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Abstract

This paper provides a theoretical study on Multi-
Objective Heuristic Search. We first classify states
in the state space into must-expand, maybe-expand,
and never-expand states and then transfer these def-
initions to nodes in the search tree. We then for-
malize a framework that generalizes A* to Multi-
Objective Search. We study different ways to order
nodes under this framework and its relation to tradi-
tional tie-breaking policies and provide theoretical
findings. Finally, we study and empirically com-
pare different ordering functions.

1 Introduction
In Single-Objective Search (SOS), the task is to find a least-
cost path between two states. Multi-Objective Search (MOS)
generalize SOS to the case where each edge in the graph is
associated with multiple costs. Examples include pathfind-
ing applications with multiple competing resources, such as
time and fuel as well as many other applications [Bachmann
et al., 2018; Fu et al., 2019; Fu et al., 2021]. In MOS, the
task is to find a (cost-unique) Pareto-optimal frontier (POF),
which is a set of undominated paths between start and goal,
i.e., there is no other path with lower cost in all objectives.
Various MOS algorithms were developed [Clı́maco and Pas-
coal, 2012; Current and Marsh, 1993; Skriver, 2000; Tarap-
ata, 2007; Ulungu and Teghem, 1991; Mandow and Pérez-de-
la-Cruz, 2010], as well as Bi-Objective Search (BOS) algo-
rithms for solving the two-dimensional MOS problems [Ah-
madi et al., 2021; Skyler et al., 2022; Hernández et al.,
2023b]. A recent survey including open challenges has also
appeared [Salzman et al., 2023].

A classic theory for SOS characterizes the set of states that
any unidirectional search algorithm must expand to prove the
optimality of the solution [Dechter and Pearl, 1985]. While
investigating the NAMOA∗ algorithm, Mandow and Pérez-
de-la-Cruz (2010) (we denote that paper by MPC10) provided
theoretical insights into MOS and identified must-expand and

never-expand nodes, where each node is associated with an
undominated path to some state in the graph.

In this paper we provide a theoretical study of MOS al-
gorithms. First, we extend the work of MPC10 and present
a comprehensive and unifying theory for the MOS setting.
We introduce an alternative analysis that shifts the focus from
nodes to states, providing a theory that classifies MOS states
into must-expand, maybe-expand, and never-expand cate-
gories. We demonstrate that an algorithm sharing informa-
tion among nodes corresponding to the same state need not
expand all must-expand nodes as defined by MPC10 but has
to expand all must-expand states, as per our definition.

We then formalize an algorithmic framework called MOS-
A∗, which generalizes A∗ [Hart et al., 1968] to MOS and en-
compasses various existing MOS algorithms. In MOS-A∗, a
node with an undominated f-value is expanded in each itera-
tion. In MOS, f-values lack a total order, and thus, multiple
nodes with different undominated f-values may exist simulta-
neously. Therefore, an Ordering Function (OF) is introduced
to impose a total order on undominated f-values. Addition-
ally, a tie-breaking policy (TB) can be employed to resolve
ties between nodes with the same f-values. We restate the
must-expand and never-expand nodes identified by MPC10
in the context of MOS-A∗ and characterize maybe-expand
nodes. Moreover, we formally prove that the choice of OF
does not impact which nodes are expanded during the search,
while different TBs can result in different node expansions.
However, OFs can influence the rate and order by which so-
lutions are discovered, which can be crucial when aiming
for quick solution discovery in an anytime manner. To this
end, we introduce several OFs, analyze their impact on solu-
tion discovery, and empirically compare them on roadmaps
from [DIMACS, 2006] for MOS with 2–4 objectives.

2 Definitions and Background
A Multi-Objective Search graph G with d objectives is a tuple
⟨S,E, c⟩, where S is the finite set of states, E ⊆ S × S
is the finite set of edges, and c : E → (R≥0)

d is a cost
function in the form of a d-dimensional vector (one dimension
per objective) of non-negative costs. A path π from s1 to sm



is a sequence of states s1, s2, . . . , sm such that (si, si+1) ∈ E
for all i ∈ {1, . . . ,m− 1}. Boldface font is used to represent
d-dimensional vectors in the form v = (v1, v2, . . . , vd). For
two vectors u and v, u+v = (u1+v1, . . . , ud+vd). c(π) =∑m−1

i=1 c(si, si+1) is the cost of path π = s1, . . . , sm. Given
two d-dimensional vectors u and v, we say that u weakly
dominates v, denoted as u ⪯ v, if ui ≤ vi, for every i ∈
{1, . . . , d}. Vector u (strictly) dominates v, denoted as u ≺
v, if u ⪯ v and u ̸= v (i.e., for at least one dimension i,
ui < vi). If ui > vi for some i ∈ {1, . . . , d}, then we say
that u undominates v (likewise v is undominated by u), and
denote this by u ̸⪯ v. For example, (4, 5) ⪯ (4, 5) (they
are in fact equal), (4, 5) ≺ (4, 7) (as 5 < 7) and (4, 7) ̸⪯
(4, 5). Finally, we say that two vectors u and v are mutually
undominated if both u ̸⪯ v and v ̸⪯ u. For example, (4, 8)
and (5, 6) are mutually undominated. Similarly, we say that
path π dominates (weakly dominates) path π′, denoted as π ≺
π′ (π ⪯ π′) if c(π) ≺ c(π′) (c(π) ⪯ c(π′)).

