot solve large
problems due to memory limitations.

3p1 is defined as the ratio between the number of binary con-
straints in the problem and the maximum possible number of binary
constraints in the problem.

4We set C = 1 millisecond per meter for all the experiments in
this paper.

agent needs to send in its communications according to the

size of its messages as determined by FRODO. As we set the

TCP packet size to 500 bytes, the number of packets sent for

each message is ⌈message size

500 ⌉. While packets may be dropped

due to a variety of factors such as congestion, the TCP protocol

ensures that a dropped packet will be resent through the use of

acknowledgement (ACK) messages. When a variable correctly

receives a packet, it sends an ACK to the sender. The sender

considers the packet to be lost if it does not receive an ACK

before its timeout. In this case, the sender resends the lost

packet.

Definition 3 (“Actual” Runtime): The “actual” runtime of

DPOP is the duration between the time the ns-2 simulation

starts UTIL propagation until the time the last agent finishes

processing its message in VALUE propagation.

In summary, this measured runtime is similar to the mea-

sured runtime in FRODO except that the communication

time between two agents is now determined by the ns-2

simulator instead of the assumed communication times ci.

The communication time determined by ns-2 is dependent

on the message size, the distance between the agents, the

congestion in the network, and the protocols in the various

networking layers. For example, an agent with many children

in the pseudo-tree may receive messages from all of them

simultaneously, resulting in congestion and packet drops. ns-2

is able to simulate the message delays automatically.

B. Theoretical Results

We now describe the theoretical runtime complexities mea-

sured using the two runtime metrics mentioned above. Let b

denote the set of agents along a branch of a pseudo-tree and

B denote the set of all branches in the pseudo-tree.

Theorem 1: The simulated runtime of DPOP is

maxb∈B

∑
ai∈b O(exp(|sep(ai)|)).

The runtime of DPOP is dominated by its runtime in the

UTIL phase, where the agents along each branch of the

pseudo-tree sequentially compute their UTIL tables and sends

them up to their respective parents. Therefore, along each

branch b ∈ B of the pseudo-tree, the runtime along that branch

is
∑

ai∈b

O(exp(|sep(ai)|)) +O(di) (5)

where the first term is the time to compute the UTIL table and

the second term is the time to send the table to the parent.5

This sum is then simplified to
∑

ai∈b O(exp(|sep(ai)|)).

5We use di to refer to the physical distance between ai and its parent
in the pseudo-tree, which is used to calculate the communication time using
Equation 4.



Constraint Density p1 0.2 0.3 0.4 0.5 0.6 0.7

Correlation of “Actual” and Simulated Runtimes 0.74 0.84 0.97 0.91 0.94 0.95
Correlation of Depth and Simulated Runtime 0.99 0.97 0.82 0.66 0.69 0.67
Correlation of Depth and “Actual” Runtime 0.74 0.74 0.74 0.62 0.63 0.59

TABLE II: Correlations

Theorem 2: The “actual” runtime of DPOP is

maxb∈B

∑
ai∈b O(exp(|sep(ai)|) · di).

Using the similar argument as above for the simulated

runtime case, the runtime of the UTIL phase along a branch

b ∈ B is
∑

ai∈b

O(exp(|sep(ai)|)) +O(exp(|sep(ai)|) · di) (6)

which simplifies to
∑

ai∈b O(exp(|sep(ai)|) · di). The com-

munication time is exponential in the separator size according

to a preliminary experiment, where we observe that the largest

message size and number of packets grow exponentially with

the maximum separator size (Table I).

C. Experimental Results

We empirically evaluate the correlation between “actual”

runtimes, simulated runtimes, and pseudo-tree depths on the

instances described in Section IV-A. Table II tabulates the

correlation factors according to the Pearson correlation metric.

Correlation between “Actual” and Simulated Runtimes:

There is a positive correlation between the two runtimes,

and the correlation increases as p1 increases. The rea-

son is that the separator size increases with p1 and, thus,

the simulated computation runtime increasingly dominates

the simulated communication runtime. Therefore, the to-

tal simulated runtime becomes increasingly proportional to

maxb∈B

∑
ai∈b O(exp(|sep(ai)|)) and increasingly correlated

with the “actual” runtime, which is also proportional to

maxb∈B

∑
ai∈b O(exp(|sep(ai)|)).

Correlation of Both Runtimes and Pseudo-tree Depth:

Both runtimes are positively correlated with the depth, and

decreases as p1 increases. The simulated runtimes also have a

higher correlation than the “actual” runtimes.

The positive correlations are due to the communication

runtimes. For example, the simulated communication runtime

is
∑

ai∈b O(di) for the branch b with the longest simulated

(computation and communication) time, which is proportional

to
∑

ai∈b O(ci) (Equation 4) and is a close approximation

of the pseudo-tree depth (Definition 2). As p1 increases,

the simulated communication runtimes become increasingly

dominated by the simulated computation runtimes, thereby

decreasing the correlation with the depth.

