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Abstract
Goal Recognition Design (GRD) problems involve
identifying the best ways to modify the underly-
ing environment that agents operate in, typically by
making a subset of feasible actions infeasible, in
such a way that agents are forced to reveal their
goals as early as possible. The Stochastic GRD
(S-GRD) model is an important extension that in-
troduced stochasticity to the outcome of agent ac-
tions. Unfortunately, the worst-case distinctiveness
(wcd) metric proposed for S-GRDs has a formal
definition that is inconsistent with its intuitive def-
inition, which is the maximal number of actions an
agent can take, in the expectation, before its goal
is revealed. In this paper, we make the following
contributions: (1) We propose a new wcd metric,
called all-goals wcd (wcdag), that remedies this in-
consistency; (2) We introduce a new metric, called
expected-case distinctiveness (ecd), that weighs the
possible goals based on their likelihood of being the
true goal; (3) We provide theoretical results com-
paring these different metrics as well as the com-
plexity of computing them optimally; and (4) We
describe new efficient algorithms to compute the
wcdag and ecd values.

1 Introduction
Discovering the objective of an agent based on observations
of its behavior is a problem that has interested both AI and
psychology researchers for many years [Schmidt et al., 1978;
Kautz, 1987]. In AI, this problem is known as goal recogni-
tion or, more generally, plan recognition [Sukthankar et al.,
2014], and it has been used to model a number of applications
ranging from software personal assistants [Oh et al., 2010;
2011a; 2011b]; robots that interact with humans in social
settings such as homes, offices, and hospitals [Tavakkoli
et al., 2007; Kelley et al., 2012]; intelligent tutoring sys-
tems that recognize sources of confusion or misunderstanding
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in students through their interactions with the system [Mc-
Quiggan et al., 2008; Johnson, 2010; Lee et al., 2012;
Min et al., 2014]; and security applications that recognize the
plan or goal of terrorists [Jarvis et al., 2005].

Researchers have recently introduced a newly formulated
problem that is aimed towards helping the objective of goal
recognition by performing an offline analysis of the model.
The problem, proposed by Keren et al. [2014], is called goal
recognition design (GRD) and it is intended to reduce the
complexity of the online goal recognition task by modifying
the underlying environment that the agent operates in. The
goal is to find a subset of modifications that forces the agent
to reveal its goal as early as possible. This problem finds it-
self relevant in many of the same applications of goal recog-
nition because, typically, the underlying environment can be
easily modified. Buoyed by this new model, researchers have
extended the GRD problem to a number of extensions with
accompanying algorithms to solve them [Keren et al., 2015;
2016a; 2016b; 2017; Son et al., 2016]. One of these exten-
sions is the Stochastic GRD (S-GRD) problem, where the out-
comes of the agent’s actions are stochastic [Wayllace et al.,
2016]. In all these problems, the “goodness” of a solution is
measured using the worst-case distinctiveness (wcd) metric,
which, intuitively, measures the maximal number of actions
an agent can take before its goal is revealed.

Unfortunately, the formal wcd definition proposed by
Wayllace et al. [2016] for S-GRDs is inconsistent with this in-
tuitive definition; we provide an example later in Section 3.1
that highlights this inconsistency. Based on this finding, we
propose a new wcd metric, called all-goals wcd (wcdag),
that remedies this inconsistency as well as new efficient al-
gorithms to compute them. Additionally, another deficiency
of the existing wcd metric for all GRD variants is its implicit
assumption that there is no prior information about the agent’s
true goal. While this assumption is reasonable in many prob-
lems, it may be the case that this information is available in
some applications, thereby allowing the observer to assign
different weights to the possible goals. We thus propose a
new metric for S-GRDs, called the expected-case distinctive-
ness (ecd), that weighs the length of a path to a goal by the
likelihood of that goal being the true goal.1 This new ecd

1While we only describe this metric for S-GRDs, it can be easily
extended for other GRD variants as well.



metric will thus allow practitioners to better incorporate do-
main knowledge into the S-GRD model and, combined with
the updated wcd metric, will allow them to better understand
the tradeoffs between different S-GRD solutions.

