
Bidding in Periodic Double Auctions
Using Heuristics and Dynamic Monte Carlo Tree Search

Moinul Morshed Porag Chowdhury1, Christopher Kiekintveld1, Tran Cao Son2, William Yeoh3

1 The University of Texas at El Paso
2 New Mexico State University

3 Washington University in St. Louis
mchowdhury4@miners.utep.edu, cdkiekintveld@utep.edu, tson@cs.nmsu.edu, wyeoh@wustl.edu

Abstract

In a Periodic Double Auction (PDA), there are mul-
tiple discrete trading periods for a single type of
good. PDAs are commonly used in real-world en-
ergy markets to trade energy in specific time slots
to balance demand on the power grid. Strategically,
bidding in a PDA is complicated because the bid-
der must predict and plan for future auctions that
may influence the bidding strategy for the current
auction. We present a general bidding strategy for
PDAs based on forecasting clearing prices and us-
ing Monte Carlo Tree Search (MCTS) to plan a bid-
ding strategy across multiple time periods. In addi-
tion, we present a fast heuristic strategy that can be
used either as a standalone method or as an initial
set of bids to seed the MCTS policy. We evaluate
our bidding strategies using a PDA simulator based
on the wholesale market implemented in the Power
Trading Agent Competition (PowerTAC) competi-
tion. We demonstrate that our strategies outperform
state-of-the-art bidding strategies designed for that
competition.

1 Introduction
Double auctions are ubiquitous, serving as a general method
for buyers and sellers to exchange goods at prices deter-
mined by market interactions. Periodic Double Auctions
(PDAs) are a specific type of double auction in which bids
are cleared periodically in a sequence of pre-defined time pe-
riods, as opposed to immediately upon arrival as in a con-
tinuous auction. While PDAs can be used to trade any type
of good, one prominent use of this style of auction is in
short-term energy markets used to balance demand on the
power grid (e.g., NordPool, FERC, or EEX [Pool, 2017;
Commission, 2017; Exchange, 2017]). In this paper, we
present general methods for bidding in PDAs that could be
applied to any type of market with this structure, but focus
our evaluation on energy markets due to the availability of
a very realistic simulator and competitive bidding strategies
designed by other researchers for this domain.

The smart grid has the potential to improve many prob-
lems with our current energy infrastructure, including more
effective use of pricing mechanisms to manage demand and
supply responses in the grid, greater customer participation
and distributed generation capabilities, and proper distribu-
tion management for variable-output energy sources [Ket-
ter et al., 2018]. The Power Trading Agent Competition
(Power TAC) [Ketter et al., 2018] is a trading agent compe-
tition [Wellman et al., 2003] designed to advance the under-
standing of market mechanisms that can coordinate buying
and selling decisions in energy markets, and to develop auto-
mated bidding agents that can represent individual agents in
these markets. It is supported by a sophisticated simulation
environment that captures many features of real-world energy
markets and allows autonomous broker agents to compete to
maximize profits.

The wholesale market is one of the primary markets in
the Power TAC scenario, and it is based directly on similar
real-world market designs. This market is implemented using
PDAs, where a series of double auctions are held for produc-
ers and brokers to trade energy for an upcoming time period
to balance the supply and demand in their energy portfolios.
It operates on a “day ahead” basis for hourly time slots, so
energy can be traded up to one day in advance prior to pro-
duction or consumption. We use the Power TAC simulator
for this market as a platform for testing our new PDA bidding
strategies.

Bidding in even a single double auction is strategically
complex, but PDA bidding strategies have the added com-
plexity of reasoning about future auctions for the same good,
including predicting future clearing prices and planning a fu-
ture bidding strategy. In the Power TAC simulation, an agent
needs to be able to compute a bidding strategy simultaneously
for 24 concurrent auctions for different future time slots. The
agent must submit all decisions within just 5 seconds of wall-
clock time, so the strategy computation must be very fast.
Using an exhaustive search to find a bidding policy is not fea-
sible given the time limitations and (essentially) continuous
nature of the action space (i.e., bid prices).

Our bidding strategies use machine learning methods to
predict the distribution of clearing prices for individual auc-
tions. We first propose two novel heuristic methods for bid-

ding based on these predictions that are very fast and out-
perform existing state-of-the-art bidding strategies for Power
TAC. Then, we introduce a more comprehensive approach
based on Monte Carlo Tree Search (MCTS) search, a sta-
tistical anytime algorithm for finding optimal decisions that
combines the precision of tree search and the generality of
random sampling. We extend this methods to a dynamic ver-
sion that uses our heuristic policy as an initial action set and
dynamically adds additional promising actions over time.

