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Abstract
In Multi-Agent Path Finding (MAPF), a team of agents
needs to find collision-free paths from their starting lo-
cations to their respective targets. Combined Target As-
signment and Path Finding (TAPF) extends MAPF by
including the problem of assigning targets to agents as
a precursor to the MAPF problem. A limitation of both
models is their assumption that the number of agents and
targets are equal, which is invalid in some applications.
We address this limitation by generalizing TAPF to allow
for (1) unequal number of agents and tasks; (2) tasks to
have deadlines by which they must be completed; (3) or-
dering of groups of tasks to be completed; and (4) tasks
that are composed of a sequence of checkpoints that must
be visited in a specific order. Further, we model the prob-
lem using answer set programming (ASP) to show that
customizing the desired variant of the problem is simple
– one only needs to choose the appropriate combination
of ASP rules to enforce it. We also demonstrate experi-
mentally that if problem specific information can be in-
corporated into the ASP encoding then ASP based meth-
ods can be efficient and can scale up to solve practical
applications.

1 Introduction
Multi-Agent Path Finding (MAPF) deals with teams of agents
that need to find collision-free paths from their respective
starting locations to their respective goal locations on a graph.
This model can be applied to a number of applications includ-
ing autonomous aircraft towing vehicles [Morris et al., 2016],
autonomous warehouse systems [Wurman et al., 2008], of-
fice robots [Veloso et al., 2015], and video games [Silver,
2005]. For example, in an autonomous warehouse system (il-
lustrated by Figure 1), robots (in orange) navigate around a
warehouse to pick up inventory pods from their storage lo-
cations (in green) and drop them off at designated inventory
stations (in purple) in the warehouse. We use this as our mo-
tivating application throughout this paper.

In MAPF, the objective is to find collision-free paths for
agents moving to their goal locations while minimizing ei-
ther the makespan or the total path cost. Researchers have
proposed various optimal and boundedly-suboptimal algo-
rithms [Goldenberg et al., 2014; Wagner and Choset, 2015;
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ABSTRACT
We study the TAPF (combined target-assignment and path-
finding) problem for teams of agents in known terrain, which
generalizes both the anonymous and non-anonymous multi-
agent path-finding problems. Each of the teams is given
the same number of targets as there are agents in the team.
Each agent has to move to exactly one target given to its
team such that all targets are visited. The TAPF problem
is to first assign agents to targets and then plan collision-
free paths for the agents to their targets in a way such that
the makespan is minimized. We present the CBM (Conflict-
Based Min-Cost-Flow) algorithm, a hierarchical algorithm
that solves TAPF instances optimally by combining ideas
from anonymous and non-anonymous multi-agent path-
finding algorithms. On the low level, CBM uses a min-
cost max-flow algorithm on a time-expanded network to
assign all agents in a single team to targets and plan
their paths. On the high level, CBM uses conflict-based
search to resolve collisions among agents in di↵erent teams.
Theoretically, we prove that CBM is correct, complete and
optimal. Experimentally, we show the scalability of CBM
to TAPF instances with dozens of teams and hundreds of
agents and adapt it to a simulated warehouse system.
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Figure 3: A small region of a Kiva layout. The green cells represent pod storage locations, the orange ovals the robots (with
pods not pictured), and the purple and pink regions the queues around the inventory stations.

Figure 2: A Kiva drive unit and storage pod.

used to move the inventory pods with the correct bins from
their storage locations to the inventory stations where a pick
worker removes the desired products from the desired bin.
Note that the pod has four faces, and the drive unit may need
to rotate the pod in order to present the correct face. When a
picker is done with a pod, the drive unit stores it in an empty
storage location.

Each station is equipped with a desktop computer that
controls pick lights, barcode scanners, and laser pointers that
are used to identify the pick and put locations. Because ev-
ery product is scanned in and out of the system, overall pick-
ing errors go down, which potentially eliminates the need
for post-picking quality control. In general, every station is
capable of being either a picking station or a replenishment
station. In practice, pick stations will be located near out-
bound conveyors, and replenishment stations will be located
near pallet drop off points.

The power of the Kiva solution comes from the fact that
it allows every worker to have random access to any inven-
tory in the warehouse. Moreover, inventory can be retrieved
in parallel. When the picker is filling several boxes at the
same time, the parallel, random access ensures that she is
not waiting on pods to arrive. In fact, by keeping a small
queue of work at the station, the Kiva system delivers a new
pod face every six seconds, which sets a baseline picking
rate of 600 lines per hour.2 Peak rates can exceed 600 lines
per hour when the operator can pick more than one item off
a pod.3

For a large warehouse, the savings in personnel can be
significant. Consider, for example, what a Kiva implemen-
tation of the book warehouse would involve. A busy book-
seller may ship 100,000 boxes a day. With existing automa-
tion, this level of output would employ perhaps 75 workers

2This statistic is based on single unit picks and has been repro-
duced for extended periods in the Kiva test facility.

3This statistic was verified when a small Kiva demonstration
system was brought to a drugstore distribution center where opera-
tors picked at nearly 700 lines per hour.
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Figure 1: A typical Kiva warehouse system [22].

1. INTRODUCTION
Teams of agents often have to assign targets among

themselves and then plan collision-free paths to their targets.
Examples include autonomous aircraft towing vehicles [12],
automated warehouse systems [22], o�ce robots [19] and
game characters in video games [15]. For example, in the
near future, autonomous aircraft towing vehicles might tow
aircraft all the way from the runways to their gates (and vice
versa), reducing pollution, energy consumption, congestion
and human workload. Today, autonomous warehouse robots
already move inventory pods all the way from their storage
locations to the inventory stations that need the products
they store (and vice versa), see Figure 1.