2 Background
2.1 Markov Decision Process (MDP)
A Stochastic Shortest Path Markov Decision Process (SSP-
MDP) [Mausam and Kolobov, 2012] is represented as a tu-
ple 〈S, s0,A,T,C,G〉. It consists of a set of states S; a
start state s0 ∈ S; a set of actions A; a transition function
T : S×A× S→ [0, 1] that gives the probability T (s, a, s′)
of transitioning from state s to s′ when action a is executed;
a cost function C : S × A × S → R that gives the cost
C(s, a, s′) of executing action a in state s and arriving in state
s′; and a set of goal states G ⊆ S. The goal states are ter-
minal, that is, T (g, a, g) = 1 and C(g, a, g) = 0 for all goal
states g ∈ G and actions a ∈ A.

An SSP-MDP must also satisfy the following two condi-
tions: (1) There must exist a proper policy, which is a map-
ping from states to actions with which an agent can reach a
goal state from any state with probability 1. (2) Every im-
proper policy must incur an accumulated cost of∞ from all
states from which it cannot reach the goal with probability 1.
In this paper, we will focus on SSP-MDPs and will thus use
the term MDPs to refer to SSP-MDPs. A “solution” to an
MDP is a policy π, which maps states to actions. Solving
an MDP is to find an optimal policy, that is, a policy with
the smallest expected cost. Finally, we use the term “optimal
actions” to refer to actions in an optimal policy.

2.2 Value Iteration (VI) and Topological VI (TVI)
Value Iteration (VI) [Bellman, 1957] is one of the fundamen-
tal algorithms to find an optimal policy. It uses a value func-
tion V to represent expected costs. The expected cost of an
optimal policy π∗ for the starting state s0 ∈ S is the expected
cost V (s0), and the expected cost V (s) for all states s ∈ S is
calculated using the Bellman equation [Bellman, 1957]:

V (s) = min
a∈A

∑
s′∈S

T (s, a, s′)
[
C(s, a, s′) + V (s′)

]
(1)

The action chosen by the policy for each state s is then the
one that minimizes V (s).

VI suffers from a limitation that it updates each state in
every iteration even if the expected cost of some states have
converged. Topological VI (TVI) [Dai et al., 2011] addresses
this limitation by repeatedly updating the states in only one
strongly connected component (SCC) until their values con-
verge before updating the states in another SCC. Since the
SCCs form a directed acyclic graph, states in an SCC only
affect the states in upstream SCCs. Thus, by choosing the
SCCs in reverse topological sort order, it no longer needs to
consider SCCs whose states have converged in a previous it-
eration.

2.3 Goal Recognition Design (GRD) and
Stochastic GRD (S-GRD)

A Goal Recognition Design (GRD) problem [Keren et al.,
2014] is represented as a tuple P = 〈D,G〉, where

D = 〈S, s0,A,T,C〉 captures the domain information
and G is a set of possible goal states of the agent. The el-
ements in the tuple D are as they are described in MDPs,
except that the transition function T is deterministic and the
cost function C is restricted to positive costs.2 In this paper,
we assume that the cost of all actions is 1 for simplicity.

The worst case distinctiveness (wcd) of problem P is the
length of a longest sequence of actions π = 〈a1, . . . , ak〉 that
is the prefix in cost-minimal plans π∗g1 and π∗g2 to distinct
goals g1, g2 ∈ G. Intuitively, as long as the agent executes π,
it does not reveal its goal to be either g1 or g2.

The objective in GRD is to find a subset of actions such
that if they are removed from the domain, the wcd of the re-
sulting problem is minimized. This optimization problem is
subject to the requirement that the cost of cost-minimal plans
to achieve each goal g ∈ G is the same before and after re-
moving the subset of actions.