The specific contributions of this paper are as follows:
(1) We develop a controlled simulation environment to test
PDA bidding strategies for realistic wholesale energy mar-
kets. (2) We present machine learning methods for forecast-
ing market clearing prices and two fast heuristic bidding poli-
cies based on these predictions. (3) We propose a dynamic
MCTS bidding strategy that performs a more comprehensive
search of the policy space using an anytime algorithm. (4) We
perform empirical evaluation of our PDA bidding strategies
using the principles of Power TAC wholesale market as a plat-
form, and show that we significantly improve over both base-
line and state-of-the-art bidding strategies from the Power
TAC competition.

2 Background
Power Trading Agent Competition (Power TAC): The
Power TAC [Ketter et al., 2018] models a competitive power
market where broker agents buy and sell energy and main-
tain a portfolio of customers who both consume and supply
energy. The brokers compete to maximize their profits over
approximately 60 simulated days. Each simulation begins
with 14 days of pre-game data (bootstrap data), which in-
cludes data on customers, the wholesale market, and weather
data based on the default broker. The brokers participate in
three markets: the wholesale market, tariff market, and bal-
ancing market. The simulation also models a regulated distri-
bution utility and a real location-based population of energy
customers during a specific period. Customer models include
several entities such as households, electric vehicles, and var-
ious commercial and industrial models. Brokers participating
in the simulation try to make a profit by balancing the energy
supply and demand as accurately as possible. By efficiently
managing stochastic customer behaviors, weather-dependent
renewable energy sources, the broker with highest bank bal-
ance wins the competition. We refer the reader to the Power
TAC game specification [Ketter et al., 2018] for more detail.

The Power TAC wholesale market functions as a short-
term spot market for buying and selling energy commitments
in specific time slots, where each time slot represents a sim-
ulated hour. Agents can always participate in 24 auctions
to trade energy, one auction for each of the next 24 hours.
These auctions are Periodic Double Auctions (PDAs), similar
to those used in European or North American wholesale en-
ergy markets [Ketter et al., 2018]. Brokers can submit bids
(orders to buy energy) and asks (orders to sell energy), repre-
sented by a quantity and an optional limit price. In addition
to the bids of the brokers, several large “Gencos” also sell
energy on the wholesale market.
Periodic Double Auctions (PDA): In a double auction, both

Figure 1: MCTS Tree for the nth Hour-Ahead Auction Bidding

buyers and sellers may place bids. An auction is periodic
if market clearing is triggered based on a specific time in-
terval, so all bids that arrive an interval are considered in a
batch clearing process. A PDA clears bids by matching buy
(bid) and sell (ask) orders and determining the clearing price
for each auction [Wurman et al., 1998]. If the minimum ask
price has a higher value than the maximum bid price, then the
market does not clear.
Monte Carlo Tree Search (MCTS): MCTS [Chaslot et al.,
2008a] is a tree search algorithm that uses stochastic simu-
lations as illustrated in Figure 1. It incrementally builds a
search tree using the following phases: (i) Selection: The se-
lection of the next state follows the UCT algorithm [Kocsis
and Szepesvári, 2006], which balances between exploitation
and exploration; (ii) Expansion: If a state is not in the tree it
is added as a new node, so the tree adds one node in each sim-
ulation; (iii) Simulation: After expansion, actions are ran-
domly selected from the action set to perform a rollout to the
end of the game; (iv) Backpropagation: After the simulation
each tree node that was visited during that game is updated by
increasing the visit counts and the expected value. These four
phases represent one MCTS simulation. After completing the
specified number of MCTS simulations, the algorithm selects
the current action with the best value.