On the other hand, the “actual” communication runtime is∑
ai∈b O(exp(|sep(ai)|) · di), which is also positively corre-

lated with the depth for the same reason as above. However,

it is a weaker correlation due to the exponential factor in the

communication runtimes. Due to the positive correlations, we

use pseudo-tree depths as the proxy for DPOP runtimes in the

remainder of the paper.
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V. PSEUDO-TREE CONSTRUCTION HEURISTICS

In this section, we seek to develop heuristics that exploit the

non-uniform communication times to construct pseudo-trees

with small depths. We first evaluate the potential improve-

ment to existing pseudo-trees constructed using the default

max-degree heuristic (Equation 1). Figure 1 shows a depth

comparison between the default pseudo-trees and the optimal

pseudo-trees. These pseudo-trees are for problems, where

we vary the number of variables |X| from 10 to 20, set

the constraint density p1 to 0.3, and choose distances with

a truncated Gaussian N (50, 25) distribution from the range

[1, 100] and define the communication time ci with these

distances (Equation 4). Due to memory and time constraints,

we could not find optimal pseudo-trees for larger problems.

One can observe that the difference between the depth of the

default pseudo-tree and the optimal depth increases as the

number of variables increases, thereby indicating that there

is a larger room for improvement in larger problems.

We thus introduce several heuristics that can be used by

Distributed DFS to create pseudo-trees with small depths:
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• The max-weighted-sum (mws) heuristic hmws:

hmws(xi) =
∑

fk∈F:{xi,xj}∈x
fk∧xj∈N(xi)\[{P (xi)}∪PP (xi)]

ck (7)

It sums the communication times between variable xi and

all its neighbors xj that are not yet part of the pseudo-

tree. We do not consider neighbors that are already part of

the pseudo-tree for the following reason: From the depth

definition in Equation 3, the depth of a variable xp is

the largest sum of the depth of a (pseudo) child xq and

the communication time with that (pseudo) child over all

children and pseudo-children. Therefore, once the variable

xp is already chosen to be part of the pseudo-tree, it is

desirable for its neighbor xq that has a large communication

time with xp to be a pseudo-child instead of a regular child.

The reason is that the farther a variable is from the root,

generally, the smaller the depth of that variable. We thus

ignore neighbors that are already part of the pseudo-tree in

this heuristic as well as the two heuristics below.

• The max-weighted-average (mwa) heuristic hmwa:

hmwa(xi) =
hmws(xi)

|N(xi) \ [{P (xi)} ∪ PP (xi)] |
(8)

It is identical to the previous hmws heuristic except that

it averages the values over the number of neighboring

variables that are not yet part of the pseudo-tree.

Root Variable
hmws hmwa hmus

Non-Root
hmws h1 h2 h3

Variables
hmwa h4 h5 h6

hmus h7 h8 h9

TABLE III: Pseudo-tree Construction Heuristics

• The max-unweighted-sum (mus) heuristic hmus:

hmus(xi) = |N(xi) \ [{P (xi)} ∪ PP (xi)] | (9)

It is identical to the default max-degree heuristic except that

it considers only neighboring variables that are not yet part

of the pseudo-tree.

As the heuristic used to select the root of the pseudo-tree

can differ from the heuristic used to select non-root variables,

we use all nine combinations of the three heuristics above.

Table III tabulates these heuristics.

A. Experimental Results

We empirically evaluate our nine heuristics against the default

max-degree heuristic (Equation 1) on (a) random graphs [22]

and (b) graphs motivated by our motivating CDMG applica-

tion. We measure the depths of pseudo-trees constructed by

the heuristics and use them as the proxy for the runtimes of

DPOP. Results are averaged over 500 instances, except for

CDMG results, which are averaged over 50 instances only due

to time constraints. All experiments were run on a machine

with an Intel Core i7-3770 CPU at 3.40GHz and 16GB of

RAM.

Random Graphs: We vary the number of variables |X| =
{10, 20, 30, 40, 50, 60} and set the constraint density p1 = 0.3.

For each configuration, we sample the physical distances di
of the constraints from two possible truncated distributions –

uniform and Gaussian N (50, 25) – from the range [1,100]

and define the communication time ci with these distances

(Equation 4). Figures 2 and 3 show the results, where we

plot the two best heuristics. Generally, the savings increase as

the number of variables increases. The reason is because the

number of possible pseudo-tree configurations increases as the

number of variables increases. Thus, there is more room for

improvement. The h1 and h2 heuristics converge to savings

(≈18% with uniform and ≈15% with Gaussian distributions)

indicating that heuristics that take communication times into

account perform better than those that do not. Further, Table

IV tabulates the depths of the pseudo-trees and both the

“actual” and simulated runtimes of DPOP with those pseudo-

trees constructed by our two best heuristics compared against

the default max-degree heuristic.6 These results show that the

savings in pseudo-tree depths of the two heuristics translate to

savings in both runtimes as well.

Customer-driven Microgrids (CDMGs): We sample neigh-

borhoods in three cities in the United States (Des Moines,

IA; Boston, MA; and San Francisco, CA) and estimate the

6These results are averaged over |X| = {10, 20} only as DPOP failed to
scale for larger problems.