A search instance is a tuple I = ⟨S,E, c, start, goal,h⟩,
where ⟨S,E, c⟩ is a MOS graph, start, goal ∈ S are the start
and goal states, and h is a heuristic function. A solution is a
path from start to goal. A solution is Pareto-optimal if it
is undominated by any other solution. A Pareto-optimal so-
lution set for I , denoted by POS , is the (maximum) set of
Pareto-optimal solutions. Let POC = {c(π) | π ∈ POS}
denote the set of path costs in POS . By definition, any two
members of POC are mutually undominated. However, there
can be two paths with equal costs in POS . We thus de-
fine a cost unique Pareto-optimal solution set, also called
the Pareto-optimal frontier, denoted by POF , as a subset
of POS such that no two paths have equal costs. That is,
there is only one path for every value in POC. In the special
case of SOS (where d = 1), POS includes all optimal-cost
paths while POF includes only one optimal-cost path. Fig-
ure 1 shows different cost vectors of a BOS problem instance
(where d = 2). The C points denote the POC. This means
that there are no solution costs in zones A or B. Similarly,
solutions in C are undominated by any solution in Zone D.

We consider Single-Valued Heuristic functions which as-
sign to each state a d-dimensional vector h = {h1, . . . , hd}
where each value hi estimates the cost along dimension i.
h is admissible if hi is a lower bound of all the costs of
dimension i in any member of POC. Similarly, h is con-
sistent iff (i) h(goal) = 0 and (ii) h(s) ⪯ c(s, t) + h(t)
for all (s, t) ∈ E. The strongest possible single-valued
heuristic, which is commonly used, is the individual shortest
path heuristic, also called (Single) Point heuristic [Goldin and
Salzman, 2021; Hernández et al., 2023b; Pulido et al., 2015;
Skyler et al., 2022]. That is, for h(n), hi(n) is the cost-
minimal path from n to goal using the i-th objective only.
In Figure 1, S represents the value of the Point heuristic, and
Zone H ⊂ A includes all other admissible heuristics.

2.1 Classes of States in Single-Objective Search
Following Dechter and Pearl (1985), let IAD denote problem
instances that have an admissible heuristic, and let ICON ⊂
IAD denote the instances that have a consistent heuristic. Ad-
missible algorithms are algorithms that guarantee to return
optimal solutions on all problem instances from IAD. Like-
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Figure 1: Different zones in a BOS problem instance. Every point
in the figure is a two dimensional cost from start to goal.

wise, a search algorithm is said to be DXBB [Eckerle et al.,
2017] if it is deterministic and has only black-box access to
the graph and the heuristic, i.e., it can only discover states,
edges, and cost by continuously applying an expansion oper-
ator from either start or goal.

Admissible SOS algorithms must accomplish two tasks:
(i) find a solution of cost C∗ and (ii) prove that the returned
solution is optimal. A classic theory is that any admissible
DXBB unidirectional heuristic search algorithm must expand
all states s such that there exists a path U from start to s
for which c(U) + h(s) < C∗, when running on an instance
from ICON [Dechter and Pearl, 1985]. Such states are called
Must-Expand States (MESs). To fulfill task (ii), algorithms
must expand every MES s or they might miss an optimal so-
lution that passes through s. In addition, if c(U)+h(s) > C∗

for all paths U from start to s, then state s should never
be expanded, as it cannot lead to an optimal solution and,
thus, does not contribute to accomplishing either tasks—such
states are called Never-Expand States (NESs). Finally, de-
pending on the tie-breaking policy (TB), some states s, where
c(U)+h(s) = C∗, might be expanded to find an optimal solu-
tion (task (i)) and are called Maybe-Expand States (MBESs).

In the next sections, we generalize this theory from SOS to
MOS. We distinguish between states in the graph and nodes
in the search tree. We dedicate a separate section to each,
motivated by the inherent differences between the two enti-
ties, as demonstrated in Section 4.4. It is noteworthy that the
theoretical study of MCP10 (while exploring the NAMOA∗

algorithm) partially overlaps with our current work. Specif-
ically, they defined the concepts of must-expand paths and
never-expand paths (where paths in their notation align with
nodes in our notation). As their definitions and correspond-
ing proofs are pertinent to our discussion (Definitions 1,2 for
states and Definitions 4,5 for nodes), we restate them here
using our terminology for the sake of completeness.