3 Related Work
We now briefly review the related work on bidding strategies
for Power TAC. AstonTAC [Kuate et al., 2013] uses a non-
homogeneous hidden Markov model to forecast energy de-
mand and price for bidding. SPOT [Chowdhury et al., 2015]
uses a simple strategy that places 10 bids within a variable
price margin depending on the limit price predicted by the
REPTree price predictor [Chowdhury, 2016]. The wholesale
trading module of AgentUDE [Ozdemir and Unland, 2015]
(the 2014 Power TAC champion) uses an adaptive Q-learning
bidding strategy that tracks the past market data. Using this
technique, the broker is able to understand the market trends
regardless of weather conditions and time. TacTex [Urieli and
Stone, 2016], the 2013 and 2015 Power TAC winner, uses a

modified version of Tesauro’s bidding algorithm, which mod-
els the sequential bidding process as a Markov Decision Pro-
cess.

While there are many other bidding strategies for double
auctions [Friedman, 2018], most of them are for Continu-
ous Double Auctions (CDAs) [Tesauro and Bredin, 2002] and
would need to be modified for PDAs.

4 Bidding Strategies for PDAs
We now describe our proposed bidding strategies for PDAs.

4.1 Price Prediction
We use two basic price prediction methods. While these
could likely be improved with more sophisticated machine
learning methods, the main focus of our work is on the bid-
ding policies and it would be trivial to adopt better price pre-
dictions in any of the policies we propose.

MDP Price Predictor: We implement the price predictor
used by one of the best agents from previous Power TAC
competitions, TacTex [Urieli and Stone, 2014]. A more de-
tailed description is presented in the experiments section.

REPTree Price Predictor: We used a supervised decision
tree price predictor that uses Reduced Error Pruning (REP).
Previous empirical studies show that it performs better in pre-
dicting market clearing prices compared to other machine
learning strategies [Chowdhury, 2016].

4.2 Heuristic Bidding Policies
We first introduce two very fast heuristic bidding strategies
for PDAs. These are based on the idea of adjusting the proba-
bility of winning each auction such that the cumulative prob-
ability of winning is above a given threshold. We consider
only a single bid for each auction with the total volume that
we want to purchase. Both strategies begin by initializing the
bidding prices for all auctions with some minimum probabil-
ity of winning (Pmin = 0.025 in our experiments). They then
incrementally raise the bid price in some auctions until the
cumulative probability of winning reaches a given threshold.

C1 Strategy: Raises the probability of winning (and cor-
responding bid price) for each auction in a uniform, round-
robin pattern such that all probabilities are roughly equal.

C2 Strategy: Always increase the bid price of the auction
with the current minimum predicted clearing price to increase
the probability of winning on that specific auction. This fo-
cuses on increasing the probability of winning the auctions
with the lower (predicted) prices. This strategy is a risk-
taking strategy that looks for an opportunity to bid in the low-
est clearing priced auctions at high limit prices. The idea is to
get the bid cleared with the lowest clearing price set by other
bidding agents.

We stop the process when the multiplication of the indi-
vidual probabilities of winning exceeds the threshold. Both
strategies will become more aggressive in later auctions when
there are fewer future opportunities to buy. We show that both
of these policies perform well as heuristics, but they can also
serve as the starting point for a more comprehensive search.

Figure 2: Price Multipliers in MCTS action space.

4.3 MCTS Bidding Policies
We now introduce a more general search policy for finding
good bids based on MCTS.
Action: We represent the main actions of the MCTS strat-
egy as prices relative to the predicted distribution of clearing
prices for the current auction. Each action actionm is repre-
sented by {µ, σ, {∆min,∆max}, γ}, where µ represents the
limit price, σ is the observed standard deviation of the clear-
ing price distribution, {∆min,∆max} is the minimum and
maximum price multiplier tuple, and γ is the volume (in %)
of the current demand δ. We get the value for µ from one
of the price predictors. We estimate σ from 30 four-broker
simulations, and record the standard deviations of the errors
in the predictions of the auctions. The ∆min and ∆max are
used by the agent to create µmcts

min and µmcts
max by varying µ

using:
µmcts
min = µ+ ∆min ∗ σ and µmcts

max = µ+ ∆max ∗ σ
Using {∆min, ∆max}, µ, and σ, the MCTS strategy is able
to simulate actions in different price ranges. For example,
if {∆max,∆min} = {1,−1}, our MCTS strategy varies its
bid prices in the first standard deviation range as illustrated
in Figure 2. An action is a NO-BID action when γ = 0. For
dynamic actions, we use an accurate price instead of price
multipliers, where µmcts

min = µmcts
max . The idea here is that these

dynamic actions should be able to hone in on more “pinpoint”
prices if they are selected during MCTS simulations.
State: States are nodes in the search tree representing the
history of action choices. Each state keeps a memory of its
corresponding action-id, visit-count, and CavgUnit (i.e., total
avg. unit cost incurred by the agent in this auction and all fu-
ture auctions). The agent selects the state that has the highest
UCT value while doing simulations. Each action leads to a
specific state, so an agent with an action-spacem size of m
actions can go into m different states from a specific state.
Transition: A state Sn

m transitions to one of the states in the
next time period, Sn−1

0 , . . . , Sn−1
m .