We therefore study the TAPF (combined target-
assignment and path-finding) problem for teams of
agents in known terrain. The agents are partitioned into
teams. Each team is given the same number of unique
targets (goal locations) as there are agents in the team.
The TAPF problem is to assign agents to targets and
plan collision-free paths for the agents from their current
locations to their targets in a way such that each agent moves
to exactly one target given to its team, all targets are visited
and the makespan (the earliest time step when all agents
have reached their targets and stop moving) is minimized.
Any agent in a team can be assigned to a target of the team,
and the agents in the same team are thus exchangeable.
However, agents in di↵erent teams are not exchangeable.

1.1 Related Work
The TAPF problem generalizes the anonymous and non-

anonymous MAPF (multi-agent path-finding) problems:

• The anonymous MAPF problem (sometimes called
goal-invariant MAPF problem) results from the TAPF
problem if only one team exists (that consists of all

Figure 1: Layout of an Autonomous Warehouse System [Wurman et
al., 2008]

Sharon et al., 2015; Boyarski et al., 2015; Cohen et al.,
2016] as well as suboptimal ones [Wang and Botea, 2011;
Luna and Bekris, 2011; de Wilde et al., 2014]. While most of
them are search-based, there are also approaches that refor-
mulate the problem using answer set programming [Erdem
et al., 2013], mixed-integer programming [Yu and LaValle,
2016], and satisfiability testing [Surynek et al., 2016a].

Ma and Koenig [2016] recently generalized MAPF to com-
bined Target Assignment and Path Finding (TAPF), where
agents are partitioned into teams and each team is given a
set of targets that they need to get to. To solve this problem,
one must first find an assignment of targets to agents before
solving the resulting MAPF problem.

While TAPF better reflects real-world systems with homo-
geneous agents, such as our motivating application, it still has
a key limitation: It assumes that the number of agents equals
the number of tasks to be allocated. In our motivating appli-
cation, there are typically more tasks than agents. As such,
agents have to move towards a new task after completing their
current task.

Therefore, we propose Generalized TAPF (G-TAPF), a
generalization of TAPF that allows the number of tasks to
be greater than the number of agents. We also propose a new
objective, which better captures more applications including
our motivating warehouse application: Each task has an as-
sociated deadline that indicates the time at which it must
be completed. We propose to use answer set programming
(ASP) [Lifschitz, 2002] as the general framework for solving
the new G-TAPF problems. Empirical results show that it is



more scalable than existing TAPF algorithms, using impera-
tive programming, for some TAPF problem types.

The rest of the paper is organized as follows. We begin with
a brief review of ASP and multi-shot ASP. We then present a
precise definition of G-TAPF problems. Afterwards, we de-
scribe our ASP encoding of G-TAPF problems. Afterwards,
we describe two algorithms for computing solutions of G-
TAPF problems that use the ASP-encoding of G-TAPF, one
for computing optimal solution and another for non-optimal
solution. Next, we evaluate the performance of our algorithms
using two sets of TAPF problems and a set of G-TAPF prob-
lems.

2 Background: ASP and Multi-shot ASP
A logic program Π is a set of rules of the form

a0 ← a1, . . . , am, not am+1, . . . , not an (1)

where 0≤m≤n, each ai is an atom of a propositional lan-
guage and not represents (default) negation. An atom is of
form p(c1, ..., ck), where p is a k-ary predicate, also written
as p/k, and each cj is a constant. Intuitively, a rule states that
if all positive literals ai are believed to be true and no negative
literal not ai is believed to be true, then a0 must be true. If a0
is omitted, the rule is called a constraint. If n = 0, it is called
a fact. For a rule r as in (1), head(r) denotes a0; pos(r) (posi-
tive body) denotes the set {a1, . . . , am}; and neg(r) (negative
body) denotes {am+1, . . . , an}. Also, we let lit(r) denote the
set of all literals in r, viz. {head(r)}∪pos(r)∪{not a | a ∈
neg(r)}; accordingly, lit(P ) denotes the set of all literals of
logic program Π. Semantically, a program induces a collec-
tion of so-called answer sets, which are distinguished models
determined by answer sets semantics; see [Gelfond and Lifs-
chitz, 1988] for details.

To facilitate the use of ASP in practice, several exten-
sions have been developed. First of all, rules with variables
are viewed as shorthands for the set of their ground in-
stances. Further language constructs include conditional lit-
erals and cardinality constraints [Simons et al., 2002]. The
former are of form a : b1, . . . , bm, the latter can be writ-
ten as s{d1, . . . , dn}t, where a and bi are possibly default
negated literals, and each dj is a conditional literal; s and
t provide optional lower and upper bounds on the number
of satisfied literals within the cardinality constraints. We re-
fer to b1, . . . , bm as a condition. The practical value of both
constructs becomes more apparent when used in conjunction
with variables. In ASP, strings starting with uppercase (lower-
case) letter are typically used to denote variables (constants).
For instance, a conditional literal of form a(X) : b(X) in a
rule’s antecedent expands to the conjunction of all instances
of a(X) for which the corresponding instance of b(X) holds.
Similarly, 2{a(X) : b(X)}4 is true, whenever more than one
and less than five instances of a(X) (subject to b(X)) are
true. Aggregate functions such as count , sum , etc. are also
introduced. For example, count {X : a(X)} computes the
number of different objects X such that condition a(X) is
true. Finally, a simply yet useful construct is that of a range,
that is, a fact p(1..n) stands for the set of facts p(1) to p(n).