A Stochastic Goal Recognition Design (S-GRD) problem
[Wayllace et al., 2016] is an extension of a GRD problem
that assumes the actions executed by the agent have stochas-
tic outcomes. It is represented as a tuple P = 〈D,G〉, where,
like in GRDs, D = 〈S, s0,A,T,C〉 captures the domain in-
formation and G is a set of possible goal states of the agent.
The elements in the tuple D are as they are described in
GRDs, except that the transition function T is now stochas-
tic. The worst case distinctiveness (wcd) of problem P is
the largest expected cost incurred by the agent over all non-
distinctive policy prefixes. A non-distinctive policy prefix is
an optimal policy common to a pair of goals.

Like in GRDs, the objective in S-GRD is to find a subset
of actions Â∗ ⊂ A such that if they are removed from the set
of actions A, then the wcd of the resulting problem is min-
imized. This optimization problem is subject to the require-
ment that the expected cost of the optimal policies to achieve
each goal g ∈ G is the same before and after removing the
subset of actions and that the number of reduced actions is
less than or equal to a user-defined parameter k. More specif-
ically, the objective is to find:

Â∗ = argmin
Â⊂A

wcd(P̂ )

subject to Vπ∗g (s0) = Vπ̂∗g (s0) ∀g ∈ G

|Â∗| ≤ k

(2)

where P̂ = 〈D̂,G〉 is the problem with domain D̂ =

〈S, s0,A \ Â,T,C〉 after removing actions Â, π∗g is an op-
timal policy to achieve goal g in the original problem P , and
π̂∗g is an optimal policy to achieve goal g in problem P̂ .

3 Redefining the wcd Metric for S-GRDs
The intuition behind the worst case distinctiveness (wcd) is
that it measures the longest path (i.e., a path with the largest
cost) an agent can take without revealing its goal.

Figure 1 illustrates a small example, where the agent starts
at state s0 and has one of three possible goals g0, g1, or g2.

2The domain information D was originally described by Keren
et al. [2014] using a classical planning model [Geffner and Bonet,
2013].



(a) wcd for Goals g0 and g2 = 1.5 (b) wcd for Goals g0 and g1 = 1 (c) wcd for Goals g1 and g2 = 1.5

Figure 2: wcd Example

Figure 1: Example

All actions are deterministic except for action a0 out of s0,
which can transition to either s1 or s2 with equal probability.
All actions also have the same cost of 1. In this example, there
are two possible paths, each with two actions, that the agent
can take before it has to reveal its goal in the third action. The
two paths are denoted by bold arrows in the figure.

For the first path, starting at s0, the agent has to take action
a0 as it is the only action available. If it transitions to s1, then
it can take action a1 to transition to s2. At this point, its goal
can be either g1 or g2. From s2, it reveals its goal to be g1 if
it takes action a2 and goal g2 if it takes action a3. Note that
its goal cannot be g0 as it would otherwise have taken action
a4 instead of a1 when it was in s1.

For the second path, starting at s0, the agent may transition
to s2 after taking action a0. Then, it can take action a3 to
transition to s3, at which point its goal can be either g0 or g2.
From s3, it reveals its goal to be g0 if it takes action a5 and
goal g2 if it takes action a6.

Note that the cost of both paths is 2 since they both have
two actions each. Consequently, the wcd of this problem
should be 2 intuitively. However, using the wcd definition
proposed by Wayllace et al. [2016], the wcd is 1.5! There-
fore, we now describe the reason for this inconsistency and
propose a new updated definition for wcd that is more in line
with its intuitive definition.

Wayllace et al. [2016] defined the wcd as “the largest ex-
pected cost to reach a boundary state from the start state
over all possible non-distinctive policy prefixes,” where for
a pair of distinct goals gi and gj , (1) a non-distinctive policy
prefix is an optimal policy common to those two goals, and
(2) boundary states are states where an agent, through its next
action, will reveal its goal to be either one of those two goals.