Terminal State: The zero hour-ahead states are terminal
states, {S0

0 , . . . , S
0
m}. If there arem actions and n hour-ahead

auctions, the search tree will have mn terminal states.

Reward: While doing rollouts/simulations for timeslot t, if
the agent reaches a terminal state it gets the balancing cost
Cbal,t as a reward, which corresponds to the price the agent
would pay for energy in the balancing market. Otherwise, it
gets a simulated cost Csim that is the summation of the cost
paid for energy in all of the auctions.
Simulation: While running a MCTS simulation for the nth

hour-ahead auction, the agent first gets the current demand
(δnt) and tries to clear δnt using a simulation of the market
clearing process by selecting action m. It generates a sim-
ulated market clearing price χn

m,t from a Gaussian distribu-
tion where the mean is equal to µn

t and standard deviation
is σ. The results of non-deterministic choices (i.e., auction
clearing prices) are sampled in our MCTS, but these are con-
tinuous distributions so we do not model them explicitly as
chance nodes with a finite number of outcomes. If the bid’s
limit price µmcts is greater than χn

m,t, the bid gets cleared. If
υnm,t volume is cleared in this process, the agent updates its δnt
for the remaining hour-ahead auction simulation by deducting
υnm,t from δnt and repeats the same process until it reaches the
terminal state or a state where δnt is zero. At each level of the
hour-ahead auction, we get Cn

sim,m,t = χn
m,t ∗ υnm,t.

Rollout: If an agent reaches a state without children, the
agent selects an action randomly, creates a state and adds it to
the tree. Then it runs the random rollout process by picking
actions randomly from the action space and traversing from
the newly added state to a terminal state. When it reaches a
terminal state, it simulates a simplified balancing market and
calculates the Cbal by multiplying δnt with the unit balanc-
ing cost. At time slot t, the unit balancing cost is calculated
by doubling the maximum ask price (Askpricemax) for that
specific time slot’s hour-ahead auctions. Cbal,t is defined by:

CbalUnitPrice,t = 2 ∗Askpricetmax ± noiseGaussian

Cbal,t = CbalUnitPrice,t ∗ δnt
Now, if we aggregate all the costs, i.e., Cn

sim,m,t and Cbal,t,
we get the total simulation cost Csim for δnt amount of en-
ergy:

Csim =

n∑
i=0

Ci
sim,m,t + Cbal,t

If we divide Csim by δnt , we get the unit cost CavgUnit i.e.
CavgUnit = Csim/δ

n
t . For each state, we have a normalized

value τ which we will use in our UCT formula. Here τ =
1− (CavgUnit/CbalUnitPrice,t).

To select an action, we evaluate the states using the follow-
ing UCT formula:

λUCT = τ +

√
2 ∗ log(parent-visit-count)

visit-count
+ ε

where ε is a random small number to break the ties. The agent
selects the state that has the highest λUCT value while do-
ing simulations. After repeating a selected number of Nsim

MCTS iterations for the nth hour-ahead auction, the agent
builds the tree as illustrated in Figure 1. Then it selects the
action that leads to the highest τ state Sn

m from the root. Af-
ter bidding according to the best action, the agent discards the
MCTS tree and builds it again from the scratch when it needs

Algorithm 1 MCTS Bidding Strategy

1: procedure MCTS(State cur, TimeSlot t, HourAhead n)
2: δnt = δn

′

t = GetDemand(t, n);
3: while !HasReachedTerminalState(cur) or δn

′

t > 0 do
4: n′ = cur.HourAheadAuction;
5: if HasUnvisitedChildStates(cur) then
6: cur = selectChildRandomly(cur);
7: expand(cur);

8: [
n′∑
i=0

Ci
sim,m,t,

n′∑
i=0

υim,t] = rollout(δn
′

t);

9: Csim +=
n′∑
i=0

Ci
sim,m,t ; δn

′

t -=
n′∑
i=0

υim,t;