Default max-degree heuristic h1 h2

Pseudo-tree Depth 519.45 472.85 481

Simulated Runtime of DPOP (ms) 1427.57 1317.20 1320.46

“Actual” Runtime of DPOP (ms) 3585.15 3328.94 2995.24

TABLE IV: Random Graphs

density of houses in each city. The average density (in houses

per square kilometers) is 718 in Des Moines, 1357 in Boston,

and 3766 in San Francisco. For each city, we created a

200m×200m grid, where the distance between intersections is

20m, and randomly placed houses in this grid until the density

is the same as the sampled density. Each house is constrained

with its immediate neighbors in the four cardinal directions

of the grid. If the resulting graphs are disjoint, then for each

pair of disjoint graphs, we find a pair of house that has the

smallest distance between them and constrain them. Finally,

we greedily placed aggregators, with a communication radius

of 100m, in this grid until all houses are within the radius of at

least one aggregator. Aggregators can then communicate with

all homes and aggregators within its communication radius.

Figure 4 shows the results, where the trends are similar to

those in random graphs.

VI. RELATED WORK

There is a very limited amount of work on the study of

communication times in the context of DCOPs. Cruz et al. [23]

recently investigated the importance of communication times

in evaluation of DCOP algorithms by conducting experiments

where agents are located physically apart in different machines

connected by LAN. They observed that communication times

are orders of magnitude larger than what is typically assumed

in the DCOP community, thereby issuing a call of action to

better investigate this area. Our research, in a large part, is

in response to this call. The main differences between their

work and ours is that they limit the number of agents in their

experiments to six and they limit the constraint density p1 to

0.5. In contrast, our experiments are with a larger number

of agents and over a larger combination of configurations

(e.g., different communication times, constraint densities, and

graph topologies). Furthermore, we use wireless communica-

tion instead of wired communication, which is more common

in applications such as our motivating CDMG application.

In terms of distributed constraint satisfaction problems

(DCSPs), Zivan and Meisels [24] investigated the impact of

message delays in those problems. The main difference with

our work is that they introduce an Asynchronous Message

Delay simulator (AMD) that measures the logical time of the

algorithm run and does not capture a real transmission and

communication protocol. In contrast, we investigate the effect

of non-uniform message delays on DCOPs. The simulator we

use provides a more accurate estimate of the message delays

through the simulation of TCP, routing, and multicast protocols

over wireless network scenarios. Fernàndez et al. [25] have

also studied the impact of communication delays on DCSP

algorithms and found that random delays can actually improve

the performance and robustness of AWC. Wahbi and Brown

[26] decoupled the communication graph with the underlying

constraint graph of the problem and studied the effect of

different communication graph topologies on ABT and AFC-

ng. In their work, the communication load is measured by

the number of transmission messages during the algorithm

execution (#transmission) and the computation effort that takes

the message delay into account which is measured by the

average of the equivalent non-concurrent constraint checks

(#ncccs) [27]. The main difference with our work is that they

studied the effect of uniform message delays in terms of the

number of messages transmitted and the number of constraint

checks. In contrast, we study the effect of non-uniform de-

lays, that is simulated with a more realistic communication

protocols, in terms of the pseudo-tree depth. The pseudo-tree

depth serves as a proxy for simulated runtimes, hence, in

this paper, we propose methods to construct shorter pseudo-

trees with the aim of speeding up the performance of large

class of DCOP solvers. Unlike others, we use ns-2 simulator

to measure realistic communication latency. The simulator in

this paper, models packet loss, re-transmissions due to packet

drops, and network congestion that have been disregarded in

recent studies.

Finally, Okimoto et al. [28] have also studied the effect

of different variable-ordering heuristics for ABT in scale-

free networks. We also propose different variable-ordering

heuristics and study the effect of the proposed heuristics,

specifically for the DPOP algorithm. The difference is that our

proposed heuristics exploit the non-uniform communication

times in a DCOP to speed up algorithms that operate on

pseudo-trees.

VII. CONCLUSIONS

The existing DCOP model does not explicitly model com-

munication times between agents. As a result, DCOP algo-

rithms have typically assumed that communication times are

identical for all pairs of agents, which can be unrealistic

in many real-world applications. In this paper, we extend

the DCOP model to include communication times for each

constraint and incorporate these communication times within

the simulated runtime metric. We also measure communication

times through ns-2 simulations, use it to compute “actual”

runtimes, and show that these runtimes are positively corre-

lated with simulated runtimes. Finally, we propose pseudo-tree

construction heuristics that exploit the non-uniform commu-

nication times to find pseudo-trees that are up to 20% shorter

than those constructed by the max-degree heuristic. These

heuristics can thus be used to speed up a large class of DCOP

algorithms that operate on pseudo-trees. We leave the study of

the effect of the proposed heuristic on different algorithms as



well as integration with our efforts in smart homes in CDMGs

[29, 30] to the future.
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