Figure 2(a) shows the same example again but with the
non-distinctive policy prefixes for pairs of goals 〈g0, g2〉.
Here, s1 and s3 are boundary states (shaded in grey), and
the expected cost of this policy prefix is 1.5 (= 0.5∗1+0.5∗
(1 + 1)). Figures 2(b) and 2(c) show the same example but

for pairs of goals 〈g0, g1〉 and 〈g1, g2〉, respectively. The ex-
pected cost is 1 for the former and 1.5 for the latter. The wcd
of this problem is thus 1.5, the largest expected cost over all
pairs of goals.

This definition fails to capture the intuitive paths of cost 2
because it considers only pairs of goals in its wcd, non-
distinctive policy prefix, and boundary state definitions. In-
stead, it needs to consider a tuple of all goals in its definitions.
For example, for the pair of goals 〈g0, g2〉, s1 is a bound-
ary state and s2 is a regular state in a non-distinctive policy
prefix (i.e., the agent reveals its goal when taking an action
from s1 but may conceal its goal when taking an action from
s2). In contrast, for the pair 〈g1, g2〉, the situation is reversed,
where s2 is a boundary state and s1 is a regular state in a
non-distinctive policy prefix. Therefore, when considering
all three goals, neither s1 nor s2 are actual boundary states.
In other words, the agent can still conceal its goal to be either
g1 or g2 in state s1 or either g0 or g2 in state s2. The definition
of Wayllace et al. [2016] fails to capture this scenario.

3.1 All-Goals wcd (wcdag)
We now propose a new wcd definition, called All-Goals wcd
(wcdag), that captures the above scenario and is more consis-
tent with its intuitive definition.

In addition to the need to consider all goals at the same time
instead of pairs of goals, we also make another key observa-
tion: that the set of possible goals for a particular state can dif-
fer based on the observed path of the agent to that state. Us-
ing Figure 1 as an example again, if the agent arrives at state
s3 through path 〈s0, s2, s3〉, then its goal is either g0 and g2.
However, if it arrives at state s3 through path 〈s0, s1, s2, s3〉,
then its goal is definitely g2. This observation causes a chal-
lenge in that, unlike the previous wcd definition, the set of
possible goals of the agent in this new definition is no longer
Markovian as it depends on the entire history of states visited.

We address this challenge by modeling the problem using
augmented MDPs instead of regular MDPs, where each aug-
mented state in the augmented MDP is a tuple 〈s,G′〉 that
consists of the actual state s of the MDP and the set of goals
G′ ⊆ G that are possible goals for that state. Therefore,
in the scenario above, we will have two different augmented
states 〈s3, {g0, g2}〉 and 〈s3, {g2}〉, and different actions can
be attributed to the two augmented states. In this augmented
MDP formulation, the set of possible goals of the agent is
now Markovian again.

We now describe the other elements of this augmented
MDP, defined as the tuple 〈S̃, s̃0, Ã, T̃, C̃, G̃〉, and how to
construct them from S-GRDs, whose domain information is



Figure 3: Reachable Augmented MDP

modeled as regular MDPs. The augmented start state is now
s̃0 = 〈s0,G〉, where s0 is the start state and G is the set of
all possible goals in the S-GRD problem. Each augmented
action ã ∈ Ã is a tuple 〈a,G′〉, where a ∈ A is an action
in the regular MDP and G′ is the set of all goals for which
that action is an optimal action. The new transition function
T̃ : S̃ × Ã × S̃ → [0, 1] gives the probability T̃ (s̃, ã, s̃′) of
transitioning from augmented state s̃ to s̃′ when augmented
action ã is executed. This transition probability equals the
transition probability T̃ (s̃, ã, s̃′) = T (s, a, s′) in the regular
MDP for s̃ = 〈s,G′〉, ã = 〈a,G′′〉, and s̃′ = 〈s′,G′ ∩G′′〉
if |G′ ∩G′′| > 1 and equals 0 otherwise. The cost function
C̃ : S̃ × Ã× S̃ → R+ gives the cost C̃(s̃, ã, s̃′) of executing
action ã in augmented state s̃ and arriving in s̃′. This cost
equals the cost C̃(s̃, ã, s̃′) = C(s, a, s′) for the same case
for the transition probabilities above. Finally, the augmented
goal states G̃ ⊆ S̃ are those augmented states 〈s,G′〉 that are
boundary states – in other words, any augmented action from
those states will transition to an augmented state 〈s′,G′′′〉
with one goal or no goals (i.e., |G′′′| ≤ 1) in the regular
MDP. We provide the formal definition for augmented MDPs
below.