10: break;
11: else
12: cur = selectChildByUCTValue(cur);
13: [Cn′

sim,m,t, υ
n′

m,t] = simulation(δn
′

t);
14: Csim += Cn′

sim,m,t; δ
n′

t -= υn
′

m,t;
15: AddToVisited(cur);
16: Csim += Cbal,t = CbalUnitPrice,t ∗ δn

′

t ;
17: CavgUnit = Csim/δ

n
t ;

18: backpropagation(CavgUnit, visitedNodes);

to bid for the (n − 1)th hour-ahead auction. We discard the
search trees after bidding because most information changes
between auctions, including new weather predictions, broker
behaviors, etc., rendering the previous search trees of little
value. Our MCTS agent follows Algorithm 1.

5 Experimental Methods

The Power TAC simulation is complex and there are many
factors in the performance of the agents. We decouple the
wholesale market from the other features of Power TAC to
gain more control and focus just on the performance of the
bidding strategies in the wholesale PDA. We implemented a
controlled wholesale energy market simulator that imitates a
variable number of hour-ahead periodic double auctions (e.g.,
24 hour-ahead auctions) as close as possible to Power TAC
wholesale energy market [Ketter et al., 2018].

To set the supply, we collected producer supply data by
running 30 Power TAC simulations and calculate the aver-
age energy supply per hour. Power TAC’s wholesale market
simulates 11 different city demands. After observing several
simulations in Power TAC, we find the ratio of energy sup-
ply and customer demand is near 300 for a city. So, to set
the demand, we divide the average supply per hour by 300.
This is a low demand scenario where the wholesale market
provides enough energy to the broker agents to satisfy their
demand. We equally distribute the demand to all the brokers
in our games for fairness. For the weather forecasts (wind
speed, wind direction, cloud coverage and temperature fore-
casts for every hour-ahead auctions), we collected the day-
ahead weather forecast data from the simulations and use it
as forecasting features in our simulator.

5.1 Benchmark Strategies
Zero Intelligence (ZI): ZI agent [Gode and Sunder, 1993]
uses an extremely simple strategy, generating random bid
prices and ignoring the state of the market. For a given unit,
prices are drawn from a uniform distribution between the
unit’s limit price and a minimum allowable price for buyer. ZI
strategy uses the REPTree/MDP price predictor to get a limit
price µ. The bid price is drawn from a distribution where the
mean is µ and standard deviation is $10. The broker places
only one bid with the quantity equal to the demand at that
specific time slot and hour-ahead auction.
Zero Intelligence Plus (ZIP): ZIP agent [Tesauro and Das,
2001] maintains a scalar variablem denoting its desired profit
margin and combines this with a unit’s limit price to compute
a bid or ask price p. For failed bids, the agent adjusts p in
the direction of beating the failed bid. The broker places only
one bid according to the demand at that specific time slot and
hour-ahead auction. It uses the REPTree/MDP predictor to
get a limit price µ. The profit margin m is set to c% of µ. So,
the bid price p = µ+ µ ∗ c%. (In our experiments, c = 1%).
If a bid fails, then an offset value of q% of the µ is added to
p. Otherwise, q is set to 0. So, when a bid fails, bid price
p = µ+ µ ∗ c% + µ ∗ q%. (In our experiments, q = 10%).
TacTex: TacTex [Urieli and Stone, 2014] is a broker in Power
TAC. Using an online reinforcement learning (RL) algorithm,
TacTex procures to meet demand as cheaply as it can through
the sequential bidding in the wholesale market. TacTex mod-
els the sequential bidding as an MDP with a finite number
of states. The outcome is a sample-efficient online reinforce-
ment learning algorithm, which minimizes procurement costs
and helps the agent to achieve state-of-the-art performance in
competitions and controlled experiments.

The MDP is defined as follows:
• State: s ∈ {0, 1, ..., 24, success}, s0 := 24.
• Action: limit price ∈ R.
• Transition: A state transitions to one of two states. If a

bid is partially or fully cleared, it transitions to the terminal
success state. Otherwise, a state s transitions to state s−1.

• Reward: In state s = 0, the reward is the balancing price
per energy unit. In states s ∈ 1, . . . , 24, it is 0. In state
success, the reward is the limit price of the successful bid.
Both balancing price and limit price are taken as negative,
so maximizing the reward results in minimizing costs.