Traditional ASP solvers are single-shot solvers, i.e., they
take a logic program, compute its answer sets, and exit.

Recently developed multi-shot ASP solvers provide opera-
tive solving processes for dealing with continuously chang-
ing logic programs. For controlling such solving processes,
the declarative approach of ASP is combined with impera-
tive means. In clingo [Gebser et al., 2014], this is done by
augmenting an ASP encoding with Python procedures con-
trolling ASP solving processes along with the corresponding
evolving logic programs. The instrumentation includes meth-
ods for adding/grounding rules, setting truth values of atoms,1
computing the answer sets of current program, etc.

3 Generalized TAPF Problems
A Generalized TAPF (G-TAPF) problem is given by a triple
P = (G,R, T ), where
• G = (V,E) is an undirected connected graph, where
V and E correspond to locations and ways of moving
between locations for the agents;
• R is a set of agents. Each r ∈ R is specified by a pair

(t, s), t is the type of task that can be accomplished by r
and s ∈ V is the starting location of r;
• T is a set of groups of tasks. Each group in T is specified

by a set of ordersO and a positive integer d representing
the deadline of the orders in the group; each o ∈ O is a
pair (g, t) where g and t are the destination and type of
the order, respectively.

For an agent r, type(r) and loc(r) denote the type and start-
ing location of agent r, respectively. For a task t, type(t) and
destination(t) denote the type and destination of task t, re-
spectively. For a group T of tasks, deadline(T ) denotes the
deadline of tasks in group T .

Agents can move between the vertices along the edges of
G, one edge at a time, under the restrictions: (a) two agents
cannot swap locations in a single timestep; and (b) each lo-
cation can be occupied by at most one agent at any time. A
path for an agent r is a sequence of vertices α = 〈v1, . . . , vn〉
if (i) the agent starts at v1 (i.e., v1 = loc(r)); and (ii) if for
any two subsequent vertices vi and vi+1, there is an edge be-
tween them (i.e., (vi, vi+1) ∈ E) or they are the same vertex
(i.e., vi = vi+1). n is called the length of α and is denoted by
length(α).

An agent r completes a task t via a path α = 〈v1, . . . , vn〉
if type(r) = type(t) and destination(t) is one of the vertices
in α, i.e., destination(t) ∈ {v1, . . . , vn} . A task is said to
be completed when an agent completes it. A group of tasks
is completed when every task in the group is completed. A
G-TAPF problem P is completed when every group of tasks
in T is completed. A solution of a G-TAPF problem P is a
collection of paths S = {αr | r ∈ R} for the agents in R so
that all tasks in T are completed.

Depending on the application, one can create different G-
TAPF variants. We describe several variants below:
• Equal numbers of tasks and agents: This variant is the orig-

inal TAPF [Ma and Koenig, 2016], where there is a one-to-
one allocation of tasks to agents.

1The manipulation of truth values is restricted to atoms explicitly
declared as being external.



• Group completion: Agents must complete all groups of
tasks in some order. More precisely, for every pair of dis-
tinct groups of tasks, all tasks in one group must be com-
pleted before all tasks in the other group.

• Task deadlines: Agents must complete all the tasks t ∈
Ti within a group Ti within the deadline of the group
deadline(Ti).

• Completion with checkpoints: In order to complete a task
t, before and/or after reaching the goal destination(t), an
agent must visit some other designated checkpoints. Un-
der this view, the autonomous warehouse system [Wur-
man et al., 2008] can also be viewed as a G-TAPF variant,
where to complete a task t, an agent needs to pick up a pod
at a checkpoint before bringing it to the inventory station
(= destination(t)) and then returning the pod to another
checkpoint.

One can optimize different possible objectives:
• The makespan of a solution S is defined by

maxα∈S length(α). Minimizing this value is appro-
priate if one wants to minimize the total time taken
by the agents to complete all the tasks in the problem.
Alternatively, one can also seek to find a solution whose
makespan is within a maximum makespan threshold.
which is appropriate in problems where there is a deadline
in which to complete all the tasks.

• The total path cost of a solution S is defined by∑
α∈S length(α). Minimizing this value is appropriate if

the cost of a path is measured by fuel consumption and one
wants to minimize the total amount of fuel used. As above,
one can also seek to find a solution whose total path cost is
within a maximum threshold.

A discussion between the tradeoffs of the objectives for
MAPF problems can be found in [Surynek et al., 2016b]. In
this paper, we focus on minimizing the makespan.

4 Modeling G-TAPFs Using ASP
Let P =(G,R, T ) be a G-TAPF problem and n be an integer
denoting the upper bound on the solution makespan.

4.1 G-TAPF Input Representation
We represent edges and vertices in a graph G by e(x, y) and
v(r) atoms, respectively. Agents are specified by ag(a, l, t)
atoms (a: agent identifier, l: starting location, t: type). Groups
of tasks are specified by grp(g, d) atoms (g: group identi-
fier, d: deadline for the tasks in g). Tasks are specified by
task(i, g, l, t) atoms (i: task identifier, g: group identifier of
i, l: destination, t: type).

4.2 G-TAPF ASP Rules
We assume a set of atoms of the form st(0), . . . , st(n), each
st(i) represents a timestep in a solution of P . We use atoms
of the form at(r, l, s) with the intuitive meaning “agent r is
at location l at timestep s.”

Action Generation
We use atoms of the form mv(r, l, s) (respectively,
stay(r, l, s)) to denote that agent r moves to (respectively,
stays at) the vertex l in timestep s. At any timestep S, an

agent R at location L executes exactly one action of either
moving to a connected location L′ (mv(R,L′, S)) or staying
at L (stay(R,L, S)). The next rule generates an action for an
agent R at timestep S with this restriction:

1{mv(R,L′, S) : e(L,L′); stay(R,L, S)}1←
ag(R, , ), at(R,L, S), S < n.