Definition 1 (Augmented MDP) For an S-GRD problem
P = 〈D,G〉with domain informationD = 〈S, s0,A,T,C〉,
an augmented MDP is defined by a tuple 〈S̃, s̃0, Ã, T̃, C̃, G̃〉
that consists of the following:
• a set of augmented states S̃ = 〈s,G′〉, where s ∈ S and

G′ ⊆ G;
• an augmented start state s̃0 = 〈s0,G〉;
• a set of augmented actions Ã = 〈a,G′′〉, where G′′ is the

set of all goals for which a ∈ A is an optimal action;
• a transition function T̃ : S̃ × Ã × S̃ → [0, 1] that gives

the probability T̃ (〈s,G′〉, 〈a,G′′〉, 〈s′,G′ ∩G′′〉) of tran-
sitioning from augmented state 〈s,G′〉 to augmented state
〈s′,G′∩G′′〉 when augmented action 〈a,G′′〉 is executed;
this probability equals T (s, a, s′) if |G′ ∩ G′′| > 1 and
equals 0 otherwise;

• a cost function C̃ : S̃ × Ã × S̃ → R+ that gives the cost
C(〈s,G′〉, 〈a,G′′〉, 〈s′,G′∩G′′〉) = C(s, a, s′) of execut-
ing augmented action 〈a,G′′〉 in augmented state 〈s,G′〉
and arriving in augmented state 〈s′,G′ ∩G′′〉; and

• the set of augmented goals G̃ ⊂ S̃ = {〈s,G′〉 |
∀ T̃ (〈s,G′〉, 〈a,G′′〉, 〈s′,G′ ∩ G′′〉) > 0 ⇒ (|G′| ≥
2 ∧ |G′ ∩G′′| < 2)}.
Figure 3 shows the reachable portion of the augmented

MDP that corresponds to the regular MDP shown in Figure 1,
where each node corresponds to an augmented state and each
hyper-edge corresponds to an augmented action. The ele-
ments in the sets for a node/hyper-edge are the possible goals
for that augmented state/action.

Finally, the objective here is to find an augmented policy
(i.e., a policy that maps augmented states to augmented ac-
tions) with the largest expected cost. Note that this objective
is different from that in regular MDPs, which seek to find the
policy with the smallest expected cost.

Definition 2 (All-Goals wcd) The new All-Goals wcd
(wcdag) of an S-GRD problem P is defined as:

wcdag(P ) = max
π̃∈Π̃

Vπ̃(s̃0) (3)

Vπ̃(s̃) =
∑
s̃′∈S̃

T̃ (s̃, π̃(s̃), s̃′)
[
C̃(s̃, π̃(s̃), s̃′) + Vπ̃(s̃

′)
]

(4)

where Π̃ is the set of augmented policies in the augmented
MDP and Vπ̃(s̃0) is the expected cost for s0 with augmented
policy π̃ computed recursively using Equation 4.