3 Classes of States in Multi-Objective Search
In MOS, the two aforementioned tasks are modified as fol-
lows: (i) find all values of POC and (ii) prove that they are
undominated by any other costs of solutions.

Definition 1 (Must-Expand States (MESs)). A state s is a
MES iff there exists a Pareto-optimal path U from start to s
such that p ̸⪯ c(U) + h(s) for all path costs p ∈ POC.

We partition the set of MESs into: Optimality States and
Completeness States; their union is the set of MESs.
Definition 1.1 (Optimality States). A state s is an optimality



state iff there exists a path U from start to s and ∃p ∈ POC
such that c(U) + h(s) ≺ p.

Optimality states are expanded to prove that any path in
a POF is Pareto-optimal, i.e., that there is no path π′ from
start to goal that dominates some path π ∈ POF . Opti-
mality states are analogous to MESs in SOS (with f < C∗).
Zone A in Figure 1 corresponds to costs of optimality states
(each via a relevant path U with the corresponding f-value).

In SOS, there is a total order between the cost of edges (and
therefore between paths in the graph). However, in MOS,
there is only a partial order because the costs of two edges
may be mutually undominated. Thus, MOS algorithms must
also consider states such that the costs of paths through them
are mutually undominated with any cost in POC and prove
that such costs cannot be added to POC. Such states are
called completeness states.
Definition 1.2 (Completeness States). A state s is a complete-
ness state iff there exists a path U from start to s such that
∀p ∈ POC: c(U) + h(s) ̸⪯ p and p ̸⪯ c(U) + h(s)
Zone B corresponds to costs of completeness states (via a
relevant path U ). These states must be expanded to ensure
that there are no more solution costs in POC (i.e., POC is
complete). Completeness states have no analogy in SOS.
Definition 2 (Never-Expand States (NESs)). A state s is a
NES iff for every path U from start to s there exists p ∈ POC
such that p ≺ c(U) + h(s).
Zone D in Figure 1 corresponds to NESs. They are analogous
to the Never-Expand States in SOS.
Definition 3 (Maybe-Expand States (MBESs)). A state s is a
MBES iff s is not a MES and there exists a path U from start
to s and a cost p ∈ POC such that c(U) + h(s) = p.
Zones C1 to C4 correspond to the costs of MBESs, analogous
to states with f = C∗ in SOS. At least one goal state from
each Ci zone is expanded, but depending on the tie-breaking
policy, other states with the same costs may be expanded too.

3.1 Theoretical Analysis
We now prove that all MESs are required to be expanded to
prove the optimality of solutions (task (ii)), and all NESs can-
not possibly lead to optimal solutions and are thus irrelevant
for achieving both task (i) and task (ii).
Lemma 1. Given a problem instance I ∈ ICON , any admis-
sible MOS Algorithm A must expand all MESs (Def. 1).

Proof. Let POCI , be the set of POF path costs of instance
I . We need to show that every state s for which there ex-
ists a Pareto-optimal path U from start to s and there ex-
ists p ∈ POCI s.t. p ̸⪯ c(U) + h(s), then s must be
expanded by Algorithm A. We prove the contrapositive.
Suppose that (i) I1 = ⟨G1 = ⟨V,E, c1⟩, start, goal,h⟩ is
a problem instance in ICON whose POF has a set of costs
POCI1 , (ii) U is a Pareto-optimal path from start to s in
I1 such that C∗ ̸⪯ c1(U) + h(s) for all C∗ ∈ POCI1 ,
(i.e., c1(U) + h(s) is in Zone A ∪ B), and (iii) A is an
admissible DXBB algorithm that returns a POF for I1, de-
noted A(I1) (with cost vectors POCI1 ), without expanding
s. Then, construct a new instance I2 ∈ IAD whose POF

has a set of cost vectors POCI2 , such that (i) there exists
C ∈ POCI2 for which C ̸⪯ C ′ for all C ′ ∈ POCI1 ,
and (ii) A also returns A(I1) (that contains no solution of
cost C), thereby showing that A is not admissible on I2.
I2 = ⟨G2 = ⟨V,E ∪ {e = ⟨s, goal⟩}, c2⟩, start, goal⟩. G2

is copied from G1, with the following changes: (i) an edge
from s to goal is added (if it didn’t exist before) and (ii)
cost c2 is identical to c1 with a single modification, c2(e) =
h(s). Edge e from s to goal generates a solution path
U ′ = [start, . . . , s, goal] whose total cost is c2(U

′) =
c1(U) + h(s), which is undominated by any cost in POCI1
(by assumption (ii)). Edge e is thus an essential part of any
POF of I2. Since A is DXBB, it will behave on I2 similarly
to its behavior on I1. In particular, A will not expand s, will
not discover edge e, and will incorrectly return A(I1) as the
POF for I2. Hence, if I2 ∈ IAD, A is not admissible.