(2)

The starting location of an agent is specified by:

at(R,L, 0)← ag(R,L, ). (3)

The next two rules allow for reasoning about the locations of
the agents. The first rule encodes the effect of the action mv
and the second rule encodes the effect of the action stay.

at(R,L′, S)← at(R,L, S−1),mv(R,L′, S−1), e(L,L′). (4)
at(R,L, S)← at(R,L, S−1), stay(R,L, S−1). (5)

The next two rules enforce the constraints on the movements
of the agents. Rule (6) prevents two agents from moving to
the same location at the same timestep and Rule (7) prevents
two agents to exchange locations in a single timestep.

← at(R,L, S), at(R′, L, S), R 6= R′. (6)

← at(R,L, S), at(R′, L′, S), R 6= R′, e(L,L′), (7)

at(R,L′, S − 1), at(R′, L, S − 1).

Task Allocation
Rule (8) assigns tasks to agents. It ensures that each task
t is assigned to exactly one agent r of the correct type
(i.e., type(t) = type(r)) and defines the atom goal(r, t, l, o)
whenever agent r is assigned task t whose destination is at
location l and whose ordering is o and is encoded by atoms
of the form order(g, o) (defined in the next group).

1{goal(R, T, L,O) :ag(R, ,X)}1←order(G,O),
task(T,G,L,X).

(8)

Group Completion
When group completion needs to be enforced, one needs to
create an ordering for the groups of tasks to be completed.
The set of rules in this group defines atoms of the form
order(g, o) which says that the group of tasks g must be com-
pleted at the oth order among all groups. It assumes that a
Boolean flag ordering indicating the necessity of group com-
pletion has been specified. We start by counting the number
of the groups:

job(1..C)← C = count{G : grp(G, )}. (9)

Next, each group is assigned an order using the rules (10) and
(11). Rule (10) assigns the order of each group to a number
between 1 and the number of groups. Rule (11) assigns 1 as
the order of each group if the ordering flag is false which is
equivalent to saying that there is no order between the groups.

1{order(G,O) : job(O)}1← grp(G, ). (10)
order(G, 1)← grp(G, ), not ordering. (11)

To ensure that no two groups have the same order if the
ordering flag is true, we include the following constraint:

← ordering, order(G1, O), order(G2, O), G1 6= G2. (12)



Solution Verification, Checkpoints, Deadlines
Rules for solution verification need to check for the achieve-
ment of tasks as well as the satisfaction of various re-
quirements such as group completion, deadlines, and check-
points. When the problem requires multiple checkpoints, the
Boolean flag checkpoint is set to true and each task t is asso-
ciated with a sequence [l1, . . . , lx] where li ∈ V and the goal
of t, g, occurs in [l1, . . . , lx]; the checkpoints are defined (ex-
plicitly or implicitly) using atoms of the form chkp(t, li, i).

As an example, consider the autonomous warehouse sys-
tem problem. Assume that each task t with goal g has three
checkpoints: The agent must first go to a storage location
store(g, s) to pick up the pod, then to an inventory location
(goal g), before going back to a possibly different storage lo-
cation depot(g, s) to store the pod. Then, the specification of
the checkpoints for this problem can be specified by the fol-
lowing rules:

chkp(T, S, 1)← task(T, ,G, ), store(G,S). (13)
chkp(T,G, 2)← task(T, ,G, ). (14)
chkp(T,D, 3)← task(T, ,G, ), depot(G,D). (15)

Having defined and specified the checkpoints of the prob-
lems, we now introduce the set of rules to check for the com-
pletion of the individual tasks.

chkp(T,G, 1)← task(T, ,G, ), not checkpoint . (16)
nchk(T,N)← N = count{I : chkp(T, , I)}. (17)

(16) defines that the destination of a task is the first check-
point for a task if checkpoint is false. (17) counts the number
of checkpoints for each task.

Rules (18)–(22) define the predicate com/4, where
com(r, t, k, s) means that agent r has visited the kth check-
point of the task t at timestep s. They ensure that only a visit
to the (k+ 1)th checkpoint after visiting the kth checkpoint is
counted towards a solution. Rule (18)–(19) define this atom
for tasks in the 1st group (ordering 1) and rules (20)–(21)
for tasks in the oth, o > 1, group. Observe that rules (20)–
(21) are applicable only if finished(o− 1, s) is true, which is
defined in (23)–(24). When a checkpoint has been visited at
timestep s− 1, it means that it has been visited at timestep s.
This is encoded in rule (22).

com(R, T, 1, S)← not com(R, T, 1, S−1), (18)
at(R,X, S), goal(R, T,X, 1), chkp(T,X, 1).

com(R, T,K+1, S)← com(R, T,K, S−1), (19)
at(R,X, S), goal(R, T,X, 1), chkp(T,X,K+1).

com(R, T, 1, S)← not com(R, T, 1, S−1), O > 1, (20)
at(R,X, S), goal(R, T,G,O), chkp(T,X, 1),

finished(O−1, S), O > 1.

com(R, T,K+1, S)← com(R, T,K, S−1), O > 1, (21)
at(R,X, S), goal(R, T,G,O), chkp(T,X,K+1),

finished(O−1, S).

com(R, T,K, S)← com(R, T,K, S−1). (22)

The next two rules define finished(o, s) indicating that the
group of tasks with ordering o is completed at s. Rule (23)
computes the number of tasks in a group and Rule (24) states
that finished(o, s) is true whenever all tasks in the group are
completed.

ntasks(G,N)←grp(G, ), (23)

N = count{T : task(T,G, , )}.
finished(O,S)← order(G,O),ntasks(G,N), (24)

count{T : com(R, T,K, Y ),nchk(T,K),

goal(R, T, , O)} == N.