Observe that Equation 3 is analogous to the brute force al-
gorithm to solve an MDP [Mausam and Kolobov, 2012] that
performs a policy evaluation over all enumerated policies to
return the best policy. As Value Iteration (VI) is faster in reg-
ular MDPs, we aim to also optimize over the value function
space in augmented MDPs. This value function optimization
can be done using a Bellman-like equation:

V ∗(s̃) = max
ã∈Ã

∑
s̃′∈S̃

T̃ (s̃, ã, s̃′)
[
C̃(s̃, ã, s̃′) + V ∗(s̃′)

]
(5)

but note that it uses the maximization operator instead of the
minimization operator for regular MDPs. This difference will
cause an issue if there are infinite cost cycles, which are cycles
in the graph where the optimal policy is to stay in the cycles
and accumulate an infinite cost. Fortunately, our augmented
MDP does not have infinite cost cycles, and Equation 5 will
thus return the correct finite value upon convergence. These
properties are formalized in Lemma 1 and Theorem 1, where
proof sketches are provided.

Lemma 1 The augmented MDP does not have infinite cost
cycles.

Proof Sketch: We prove that an infinite cost cycle between
two augmented states cannot exist by contradiction. Assume
that such a cycle exists. Thus, T̃ (s̃, ã, s̃′) + T̃ (s̃, ã, s̃) = 1

and T̃ (s̃′, ã, s̃′) + T̃ (s̃′, ã, s̃) = 1 for some augmented states
s̃ = 〈s,G1〉 and s̃′ = 〈s′,G2〉, and augmented actions
ã = 〈a,G3〉 and ã′ = 〈a′,G4〉. Since they form an infi-
nite cost cycle, then G1 = G2. Let g ∈ G1 be one of the
possible goals. Then, there must exist the actions π∗g(s) = a
that transitions from s to s′, and π∗g(s

′) = a′ that transitions
from s′ to s in the optimal policy π∗g for goal g, which forms
an infinite cost cycle in the optimal policy. This is not possi-
ble for optimal policies of SSP-MDPs [Mausam and Kolobov,
2012], which contradicts our assumption.



Theorem 1 wcdag = V ∗π̃ (s̃0), which can be computed recur-
sively via Equation 5.

Proof Sketch: Equation 5 is, like the original Bellman equa-
tion [Bellman, 1957], a contracting operator. As such, it will
eventually converge to the true optimal value. The only ex-
ception is if there are infinite cost cycles, which will cause
the value of some states to converge to infinity. However,
since there are no infinite cost cycles in our augmented MDP
(Lemma 1), they will converge to finite values.

Theorem 2 wcdag ≥ wcd as defined by Wayllace et
al. [2016].

Proof Sketch: One can view the augmented MDP for wcdag
as a union of all the augmented MDPs for regular wcd. For
example, the subgraph formed by the actions in bold and their
predecessor and successor states of Figure 1 is a union of all
three subgraphs in Figure 2. Since both definitions of wcdag
and wcd maximizes the expected cost in their respective sub-
graphs, it must be the case that wcdag ≥ wcd since the sub-
graph of the former is a union of all the subgraphs for the
latter.

Corollary 1 If there are only two possible goals in the S-
GRD, then wcdag = wcd.

4 Expected-Case Distinctiveness (ecd)
An implicit assumption made by the worst-case distinctive-
ness (wcd) metric is that there is no prior information on
which is the true agent’s goal. While this assumption is rea-
sonable in many problems, it may be the case that some in-
formation is available. For example, in human-computer in-
teraction applications, user profiles may be used to assign dif-
ferent weights to each goal, where the weights correspond to
the prior probabilities of an agent choosing its goal.

Further, it may often be the case where the wcd cannot
be reduced (i.e., the longest non-distinctive path cannot be
shortened). However, other shorter non-distinctive paths can
be shortened. Thus, intuitively, one should prefer the solu-
tion that shortens the shorter non-distinctive paths. In such
a scenario, the wcd metric fails to distinguish between these
solutions as the wcd remains the same in both cases. This
situation is further exacerbated when the longest path are to
goals with low weights!

Therefore, in response to these two observations, we pro-
pose a new metric, called the expected-case distinctiveness
(ecd), for S-GRDs that weighs the length of a path to a goal
by the probability of an agent choosing that goal and takes
the sum of all the weighted path lengths.