• Terminal State: : {0, success}
Since the MDP is acyclic, solving it requires one back-sweep,
starting from state 0 to state 24. The value function is defined
as follows [Urieli and Stone, 2014]:

V (s) =

{ balancing price if s = 0
minlimit price {pcleared ∗ limit price+

(1− pcleared) ∗ V (s− 1)} if 1 ≤ s ≤ 24

}
The transition probability pcleared(s, limit price) for a limit
price is computed as follows:∑

tr∈trades[s].tr.clearing price<limit price tr.cleared energy amount∑
tr∈trades[s] tr.cleared energy amount

Using this MDP’s solution, TacTex determines an optimal
limit price for each of the 24 states. When TacTex uses its

MDP price predictor, it starts a game with no data and learns
to bid online, while acting. In each time slot, it solves the
MDP and its estimates are refined periodically. This results
in an online RL bidding strategy, which helps the agent to
adapt and optimize its bidding in different market conditions.

5.2 Training the REPTree Price Predictor
The clearing prices of the previous hour and previous day
for the same specific hour-ahead auction capture information
about the recent trading history. We selected these two prices
as features while training our REPTree price predictor. We
also include the four weather forecast (cloud coverage, tem-
perature, wind speed and wind direction) and time of day
(current time slot, hour, hour-ahead, date, month, and year)
because the energy production of renewable energy produc-
ers (e.g., solar) depends on these factors. The game size is
also a factor in predicting prices. So, we also consider the
number of brokers and producers in the simulation as a fea-
ture.

We use four ZI brokers with a default mean price $30
and default standard deviation $10 to generate bidding limit
prices. We ran 30 simulations to generate the initial training
dataset. After that, we apply cross-validation on the training
set to learn our initial REPTree price predictor model, which
we call REPTree-V0, using Weka [Hall et al., 2009]. Then,
we run another 50 simulations with the four strategies (ZI,
ZIP, TacTex, and MCTS) using the REPTree-V0 price pre-
dictor to generate an iteration 1 training dataset. We apply
the same cross-validation method to learn our REPTree-V1
price predictor. We follow the same procedure again to cre-
ate our REPTree-V2 predictor. The purpose of this to mit-
igate the dependencies of initial ZI agents’ fixed mean and
standard deviation. After the second iteration of learning, the
correlation coefficient value does not improve significantly,
so we use REPTree-V2 as our REPTree price predictor in our
experiments.

6 Experimental Results
We first compared the prediction accuracy of both price pre-
dictors, and found that the REPTree has a smaller average
error (= 54.05%) in predicting per hour ahead auction prices
compared to the MDP predictor (= 66.28%). We choose REP-
Tree as our default price predictor for the rest of the experi-
ments.

To find the best bidding strategy for the agent, we con-
ducted an empirical analysis for six bidding strategies: ZI,
ZIP, TacTex, C1, C2, and MCTS. We experimented with four-
broker games, where three brokers were always fixed to be ZI,
ZIP, and TacTex. We ran 20 sample games using 20 different
boot files that were not used to train the price predictor.

Figure 3 shows the performance of the benchmark and can-
didate strategies. We can see that the C1 and C2 heuristics
perform significantly better than ZI, ZIP, and TacTex. Next,
we ran experiments with our MCTS bidding strategy. We de-
note our default MCTS agent as MCTSstatic, since this agent
has a fixed number of actions (5 bid actions and 1 NO-BID
action). Based on initial experiments, we have found that bid-
ding with 100% of the current demand is more profitable than

Figure 3: Net cost comparison of becnhmark & candidate strategies.

bidding with some fraction of the current demand. So in these
experiments we always submit 1 bid with full demand. The
five bid actions correspond to different prices.

An important restriction on MCTSstatic is that it searches
only a fixed space of possible bidding actions. Here, we con-
sider a simple dynamic MCTS policy [Chaslot et al., 2008b]
that adds promising new actions to the search space over
time. In particular, at the time of reaching a specific thresh-
old number of iterations in the MCTS simulation, we add a
new action, which is equal to the lowest simulated unit cost
price among all the children states of the root, to the action
space. The simulated unit cost price also includes the balanc-
ing price. The thresholds are set to 5%, 10%, 20%, and 50%
of the total MCTS simulations in the experiment. So, we add
a total of 4 dynamic actions to the action space. We denote
this agent as MCTSdyn.