Finally, the next constraint ensures that every agent completes
all the targets assigned to it:

← goal(R, T,G, ),nchk(T,K), not com(R, T,K, n). (25)

To take into account deadlines, a Boolean flag deadline is
set to true if deadlines need to be enforced. In addition to
checking for task completion, deadlines of tasks need to be
verified. This is achieved by the following constraint:

← order(R, T,G, ), task(T,G, , ),nchk(T,K), (26)
grp(G,D), not com(R, T,K,D), D ≤ n, deadline.

The constraint says that if agent r is assigned task t with
goal g and deadline d, then at timestep d, the task must be
completed. Note that because of (22), the constraint requires
that the task is completed on or before the deadline. Further-
more, because of (25), the task must be completed on or be-
fore timestep n. As such, this constraint does not need to be
considered for groups with deadlines beyond n.

It is worth pointing out that the constraint (26) assumes that
the last checkpoint of the task must be visited on or before the
deadline. In some situations, this assumption might be not
necessary, i.e., a task could be considered as completed at the
time the agent visits some other checkpoints such as the task’s
destination (e.g., in the autonomous warehouse application,
delivering the goods at the station could be used to indicate
that the task has been completed even though the robot will
still need to a depot). The constraint can be easily modified to
take into consideration other settings.

5 Solving G-TAPFs
We first describe how to find a solution with makespan n, as-
suming it exists, before describing how to find a solution with
the minimal makespan. Using built-in optimization features
of ASP solvers, one can generalize our methods for other ob-
jectives (e.g., minimizing the total path cost).

5.1 Solution With Makespan n
Let Π(P, n, o, d, c) be the program consisting of the input
and Rules (2)—(26), where o, d, and c denote the ordering,
deadline , and checkpoint flags, respectively. LetA be an an-
swer set of Π(P, n, o, d, c). It is easy to see that for each agent
r, A must contain some atom of the form at(r, vs, s) for each
timestep s = 0, . . . , n due to Rules (3)–(5). So, we define
αr(A) = 〈v0, . . . , vn〉where at(r, vj , j) ∈ A for j = 0, . . . , n.

Proposition 1 Let P=(G,R, T ) be a G-TAPF program, n
an integer, and Q=Π(P, n, o, d, c). It holds that
• for each answer set A of Q,
− S = {αr(A) | r ∈ R} is a solution of P ;
− If o is true then for every pair of groups g1 and g2 in
T , either all the tasks in g1 are completed before all
the tasks in g2 or vice versa.



− If d is true then, for every groups g with the deadline
d, all tasks in g are completed before timestep d+ 1.

− For every task t completed by an agent r, there is a
proper ordering of the checkpoints of t in αr(A).

• Q is consistent iff P has a solution with makespan at most
n and every solution of with makespan at most n of P can
be computed by Q.
• Q is inconsistent iff P does not have a solution with

makespan at most n.

Proof. (Sketch)
• Proof for the first property:
• Since A is an answer set of Π(P, n, o, d, c), rule (25)

must be satisfied. Consider an atom goal(r, i, g, o) in
A. Rule (25) implies that com(r, i, g, n) belongs to A,
which implies that there exists some s ≤ n such that
at(r, g, s) ∈ A (by the rules (18)-(22)). By the construc-
tion of αr(A), we have r completes the task i of group
with the order o. By the rule (8), we have that each task
of the problem is assigned to one robot. Since all robots
will complete their assigned tasks, we have that S is a
solution of P .

• If o is true, then rules (9)-(12) imply that each group
of tasks is assigned a number o between 1 and |T | (the
number of groups in T ), i.e., for each group g there exists
a unique order(g, o) ∈ A. Rules (18)-(22) ensure that
if order(g1, o1) and order(g2, o2) belong to A then all
tasks in g1 are completed before all tasks in g2 which
proves the property.

• If d is true, then by definition o is also true. The above
item, together with the rule (26), ensures that tasks in
the group with earlier deadline will be completed before
tasks in the group with the later deadline.

• Proof of the second property followed from the first prop-
erty and the fact that given a solution S, one can construct
an answer set AS such that αr(AS) = S.
• The third property follows from the first and second prop-

erty. �

5.2 Solution With The Minimal Makespan
The first method for finding a solution with the minimal
makespan utilizes the program Π(P, n, o, d, c) by searching
for the smallest n∗ such that Π(P, n∗, o, d, c) has an an-
swer set and Π(P, n∗ − 1, o, d, c) does not. It implements
Algorithm 1 in multi-shot ASP and consists of the program
Π(P, n, o, d, c) and a Python program inc GTAPF(P) which
is responsible for instantiating Π(P, i, o, d, c) with the input
P and i, computing an answer set of Π(P, i, o, d, c), and ex-
tracting solutions. In Algorithm 1, Gi and Πi denote the set
of ground instantiations of Rules (25)–(26) and the ground
program obtained from Π(P, n, o, d, c) without (25)–(26) for
n = i, respectively.

Proposition 2 For a G-TAPF problem P , (i) if
inc GTAPF(P ) returns (〈αr〉r∈R, i), then 〈αr〉r∈R is an
optimal solution of P with makespan i; (ii) if inc GTAPF(P )
returns (timeout, i), then P does not have a solution with
makespan at most i− 1.