Definition 3 (expected-case distinctiveness)

ecd(P ) = E(s̃0) (6)

E(s̃) =
∑
ã,s̃′

P (ã)T̃ (s̃, ã, s̃′)
[
C̃(s̃, ã, s̃′) + E(s̃′)

]
(7)

P (ã = 〈a,G′〉) = 1

Z

∑
gi∈G′

wi (8)

where wi > 0 is the probability of the agent choos-
ing goal gi and Z is the normalization constant such that∑
ã∈Ã P (ã) = 1.

Intuitively, Equation 8 associates a probability P (ã) to
each augmented action ã based on the number of goals for
which that action is an optimal action as well as the proba-
bilities of those goals being the true goal. Then, Equation 7
recursively defines the expected cost of each augmented state
s̃ based on the probability of each augmented action and the
expected cost of each successor state. Finally, the ecd of the
problem is the expected cost of the augmented start state.

This definition also has the added benefit that the ecd com-
putation is straightforward and efficient. The runtime to com-
pute it is similar to the runtime of VI as it requires multiple
iterations of a Bellman-like equation until the expected costs
of all states have converged.

Theorem 3 ecd(P ) ≤ wcdag(P )

Proof Sketch: wcdag is the expected cost of the worst pol-
icy to reach an augmented goal state in the augmented MDP,
while ecd is the expected cost over all policies. Therefore,
ecd(P ) ≤ wcdag(P )

Corollary 2 If there is exactly one policy in the augmented
MDP, then ecd(P ) = wcdag(P ).

5 Algorithms
To compute the wcdag and ecd of each problem, one can
use a VI-like algorithm that runs iterations of the Bellman-
like update of Equations 5 and 7, respectively. Additionally,
we make the observation that the augmented state space of
the augmented MDP can often be segmented into strongly
connected components (SCCs) – each SCC contains the aug-
mented states with the same set of possible goals, and the set
of possible goals is non-increasing. Therefore, we also pro-
pose a TVI-like algorithm that uses Tarjan’s algorithm [Tar-
jan, 1972] to segment the augmented state space into SCCs
first before running VI on each SCC in reverse topological
order. This should significantly speed up the solving time if
there are large numbers of SCCs, but may have the opposite
effect if there are few SCCs due to the overhead incurred by
Tarjan’s algorithm.

Optimally computing wcdag is P-complete in the number
of reachable augmented states as it is equivalent to optimally
solving an augmented MDP, which is P-complete [Mausam
and Kolobov, 2012]. Optimally computing ecd is easier as it
is equivalent to evaluating a single policy in the augmented
MDP. It is thus in P, but not P-hard.

Similar to Wayllace et al. [2016], to reduce the wcdag or
ecd of a problem, we enumerate through all possible com-
binations of actions to remove, compute the resulting wcdag
or ecd, and store the best solution. Additionally, we can use
Theorem 4 to make useful inferences.

Theorem 4 If there are no combination of k actions in an
S-GRD that can reduce its ecd, then there are also no such
combinations that can reduce its wcdag .



Domain wcdag Runtime (s) wcd Runtime (s) ecd Runtime (s)
Instances Reduction ENUM VI TVI Reduction R-W(O) Reduction VI TVI

R
O

O
M

8-8-3 6.2→ 6.2 1 1 1 6.0→ 6.0 1 6.2→ 6.2 1 1
32-32-2 86.6→ 86.6 184 101 85 86.6→ 86.6 18,526 86.6→ 86.6 98 86
32-32-3 86.6→ 86.6 324 164 140 86.6→ 86.6 38,367 86.6→ 86.6 161 156
44-44-5 73.8→ 73.8 timeout 946 878 73.8→ 73.8 16,959 73.8→ 73.8 923 928