To complete the proof we now show that I2 ∈ IAD, i.e.,
that h is admissible on G2 (even after edge e was added). Let
x be an arbitrary state in G2 and let W be any acyclic path in
G2 from x to goal. We need to prove that h(x) ⪯ c2(W ). If
W does not contain the new edge e, the claim trivially follows
from the admissibility of h on G1. Now, suppose W does
contain e. In other words, W = {X, e} for some path X
from x to s (i.e., e is the last edge of W ). Now, since X is a
path from x to s in G1 and h is consistent on G1 we have:

h(x) ⪯ c1(X) + h(s)
By definition, c2(e) = h(s) and c1(X) = c2(X), thus:

= c2(X) + c2(e) = c2(W )

Therefore, h is admissible on G2, i.e., I2 ∈ IAD.

We next show that NESs should never be expanded by ad-
missible search algorithms.
Lemma 2. Given an instance I ∈ IAD, every NES (Def. 2)
cannot lead to any path with cost p ∈ POCI .

Proof. Assume by contradiction that (i) there exists a prob-
lem instance I such that the costs of all paths from start to
some state s in I are dominated by one of the values in POCI

and that (ii) s must be expanded by any admissible MOS Al-
gorithm A in order to find a POF of I (denoted as A(I)). Let
W = XY be an acyclic path from start to goal such that X
is a path from start to s and Y is a path from s to goal. Due
to the admissibility of I , we know that h(s) ⪯ c(Y ) for all
paths Y from s to goal. Thus, we get:

c(W ) = c(X) + c(Y ) ⪰ c(X) + h(s)
and, due to the assumption:

⪰ p for some p ∈ POCI

Thus, all paths W that pass through s are not a POF solution,
and s should not be expanded.

4 Moving from States to Nodes
Above, we classified states. Nonetheless, search algorithms
typically operate in the context of nodes, which correspond to
specific paths in the graph. In SOS with a consistent heuristic,
node f -values are monotonically non-decreasing along paths.
For states with multiple paths, A∗ uses duplicate detection,
associating each state s with a unique node n(s) representing



Algorithm 1: MOS-A∗

Input : G = ⟨S,E, c⟩, start, goal, h, OF, TB
1 nroot ← new node at start with g(nroot) = 0,

h(nroot) = h(start), and parent(nroot) = null
2 initialize OPEN with OF and TB
3 OPEN.insert(nroot); POF ← ∅
4 while OPEN ̸= ∅ do
5 n← OPEN.pop() // using OF and TB
6 if dom check exp(n) then continue
7 if s(n) = goal then
8 add n to POF and continue // line 4
9 for s′ ∈ S s.t. (s(n), s′) ∈ E do

10 n′ ← new node at s′ with h(n′) = h(s′),
g(n′) = g(n) + c((s, s′)), parent(n′) = n

11 if dom check gen(n′) then continue // line 9
12 OPEN.insert(n′)
13 return POF

the cost-minimal path discovered for s, while pruning the re-
maining paths. Thus, choosing to expand a node n(s) with
minimal f -value in OPEN ensures that n(s) represents an
optimal path in the graph from start to s [Dechter and Pearl,
1985]. These properties allow the adaptation of the state
classification to node classification in SOS. Given a heuristic
function h, A∗ (i) must expand all nodes n with f(n) < C∗,
(ii) should never expand a node with n with f(n) > C∗ and
(iii) might expand some nodes with f(n) = C∗.

In A∗ all nodes in OPEN with the minimal f -value are said
to be at the front of OPEN and A∗ must choose for expansion
a node from the front. Since there could be several nodes that
have the same minimal f -value, a tie-breaking policy (TB) is
applied to choose a specific node among them.

To make a similar transition from states to nodes in MOS,
we first generalize A∗ to MOS-A∗ (applicable for MOS).

4.1 Multi-Objective Search A∗ (MOS-A∗)
In MOS-A∗, OPEN nodes are associated with f-values,
which are d-dimensional vectors of values. Thus, in MOS-
A∗, the front of OPEN includes all nodes with undominated
(but may be equal, ̸≺ relation) f -vectors. front can include
multiple f-vectors (e.g., (1, 2) and (2, 1)), each can be used
for choosing nodes for expansion. Thus, to choose a node
from the front of OPEN, we have two phases. The first phase
is unique to MOS (and does not exist in SOS) and is called
an Ordering Function (OF) [Skyler et al., 2022]. An OF de-
fines a total order between the different f -values. The cluster
of nodes with the minimal order (according to the OF) is first
chosen. A common OF is the lexicographic order, used by
many algorithms, because it has a significant advantage in its
CPU time overhead and in its data structure used [Hernández
et al., 2023b]. We discuss and compare this and other OFs be-
low. The second phase uses TB within the chosen cluster (if
it has more than one node) to choose the final node to expand.