Algorithm 1: inc GTAPF(P )

Input: G-TAPF problem P = (G,R, T ).
Output: a solution, its makespan i; or timeout.

1 i = 1; Π = Π1 ∪G1

2 while not(timeout) do
3 if Π has an answer set then
4 compute an answer set Z of Π
5 extract 〈αr〉r∈R from Z, i.e., αr = αr(Z)
6 return (〈αr〉r∈R, i)
7 Π = (Π \Gi) ∪ (Πi+1 \Πi) ∪Gi+1; i = i+ 1

8 return (timeout, i)

Algorithm 2: d GTAPF(P )

Input: G-TAPF problem P = (G,R, T ).
Output: a solution, its makespan i; or timeout.

1 Compute an answer set AG of ΠG(P )
2 nT = {o | order( , o) ∈ AG}
3 i = 0
4 Π = Πi ∪AG

5 while nT 6= ∅ and not(timeout) do
6 k = min{o | o ∈ nT}
7 Π = Π ∪ (Πi+1 \Πi) ∪Gk

i+1

8 i = i+ 1
9 while not(timeout) do

10 if Π has an answer set then
11 compute an answer set Z of Π
12 extract 〈αr〉r∈R from Z, i.e., αr = αr(Z)
13 add action occurrences in Z to Π
14 break

15 Π = (Π \Gk
i ) ∪ (Πi+1 \Πi) ∪Gk

i+1

16 i = i+ 1

17 nT = nT \ {k}
18 Π = Π \Gk

i

19 if not(timeout) then return (〈αr〉r∈R, i)
20 return (timeout, i)

5.3 Greedy Strategy
The previous subsection presents a straightforward method
that uses the general ASP encoding of a G-TAPF problem
for computing its optimal solution. This can be inefficient as
the length of the optimal solution increases. The culprit lies
in Lines 3–6 of inc GTAPF(P ), which requires a call to the
answer set solver, and the fact that if Π(P, i, o, d, c) has no
answer set, an answer set solver needs to consider all feasible
orderings of the groups of tasks when group completion (c is
true) is required. One way to address this issue is to greedily
assign an ordering among the tasks when c is true. We next
present an algorithm that implements this idea. First, we be-
gin with a short discussion of the theoretical foundation that
guarantees the correctness of the algorithm.

Let ΠG(P ) be the program consisting of the input and
(8)–(12). Furthermore, ΠS(P, n, o, d, c) = Π(P, n, o, d, c) \
ΠG(P ). Intuitively, ΠG(P ) is the program that generates the
goal assignment for the robots. This assignment must satisfy
the requirements of P (e.g., ordering of groups when group
completion is required). It is easy to see that lit(ΠG(P )),



the set of literals occurring in ΠG(P ), is a splitting set of
Π(P, n, o, d, c). Due to the Splitting Theorem in [Lifschitz
and Turner, 1994], A is an answer set of Π(P, n, o, d, c) iff
A = AG ∪AS , where AG is an answer set of ΠG(P ) and AS
is an answer set of Π′S(P, n, o, d, c), which is obtained from
Π(P, n, o, d, c) by (i) deleting every rule r ∈ Π(P, n, o, d, c)
such that (pos(r)∩ lit(ΠG(P )))\AG 6= ∅ or neg(r)∩AG 6=
∅; and (ii) replacing every remaining rule r by a rule r′ where
head(r′) = head(r), pos(r′) = pos(r) \ lit(ΠG(P )), and
neg(r′) = neg(r)\lit(ΠG(P )). Furthermore, it can be shown
that A is also an answer set of Π(P, n, o, d, c) ∪AG.

The above discussion suggests that an answer set
A=AG∪AS of Π(P, n, o, d, c) can be computed by com-
puting an answer set (i) AG of ΠG(P ); and (ii) A of
Π(P, n, o, d, c) ∪ AG. This strategy is implemented in Al-
gorithm 2 with an additional refinement that focuses on the
ordering of the groups; e.g., we focus on completing tasks in
the first order before working on the second order. Goi to de-
note the set of ground instantiations of Rules (25)–(26) for all
atoms of the form goal(r, i, g, o) ∈ AG.

Algorithm 2 computes an answer set AG of ΠG(P )
(Line 1) that contains atoms of the form order(g, o) which
specifies the ordering between the groups of tasks (the set
nT ). It then computes solutions for the groups according to
this ordering (Lines 5–18). When Π(P, i, o, d, c) has an an-
swer set, the set of action occurrences are extracted and added
to the program (Line 13) to maintain that the tasks that are
completed stay completed when searching for the solution of
the next group of tasks. Similar to Proposition 2, we can prove
the soundness of Algorithm 2.

Proposition 3 For a G-TAPF problem P , if d GTAPF(P ) re-
turns (〈αr〉r∈R, i), then 〈αr〉r∈R is a solution of P with
makespan i.

6 Experimental Evaluation
We perform experimental evaluations on three benchmarks
with different G-TAPF variants, including the TAPF formu-
lation. In TAPF problems, we compare our ASP approach
against CBM, the only TAPF algorithm proposed thus far [Ma
and Koenig, 2016]. We conducted our experiments on a
3.60GHz CPU machine with 8GB of RAM, and set a time-
out of 1800s.

6.1 Gridworld
We vary the grid size, and the number of agents, groups, and
tasks. Blocked cells, agent starting locations, and task loca-
tions are randomly selected. We report the percentage of in-
stances solved (out of 10) within the time limit, and both the
average runtimes (in seconds) and makespans of the instances
solved.