MCTS is a statistical anytime algorithm. So, more com-
putation time should lead it to better performance [Browne
et al., 2012]. To investigate the effects of additional sim-
ulations and the specification of the action space, we con-
ducted experiments varying important action space proper-
ties (Nsimand{∆min,∆max}) of MCTS agents against the 3
benchmark strategies. We vary the Nsim of MCTS by 10,
100, 1k, and 5k and run 20 four-broker (ZI, ZIP, TacTex, and
MCTS) games. As the states are being visited more with a
higher number of MCTS simulation, we can see that the per-
formances of the MCTS agents improve when we increase
Nsim surpassing the pervious best C2 candidate strategy in
Figure 4.

Figure 4 also demonstrates that MCTSdyn is doing better
than MCTSstatic because of the additional actions that are
added to the action space dynamically at several threshold
iteration values. To reduce the size of the action space and
make the agent more effective in searching the price space,
we introduce C1 and C2 as initial action selection strategies
inside the MCTSdyn agent. We use them before even start-
ing MCTS to decide which actions will be in the action set
considered by MCTS in each state. We name them accord-
ingly as MCTSdyn-C1 and MCTSdyn-C2. Figure 3 shows that
the C2 strategy performs better than the C1 strategy when we
run them separately against the three benchmark strategies.
C2 tries to exploit the opportunity when the clearing price is
low. Figure 4 shows that when we seed C2 strategy into the
MCTSdyn agent, it performs better than all of the other agents.

Having fewer actions in the action space has the advantage
of having a larger number of visits per state, which is good

Figure 4: Net Cost Comparison of C2 and all MCTS Variations

for stabilizing the average values of the MCTS simulation.
It is critical to have accurate actions in a small action space.
The initial action created by C2 is more accurate to clear the
bid in the low priced hour-ahead auctions than C1 and that is
why MCTSdyn-C2 is doing significantly better than the other
strategies. We found that our MCTSdyn algorithm takes ap-
proximately 0.072 seconds to build a 24 hour-ahead MCTS
tree with 10k iterations. We have also analyzed the runtime
of MCTSdyn-C2 algorithm, and it is 1.23 times faster than the
second best MCTSdyn strategy. This gives an advantage to
this strategy in high frequency trading as it can do more sim-
ulations in a bounded amount of time.

Finally, our results demonstrate that an MCTS strategy
with a larger number of MCTS simulation, seeded with a
reasonably accurate small action space and dynamic action
addition can be considered as the best variation of MCTS.
Following these three policies, the MCTS agent simulates the
auctions with accurate prices by a higher number of simu-
lations and makes good decisions to bid at right moment to
procure the full demand.

7 Conclusions
We propose a novel approach for bidding in Periodic Double
Auctions (PDAs) using Monte Carlo Tree Search (MCTS).
We evaluate the performance of our strategy against two
widely known baselines and the current state-of-the-art PDA
bidding strategy. Our MCTS bidding strategy shows signifi-
cant improvement over the baselines and the state-of-the-art
strategy. We conducted an empirical analysis to explore ways
to improve the MCTS strategy. We also present a fast heuris-
tic strategy that can be used either as a standalone method,
or as an initial set of bids to seed the MCTS policy. The
specification of the action space has a great effect on the
MCTS performance, and our experiments provide guidance
on what features of the actions are most important. Our re-
sults show (unsurprisingly) that MCTS performs better with a
larger number of MCTS simulations and dynamically adding
actions during the search process with proper action seed-
ing can significantly improve the agent performance. As part
of the future work, we are now working on finding a kernel
regression-based dynamic action adding algorithm with plans
to introduce non-determinism in the actions.

Acknowledgments
This research is partially supported by NSF grant 1345232.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the sponsoring organizations, agencies, or the U.S. govern-
ment.

References
[Browne et al., 2012] Cameron B. Browne, Edward Pow-

ley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowl-
ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez,
Spyridon Samothrakis, and Simon Colton. A Survey of
Monte Carlo Tree Search Methods. IEEE Transactions on
Computational Intelligence and AI in Games, 4(1):1–43,
2012.

[Chaslot et al., 2008a] Guillaume Chaslot, Sander Bakkes,
Istvan Szita, and Pieter Spronck. Monte-Carlo Tree
Search: A New Framework for Game AI. In Proceed-
ings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE), 2008.