The pseudocode for the MOS-A∗ framework is shown in
Algorithm 1. It accepts a MOS instance as well as an OF and
a TB. Each node n contains a state s(n), and a g-value vec-
tor g(n). f(n) is then calculated as f(n) = g(n) + h(s(n)).
The front of OPEN includes all nodes whose f(n)-values are
undominated (but may be equal, ̸≺ relation). In each itera-

tion, MOS-A∗ extracts a node n with the “best” f-value from
the front of OPEN, as determined by OF and TB (Line 5).
MOS-A∗ then performs the common expansion cycle and ei-
ther adds a node to POF if s(n) = goal (Lines 7-8) or ex-
pands it (Lines 9-12). When expanding a node n, MOS-A∗

generates a child node for each successor s′ of s(n). When
OPEN becomes empty, it terminates and returns the POF .

4.2 Dominance Checks in MOS-A∗

MOS-A∗ performs dominance checks for node n to determine
whether n has the potential to be included in POF . Other-
wise, n is pruned if it does not pass the check. Two types of
checks need to be performed on node n.

The first is called path dominance check. Here, we com-
pare different occurrences of s(n) and prune those occur-
rences whose path costs are weakly dominated by costs of
other occurrences. After this, only undominated nodes are
left in OPEN and CLOSED. This is a generalization of du-
plicate detection in SOS, where only one node is kept for
each state with minimal path cost. Similarly to SOS, this step
is optional — One may choose not to implement it and risk
a large increase in the size of OPEN. This directly translates
into CPU time and memory increase. The tradeoff is that path
dominance check requires tailored data structures.

The second type is called solution dominance check. Here,
we prune node n if f(n) is dominated by a solution that was
already found. This dominance check is mandatory. With-
out it, the algorithm can run forever and continue to produce
solutions. This check is not performed in SOS because the
search usually halts after finding the first solution. But, it is
equivalent to pruning nodes with f > C∗, for example, if the
task of the search is to return all optimal solutions.

In MOS-A∗ dominance checks can be performed in two
locations: after a node was chosen for expansion (Line 6)
or after a node was generated (Line 11) but before it is in-
serted into OPEN. Many algorithms use this framework (e.g.,
MOA∗ [Stewart and White III, 1991], NAMOA∗ [Mandow
and De La Cruz, 2005], NAMOA∗-dr [Pulido et al., 2015],
and BOA∗ [Hernández et al., 2023a]). While they all use
lexicographic OF, they mainly differ in whether, when, and
how dominance checks are implemented as well as what data
structures are used for maintaining OPEN. These differences
significantly impact the constant time per node expansion,
leading to substantial speedup possibilities in CPU time. In
our analysis, we focus solely on understanding the impact of
various OFs and TBs on the number of node expansions, ex-
cluding considerations of CPU runtime.

We now show how to adapt the classification of states to the
classification of nodes for this family of MOS-A∗ algorithms.

4.3 Node Classification in MOS-A∗

In MOS-A∗, any state s is represented by a set of nodes N(s),
where each node n ∈ N(s) corresponds to an undominated
path from start to s. Similarly to SOS, it was shown that
given a consistent heuristic, the f-value of nodes is monotoni-
cally non-decreasing [Stewart and White III, 1991] along any
given path. Thus, only expanding a node n ∈ N(s) for which
f(n) is undominated by any other f-values in OPEN ensures
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Figure 2: Information propagation back from the goal.

that n represents a Pareto-optimal path from start to s. Con-
sequently, the classification of states can be adapted to nodes,
as we now show for MOS in general, but only illustrate for
the special case of BOS in Figure 1.

Definition 4 (Must-Expand Nodes (MENs)). Given a prob-
lem instance I ∈ ICON , a node n is a MEN if f(n) is un-
dominated by any cost in any POF of instance I , POCI , i.e.,
∀p ∈ POCI it holds that p ̸⪯ f(n) .

Here too, the definition is split into two subcategories:
Definition 4.1 (Optimality Nodes). Optimality nodes n dom-
inate one solution (or more) from any POF , i.e., ∃p ∈ POC
such that f(n) ≺ p.

Optimality nodes (Zone A in Figure 1) are analogous to
the MENs in SOS (with f(n) < C∗) and must be expanded
to ensure the optimality of solutions in any POF .
Definition 4.2 (Completeness Nodes). Completeness nodes n
are mutually undominated by any solution in any POF , i.e.,
∀p ∈ POC it holds that f(n) ̸⪯ p and p ̸⪯ f(n).

Completeness nodes (Zone B in Figure 1) have no analogy
in SOS and have to be expanded to ensure there are no more
solutions in any POF (i.e., that the POF is complete).

Definition 5 (Never-Expand Nodes (NENs)). NENs n are
dominated by at least one path in any POF , i.e., ∃p ∈ POC,
such that p ≺ f(n).