Table 1 tabulates the results. CBM is able to solve TAPF
problems at least one order of magnitude faster than our ASP-
based algorithm. In general, the runtimes of the ASP-based
algorithm increase as the makespans of solutions found in-
crease. Finally, the ASP-based algorithm is faster on prob-
lems with deadlines and without ordering constraints than on
problems with ordering constraints and no deadlines. The rea-
son is that the program needs to enforce more rules when

Grid No. of No. of No. of ASP CBM Make-
Size Agents Groups Tasks Comp Time Comp Time span

10x10

50 1 80 100% 6.0 2.0
40 1 80 100% 2.8 2.0
50 10 50 100% 9.2 100% 0.045 8.9
50 5 50 100% 249.2 100% 0.025 6.7
30 4 40 100% 13.3 5.7

20x20

20 1 20 90% 1.3 100% 0.024 8.0
15 1 30 100% 6.6 8.9
20 2 20 100% 12.8 100% 0.064 12.7
5 2 10 90% 100.4 13.6

(a) ¬ordering ∧ ¬deadline ∧ ¬checkpoint

10x10

50 1 80 100% 6.1 2.0
40 1 80 100% 2.9 2.0
50 10 50 100% 420.9 13.0
50 5 50 100% 60.3 8.0
30 4 40 100% 62.1 7.6

20x20

20 1 20 100% 2.4 100% 0.024 8.4
15 1 30 100% 6.1 9.0
20 2 20 100% 14.5 12.8
5 2 10 40% 39.9 11.8

(b) ordering ∧ ¬deadline ∧ ¬checkpoint

10x10

50 1 80 100% 6.0 2.1
40 1 80 100% 2.8 2.0
50 10 50 100% 8.2 8.9
50 5 20 100% 3.6 6.7
30 4 40 100% 1.3 5.7

20x20

20 1 20 100% 53.1 8.4
15 1 30 100% 6.3 9.0
20 2 20 100% 12.9 12.8
5 2 10 90% 102.9 13.2

(c) ¬ordering ∧ deadline ∧ ¬checkpoint
Table 1: Gridworld Results

r1r2r3r4 g4 g3

d d d
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g1 g2

Type AType AType B

Figure 2: Example CORRIDOR Layout

ordering constraints are necessary than when deadlines are
necessary.

6.2 Corridor
A limitation of gridworlds is that it does not allow us to pa-
rameterize the difficulty of the problem in terms of the num-
ber of conflicts if each agent takes its shortest path to its goal.
In fact, in many of the instances, the number of such con-
flicts is quite small, favoring CBM. We thus propose a new
benchmark, called CORRIDOR, for TAPF problems. Figure 2
illustrates an example instance. In this benchmark, there is a
long corridor, whose width is exactly one cell except for goal
cells, which have a width of two cells. We parameterize the
size of the state space via the distance d between two goal
cells and the number of conflicts via the ordering of groups
of goals. There are no conflicts when the groups of goals and
agents have the same ordering (from left to right) and maxi-
mum conflicts when their orderings are reversed (e.g., in Fig-
ure 2).

Table 2 tabulates the results for TAPF problems with 20
agents/tasks in 10 groups. When the number of conflicts is
small (≤ 25 for d = 1 and ≤ 20 for d = 2), CBM is faster
than our ASP algorithm. However, as the number of conflicts
increases, CBM slows down substantially and times out for



No. of d = 1 d = 2

Conflicts ASP CBM Make- ASP CBM Make-
Time Time span Time Time span

0 6.378 0.142 40 15.899 0.211 60
5 7.067 0.177 42 17.186 0.366 62

10 8.021 0.123 44 18.375 0.403 64
15 8.021 0.123 44 18.391 0.427 64
20 8.594 0.365 46 19.823 0.631 66
25 9.523 0.675 48 21.265 247.544 68
30 9.647 54.81 48 21.431 274.525 68
35 10.714 timeout 50 22.849 67.665 70
40 12.754 timeout 54 26.341 timeout 74
45 12.932 timeout 54 31.112 timeout 78

Table 2: CORRIDOR Results

Config. Original No. of No. of No. of Simplified ASP W MakespanMap Size Agents Groups Tasks Map Size Runtime

2×2×10 186*354 4 2 4 107*286 6 296 [6]
3×3×10 350*734 8 4 3 227*470 18 731 [9]
3×4×10 460*960 8 4 3 301*624 55 1004 [10]
4×4×10 598*1250 10 4 5 398*826 87 1076 [10]
5×4×10 741*1544 10 1 10 496*1030 276 483 [16]
5×4×10 741*1544 10 2 10 496*1030 392 776 [13]
5×4×10 741*1544 20 1 15 496*1030 803 535 [17]
6×4×10 874*1830 10 1 10 594*1278 431 604 [14]
6×4×10 874*1830 10 2 10 594*1278 876 1095 [14]
6×4×10 874*1830 20 1 15 594*1278 1501 778 [16]
7×4×10 1012*2120 10 2 10 689*1432 1300 1232 [16]
7×4×10 874*1830 20 1 15 689*1432 timeout —

Table 3: Autonomous Warehouse System Results

the more difficult problems. On the other hand, the runtime
of our ASP algorithm increases more slowly, allowing it to
also solve the more difficult problems. This result shows that
our ASP approach may be more suitable in more complex
(G-)TAPF problems.