[Chaslot et al., 2008b] Guillaume M. J. B. Chaslot, Mark
H. M. Winands, Jos W. H. M. Uiterwijk, H Jaap van den
Herik, and Bruno Bouzy. Progressive Strategies for
Monte-Carlo Tree Search. New Mathematics and Natural
Computation, 4(03):343–357, 2008.

[Chowdhury et al., 2015] Moinul Morshed Porag Chowd-
hury, Russell Y. Folk, Ferdinando Fioretto, Christopher
Kiekintveld, and William Yeoh. Investigation of Learning
Strategies for the SPOT Broker in Power TAC. In Proceed-
ings of the International Workshop on Agent-Mediated
Electronic Commerce and Trading Agents Design and
Analysis (AMEC/TADA), pages 96–111, 2015.

[Chowdhury, 2016] Moinul Morshed Porag Chowdhury.
Predicting Prices in the Power TAC Wholesale Energy
Market. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence (AAAI), pages 4204–4205, 2016.

[Commission, 2017] Federal Energy Regulatory Commis-
sion, 2017.

[Exchange, 2017] European Energy Exchange, 2017.
[Friedman, 2018] Daniel Friedman. The Double Auction

Market Institution: A Survey. In The Double Auction Mar-
ket, pages 3–26. Routledge, 2018.

[Gode and Sunder, 1993] Dhananjay K. Gode and Shyam
Sunder. Allocative Efficiency of Markets with Zero-
Intelligence Traders: Market as a Partial Substitute for
Individual Rationality. Journal of Political Economy,
101(1):119–137, 1993.

[Hall et al., 2009] Mark A. Hall, Eibe Frank, Geoffrey
Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten. The WEKA data mining software: an up-
date. SIGKDD Explorations, 11(1):10–18, 2009.

[Ketter et al., 2018] Wolfgang Ketter, John Collins, and
Mathijs de Weerdt. The 2018 Power Trading Agent Com-

petition. ERIM Report Series Reference No. 2017-016-LIS,
2018.

[Kocsis and Szepesvári, 2006] Levente Kocsis and Csaba
Szepesvári. Bandit Based Monte-Carlo Planning. In Pro-
ceedings of the European Conference on Machine Learn-
ing (ECML), pages 282–293, 2006.

[Kuate et al., 2013] Rodrigue Talla Kuate, Minghua He,
Maria Chli, and Hai H. Wang. An Intelligent Broker Agent
for Energy Trading: An MDP Approach. In Proceedings
of the International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 234–240, 2013.

[Ozdemir and Unland, 2015] S. Ozdemir and Rainer Un-
land. AgentUDE: The Success Story of the Power TAC
2014 Champion. In Proceedings of the Workshop on
Agent-Mediated Electronic Commerce and Trading Agents
Design and Analysis (AMEC/TADA), 2015.

[Pool, 2017] Nord Pool, 2017.
[Tesauro and Bredin, 2002] Gerald Tesauro and Jonathan L

Bredin. Strategic Sequential Bidding in Auctions using
Dynamic Programming. In Proceedings of the Interna-
tional Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 591–598, 2002.

[Tesauro and Das, 2001] Gerald Tesauro and Rajarshi Das.
High-performance Bidding Agents for the Continuous
Double Auction. In Proceedings of the ACM Conference
on Electronic Commerce (EC), pages 206–209, 2001.

[Urieli and Stone, 2014] Daniel Urieli and Peter Stone. Tac-
Tex’13: A Champion Adaptive Power Trading Agent.
In Proceedings of the International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), pages
1447–1448, 2014.

[Urieli and Stone, 2016] Daniel Urieli and Peter Stone. An
MDP-based Winning Approach to Autonomous Power
Trading: Formalization and Empirical Analysis. In Pro-
ceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 827–835,
2016.

[Wellman et al., 2003] Michael P. Wellman, Amy Green-
wald, Peter Stone, and Peter R. Wurman. The 2001 Trad-
ing Agent Competition. Electronic Markets, 13(1):4–12,
2003.

[Wurman et al., 1998] Peter R. Wurman, William E. Walsh,
and Michael P. Wellman. Flexible Double Auctions for
Electronic Commerce: Theory and Implementation. Deci-
sion Support Systems, 24(1):17–27, 1998.