NENs are analogous to nodes with f(n) > C∗ in SOS
and belong to Zone D which also includes the (dashed) bor-
der with Zone B in Figure 1. We note that the definition of
MENs, albeit without the subdivision into two categories, and
NENs is similar to the definitions presented by MPC10.

Definition 6 (Maybe-Expand Nodes (MBENs)). MBENs are
nodes n that are neither MENs nor NENs, i.e, ∃p ∈ POC
such that f(n) = p.

All nodes in C points in Figure 1 are MBENs, which are
analogous to nodes with f(n) = C∗ in SOS. The proofs of
Lemmas 1 (for MES) and 2 (for NES) can be directly adapted
for nodes when using MOS-A∗ and the above definitions.

Lemma 3. Any MOS-A∗ algorithm expands all MENs and
does not expand NENs.

Proof. Since MOS-A∗ algorithms expand only nodes with
undominated f-values and prune only dominated nodes, they
are guaranteed to expand all MENs. We thus need to prove
that MOS-A∗ algorithms do not expand NENs. Assume by
contradiction that a MOS-A∗ Algorithm A expands a NEN
n. Since n is a NEN, there exists a Pareto-optimal solution π
such that π ≺ f(n). Since MOS-A∗ algorithms expand only
nodes with undominated f-values, π would be discovered be-
fore n is expanded. Thus, n will be pruned during dominance
check, in contradiction to n being expanded by A.

Figure 3: Tie-breaking example in MOS-BF*.

4.4 State-Based vs. Node-Based Perspectives
In the context of MOS, the definitions of Must-Expand (ME),
Maybe-Expand (MBE), and Never-Expand (NE) are inher-
ently different for nodes and states. With a consistent heuris-
tic, the number of states expanded is bounded by the size
of the graph. By contrast, the number of nodes representing
cost-unique paths can be exponential in the number of states.
Generally, the size of the Pareto-optimal frontier can be ex-
ponential in the number of states and thus counting states ex-
panded may significantly underestimate the time and mem-
ory required by the algorithm. By contrast, considering node
expansions can be too restrictive, potentially overestimating
the resources needed by the search as we now demonstrate
using Figure 2. There are k states, a1, . . . , ak, connected to
s (start). Each of these k states is further linked to a series
of states labeled b1, . . . , bn = g, forming k Pareto-optimal
paths: s, ai, b1, . . . , nn−1, g, for 1 ≤ i ≤ k. In currently ex-
isting MOS-A∗ algorithms, the search is carried out through
distinct search nodes (paths) independently. Thus, each node
ai (1 ≤ i ≤ k) will entail a distinct expansion of state
b1, . . . , g (forming a distinct node for each of them). In this
context, the definitions of MENs and NENs hold significance.

However, under the DXBB assumption, an algorithm A
may first expand s, a1, b1, . . . , g and discover the first Pareto-
optimal path. A can then propagate information, e.g., the path
and its costs backward from g to b1. Since the expansion
function is defined on states (and not paths), when a2 is ex-
panded, the path from b1 to the goal is already known. As a
result, b1, . . . , bn need not be expanded again. This also ap-
plies to the expansion of a3, . . . , ak. In these scenarios, where
certain states need not be re-expanded, MENs and NENs may
overestimate the number of expanded nodes where as MESs
and NESs remain valid.

We note that algorithms with such backpropagation and in-
formation sharing do not yet exist and are the focus of an ac-
tive research effort. We thus next examine the influence of
TBs and OFs in the context of MEN, MBEN, and NEN.

4.5 Role of Tie-Breaking Policies in MOS-A∗

Since MOS-A∗ must expand all MENs and never expands any
NEN, OFs and TBs can only affect which of the MBENs are
expanded during the search. We discuss these next.

TB policies determine which node to expand, among all
nodes with the same f-value in OPEN. Consequently, differ-
ent TBs can result in different nodes being expanded, even
when the same OF is used. An example of the TBs effect
on the search is shown in Figure 3. There are three states,
start, x, and goal. Any MOS-A∗ must expand start first
(with any OF), generating nodes x and goal (both have the
same f = (2, 2)). Thus, the order by which they are expended
is solely determined by the TB. Consider the following two
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Figure 4: The progress of different ordering functions. The three phases are colored differently.

TBs: ph↑ which expand nodes in increasing order of their
sum of h-values, and ph↓ which expand nodes in decreasing
order of their sum of h-values. Using ph↑ , goal is expanded
first (after start), finding a solution of cost (2, 2). In this
case, the algorithm can terminate without expanding the node
of x, as a solution that weakly dominates this node has been
found (using the solution dominance check in Line 7 of Algo-
rithm 1). By contrast, ph↓ expands x and only then expands
goal, resulting in three node expansions instead of two.