6.3 Autonomous Warehouse System
As G-TAPFs are motivated by applications such as au-
tonomous warehouse systems, we included this domain as
well. We use various warehouse configurations similar to the
one in Figure 1. In these problems, each task has three check-
points – the initial storage location, the inventory station, and
the final storage location. Each configuration is denoted by
r× c× p, where r, c, and p are the number of rows, columns,
and inventory pods per block, respectively. The example in
Figure 1 thus has a 7 × 4 × 10 configuration. Problems in
this domain prove to be extremely hard for the ASP encoding
presented earlier. In fact, it cannot solve the 2 × 2 × 10 con-
figuration because the size of the graph contains 168 nodes
and 354 edges, and the length of the optimal solutions is
often over 30 steps due to the presence of multiple check-
points. For this reason, we developed an enhancement of the
proposed method to tackle these problems. We call this en-
coding warehouse encoding and denote it with ASP W. The
source code and a demo of this experiment is available at
https://potassco.org/labs/.

ASP W relies on the observation that the paths for agents
can be found using the following steps: (i) simplifying the
original map to a simpler map with fewer nodes and edges;
(ii) computing the simplified paths for agents using the sim-
plified map; and (iii) computing the actual solution using the
simplified paths on the original map. These steps are feasible
due to the fact that several nodes in a warehouse do not have

full connectivity (e.g., an inventory pod might be connected
to a single node). This allows for nodes whose connectivity
degree is less than or equal 3 to be grouped together into a
combined node. This reduces the size of the graph and the
length of the solutions (in the reduced graph) to the extent
that it becomes manageable for the greedy encoding. Further,
we divide each task into three subtasks, one for each check-
point. This simplification is reasonable as the number of tasks
in a group is usually no larger than the number of available
agents to perform those tasks.

Table 3 tabulates the results, where we vary the r × c × p
configuration and the number of agents, groups of tasks, and
tasks per group. For each configuration, we generate three
instances, average the results, and report the size (|nodes| ∗
|edges|) of the simplified map, the average ASP W runtime,
and the average makespan of the solution. We also report the
average path length to complete a subtask in the simplified
map in boldface between brackets. It can be seen that (i) this
average path length for a subtask is a good indicator for the
difficulty of the problem for ASP W; and (ii) smaller config-
urations with more agents and tasks are more difficult than
larger configurations with fewer agents and tasks (e.g., con-
figuration 5×4×10 with 20 agents and 1 group of 15 tasks is
harder to solve than configuration 6× 4× 10 with 10 agents
and 1 group of 10 tasks).

7 Conclusions

Both MAPF and TAPF models suffer from their limiting as-
sumption that the number of agents and targets are equal. In
this paper, we propose the Generalized TAPF (G-TAPF) for-
mulation that allows for (1) unequal number of agents and
tasks; (2) tasks to have deadlines by which they must be com-
pleted; (3) ordering of groups of tasks to be completed; and
(4) tasks that are composed of a sequence of checkpoints that
must be visited in a specific order. As different G-TAPF vari-
ants may be applicable in different domains, we model them
using ASP, which allows one to easily customize the desired
variant by choosing appropriate combinations of rules to en-
force. Our experimental results show that CBM is better in
simple TAPF problems with few conflicts, but worse in dif-
ficult problems with more conflicts. We also show that ASP
technologies can easily exploit domain-specific information
to improve its scalability and efficiency. The contributions
in this paper thus make a notable jump towards deploying
MAPF and TAPF algorithms in practical applications.
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nen. Extending and implementing the stable model se-
mantics. Artificial Intelligence, 138(1–2):181–234, 2002.

[Surynek et al., 2016a] Pavel Surynek, Ariel Felner, Roni
Stern, and Eli Boyarski. Efficient SAT approach to multi-
agent path finding under the sum of costs objective. In
Proceedings of the European Conference on Artificial In-
telligence, pages 810–818, 2016.

[Surynek et al., 2016b] Pavel Surynek, Ariel Felner, Roni
Stern, and Eli Boyarski. An empirical comparison of the
hardness of multi-agent path finding under the makespan
and the sum of costs objectives. In Proceedings of the Sym-
posium on Combinatorial Search, pages 145–147, 2016.

[Veloso et al., 2015] Manuela Veloso, Joydeep Biswas,
Brian Coltin, and Stephanie Rosenthal. CoBots: Robust
symbiotic autonomous mobile service robots. In Proceed-
ings of the International Joint Conference on Artificial
Intelligence, pages 4423–4429, 2015.

[Wagner and Choset, 2015] Glenn Wagner and Howie
Choset. Subdimensional expansion for multirobot path
planning. Artificial Intelligence, 219:1–24, 2015.

[Wang and Botea, 2011] Ko-Hsin Cindy Wang and Adi
Botea. MAPP: A scalable multi-agent path planning algo-
rithm with tractability and completeness guarantees. Jour-
nal of Artificial Intelligence Research, 42:55–90, 2011.

[Wurman et al., 2008] Peter Wurman, Raffaello D’Andrea,
and Mick Mountz. Coordinating hundreds of coopera-
tive, autonomous vehicles in warehouses. AI Magazine,
29(1):9–20, 2008.

[Yu and LaValle, 2016] Jingjin Yu and Steven LaValle. Op-
timal multirobot path planning on graphs: Complete al-
gorithms and effective heuristics. IEEE Transaction on
Robotics, 32(5):1163–1177, 2016.


	Introduction
	Background: ASP and Multi-shot ASP
	Generalized TAPF Problems
	Modeling G-TAPFs Using ASP
	G-TAPF Input Representation
	G-TAPF ASP Rules

	Solving G-TAPFs
	Solution With Makespan n
	Solution With The Minimal Makespan
	Greedy Strategy

	Experimental Evaluation
	Gridworld
	Corridor
	Autonomous Warehouse System

	Conclusions