4.6 Role of Ordering Functions in MOS-A∗

Different TBs can result in different node expansions. We
now show that using different ordering functions (OFs) with
the same TB results in the same set of node expansions.
Lemma 4. Let O1 and O2 be two OFs and let tb be a de-
terministic TB. A MOS-A∗ Algorithm A that expands nodes
according to O1 and tb will expand the same set of nodes on
problem instance I ∈ ICON when using O2 and tb.

Proof. We prove the contrapositive. Let n be the first node
expanded by A using O1 and not expanded using O2. Since
A is admissible, then n is not a MEN. Otherwise, A must ex-
pand n even when using O2. In addition, n is not a NEN
(Lemma 3). Thus, n is a MBEN and f(n) ∈ POC. A could
avoid expanding n only by finding a solution of cost f(n) that
does not pass through n. That solution must be discovered
by O2 by expanding some other node n′ that is not expanded
by O1, with f(n′) ⪯ f(n) (due to admissibility). However, if
f(n′) ≺ f(n), n′ would have been expanded before n when
using O1 and n would have been pruned due to the solution
dominance check, contradicting the fact that n was expanded
using O1. Thus, f(n′) = f(n). Since n is the first node not
expanded by A using O2, both n and n′ must have been in
OPEN before either is expanded. The same deterministic tie
breaking tb is used in both runs. Thus, the order by which n
and n′ are expanded is identical in the two runs, in contradic-
tion to n′ being expanded before n when using O1.

5 Ordering Functions
While ordering functions (OFs) do not change the final set
of nodes expanded, they can affect the order by which these
nodes are expanded and thus the order and rate by which so-
lutions are discovered. This may be crucial in anytime sce-
narios, where one needs many solutions as fast as possible.

Frequently, the objectives are measured on different scales,
e.g., time in seconds and distance in miles. Thus, to com-
pare them meaningfully by OFs, we normalize them to be

on the same [0, 1] scale. Skyler et al. (2022) introduced a
normalization scheme for BOS, which can also be used for
MOS as we now describe. Let mini = minc∈POC ci and
maxi = maxc∈POC ci. All the values in range [mini,maxi]
are then linearly projected into range [0, 1]. This is achieved
by the following projection function applied on any value xi:
x̄i =

xi−mini

maxi −mini
This normalization is illustrated for BOS in

Figure 4a, where the gray and white circles are the solutions
before and after the normalization, respectively.

For BOS, mini and maxi values are calculated by running
a SOS algorithm for objective i until all optimal solutions are
found. mini is set to the cost of the optimal solution. maxj
(for the other dimension i ̸= j) is set to be the maximal value
of objective j in all optimal solution costs for objective i. This
procedure can only be done for BOS (with d = 2). In MOS
with d > 2, this is not possible. For example, consider an
instance where POC = {(2, 4, 10), (3, 3, 100), (4, 2, 10)}.
Applying this method (i.e., running A∗ for each objective)
would only find {(2, 4, 10), (4, 2, 10)}. The maxi vector will
be (4, 4, 10) instead of (4, 4, 100). So, in practice, one can
take any upper (lower) bound on the maximal (minimal) so-
lution for maxi (mini). Then, the normalized value x̄ can be
calculated based on these bounds using the normalization.

We next describe several OFs and analyze their behavior.
Figure 4 illustrates the progress of the different OFs on the
search in the bi-objective search (BOS) setting. The search
is divided into three phases: (1) The First phase – nodes that
are expanded before the first solution is found (the light grey
area); (2) The Mid phase – nodes that are expanded after find-
ing the first solution but before finding the last solution (the
dark grey area); and (3) The Last phase – nodes that are ex-
pended after the last solution was found (the black area). The
arrows indicate the order by which nodes are expanded.

Lexicographical Ordering (Lex). Given a MOS with d ob-
jectives, there are d! Lex orderings as follows. Let p =
p1, . . . , pd be a permutation of [1, . . . , d]. Then, the total
order of the f-values is based on the lexicographical order
induced by p (i.e., first compare fp1 , in the case of a tie, com-
pare fp2 , and so on). Figures 4b and 4c show Lex1 and Lex2
(resp.) for BOS. Lex1 finds the top-left solution first while
Lex2 finds the bottom right solution first.

(Weighted) Average Ordering (Avg). Assume two nodes n
and m with f -values f(n) = [fn1

, fn2
, . . . , fnd

] and f(m) =
[fm1

, fm2
, . . . , fmd

], respectively. Let w be a weight vector.
Avg is defined as follows:



d = 2 d = 3 d = 4
Phase First Mid Last First Mid Last First Mid Last
Lex1 17.2 82.8 0.0 12.7 87.3 0.0 9.9 90.1 0.0
Lex2 17.1 82.9 0.0 12.1 87.9 0.0 9.5 90.1 0.4
Avg 47.1 51.4 1.5 25.1 74.6 0.3 19.6 80.1 0.3
Min 27.9 68.6 3.5 14.6 82.3 3.1 11.0 86.5 2.5
Max 43.1 56.9 0.0 28.5 71.5 0.0 20.2 79.8 0.0

Table 1: Percentage of expansions in each search stage.

Avg(n,m) = argmin
(∑d

i=1 wi · fni
,
∑d

i=1 wi · fmi

)
If w = [1, . . . , 1], then it is considered to be the sum OF. A
similar order would result from w = [1/d, . . . , 1/d], which
is the mathematical average of the different fi-values. Fig-
ure 4d illustrates Avg. The f-values of expanded nodes form
a diagonal line that proceeds along the direction of the black
arrow. Assuming the f-values are normalized, the slope of
this diagonal line is defined by w.
Maximum (Minimum) Ordering (Max, Resp. Min). First,
Max (Min) orders the (normalized) objectives of each node
in decreasing (increasing) order. Then, the ordered objectives
are compared lexicographically. Figures 4f and 4e present
Max and Min OFs, respectively.

6 Empirical Evaluation
We evaluated the expansions of each OF in the different ex-
pansion phases defined above on 200 random instances of the
BAY road-map [DIMACS, 2006] with 2–4 objectives: time,
distance, money, and uniform cost (respectively).

6.1 Expansions in the Three Phases
Table 1 shows the ratio (in %) of expansions in each of the
three phases compared to the entire run. For d = 2, in the
First phase, as expected, Lex1 and Lex2 have a small percent-
age. This is because they find the (lexicographically) first
solution with a perfect heuristic in the first dimension. Min
alternates between Lex1 and Lex2, and finds the first solution
after expanding slightly less than the sum of the two Lex or-
derings as it expands their intersection only once. Finally, Avg
and Max expanded almost 50% of the nodes in the First phase.
The Mid phase is the heaviest phase as it finds all solutions
except the first one. In the Last phase, the nodes are expanded
to prove that there are no more solutions in the POF . Min
expanded 3.5% of the nodes after the last solution was found
(black zone in Figure 4). This means that Min found the en-
tire POF the fastest, as all functions expanded the same set of
nodes in each instance. Importantly, Lex and Max do not ex-
pand any node in the Last phase, and the last solution found
is the last node expanded for these OFs. The rest columns
present these measurements for d = 3 and d = 4. The same
trends are shown, but the relative size of the Mid phase be-
comes larger because there are more solutions to find.

6.2 Ratio of Solution Found
Figure 5 presents another view of this experiment by show-
ing the average ratio of solutions found from the POF (y-
axis) as a function of the progress of the expansions (x-axis),
measured in percentiles for BOS problems (d = 2). There
is a curve for each of the OFs described above (Lex1, Lex2,
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Figure 5: Solutions found vs. percentage of expansions.

Min, Avg, Max). Being close to the top left corner is de-
sirable because this indicates that many solutions are found
early during the search. The results show that on average,
Min was earliest in finding larger portion of the POF , then
Lex1 and Lex2 while Max and Avg were the slowest. This is
reasonable as many completeness nodes (Zone B) are often
located in the center of the POF (can also be seen in Fig-
ure 1), which is the last area Min explores. Additionally, the
dots at the top of the figure present the maximal value (among
the different runs) that the OF achieved for each percentile
(Lexi(max), Min(max), Avg(max), Max(max)). The maxi-
mum values correlate with the average results. As mentioned,
the last node explored by Lex and Max is a solution. There-
fore, these functions reach 100% of the solutions in the end,
after expanding all 100% of the nodes. By contrast, there was
an instance in which Avg found all POF after 73% of the ex-
pansions, and Min found the entire POF after only 43% of
the expansions. To summarize, while Lex reaches the first so-
lution the fastest, other functions (Avg and Min) are able to
find the entire POF faster, with fewer expansions. The same
trends were seen for d = 3 and d = 4. These results are
reported in the supplementary material.

Note that the different ordering, together with the compat-
ible implementation of dominance checks, may significantly
reduce the CPU time per node expansion and the overall run-
ning time. Improvements of up to a few orders of magnitude
were observed by the method that use Lex and the dimen-
sionality reduction that is connected to it [Hernández et al.,
2023a]. These dimensionality reductions are also possible for
Min, Max, and Avg, and are the matter of current ongoing but
orthogonal work. Nevertheless, in this paper we solely focus
the number of nodes expanded. We leave the discussion on
actual CPU time which is a function of the constant time per
node of the different implementations to a different paper.

7 Conclusions
We analyzed expansions in MOS, classifying them to Must-
Expand, Maybe-Expand, and Never-Expand, both in the con-
text of states and nodes. In addition, we considered the is-
sue of OFs, which are used by MOS-A∗ algorithms to decide
which node to expand next based on their f-values. We pre-
sented several OFs and compared them experimentally, show-
ing the rate OFs find solutions. As all OFs must expand the
same set of nodes, we showed the benefit of some OFs with
regard to the order in which these nodes are explored.
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