G
R

ID
-N

A
-

V
IG

A
T

IO
N 5-5-3 4.4→ 3.3 1 1 1 4.4→ 3.3 1 3.7→ 2.9 1 1

4-12-3 10→ 10 timeout 3 3 10→ 10 789 10→ 8.9 3 3
4-12-3 5.6→ 5.6 13 3 3 5.6→ 5.6 4 4.9→ 4.4 3 3
4-12-3 6.7→ 5.6 18 3 3 6.7→ 5.6 4 6.7→ 5.1 3 3
4-12-6 13.3→ 12.2 timeout 3 3 13.3→ 12.2 25 9.4→ 9.1 4 4

B
L

O
C

K
S
-

W
O

R
L

D 5-3 1.3→ 1.3 1 2 1 1.3→ 1.3 1 1.3→ 1.3 1 1
6-5 4.9→ 4.9 582 575 626 — timeout 3.7→ 3.7 644 659
6-3 3.4→ 3.4 374 351 353 — timeout 3.1→ 3.1 379 378

C
O

L
O

R
E

D
B

L
O

C
K

S
-

W
O

R
L

D

3-2-2 2.8→ 2.8 1 1 1 2.8→ 2.8 1 2.8→ 2.8 1 1
5-2-3 4.1→ 4.1 20 17 17 4.1→ 4.1 19 4.1→ 4.1 16 17
5-3-3 4.9→ 3.5 timeout 16 17 — timeout 4.9→ 3.5 18 18
6-2-3 14.6→ 14.6 timeout 390 390 — timeout 10.2→ 8.3 406 414
6-3-3 6.3→ 5.3 timeout 408 420 — timeout 5.9→ 5.3 410 420

B
O

X
W

O
R

L
D 2-1-1-5-3 4.1→ 4.1 29 29 32 4.1→ 4.1 30 4.1→ 4.1 33 32

2-1-1-6-3 4.3→ 4.3 10 10 10 4.1→ 4.1 10 4.3→ 4.3 12 9
3-1-1-6-3 5.2→ 5.2 413 414 402 4.9→ 4.9 414 5.2→ 5.2 398 478
3-1-1-6-5 8.1→ 8.1 653 642 404 7.3→ 7.3 593 7.8→ 7.8 400 593
3-2-1-6-3 5.2→ 5.2 50,204 49,028 48,955 5.2→ 5.2 49,082 5.2→ 5.2 49,003 48,861

Table 1: Experimental Results for k = 1

Proof Sketch: Since the ecd is the expected cost over all
policies in the augmented MDP, if it cannot be reduced, then
it must mean that every policy in the augmented MDP for the
original problem cannot be modified; modifying them would
affect the optimal cost to one of the possible goals in the
regular MDP. And since all policies cannot be modified, the
wcdag , which is the expected cost of the worst policy, will
also remain unchanged.

6 Experimental Results
The first domain is called ROOM, which is used in the Non-
Deterministic Track of the 2006 ICAPS International Plan-
ning Competition.3 It is a grid world where the actions as
well as the transition probabilities are defined individually for
each state. The actions allow the agent to move in the four
cardinal directions but after taking one action the agent has
some probability to end up in other adjacent cells including a
diagonal one. Each instance of this domain is defined by the
x- and y-dimensions of the room and the number of possible
goals.

The second domain, GRID-NAVIGATION, is also a grid
world where the transitions are defined equally for all the
states; the agent has a 90% probability to move to a cell in-
dicated by the deterministic outcome of the action and a 10%
probability to stay in the same cell. The instances are defined
in the same way as in the ROOM domain.

3http://idm-lab.org/wiki/icaps/ipc2006/probabilistic/

The remaining domains were used in the Probabilistic
Track of 2004 ICAPS International Planning Competition:4
BLOCKSWORLD is the traditional domain with a 25% proba-
bility of slippage each time a block is picked up or put down;
the goal state defines the last position of every block. Each
instance is defined by the number of blocks and the number
of possible goals. COLORED-BLOCKSWORLD is a modifi-
cation of BLOCKSWORLD where each block has a color and
the goal is specified in terms of colors. Thus, more than one
state can represent the same goal. Instances in this domain are
defined by the number of blocks, number of colors, and num-
ber of goals. BOXWORLD is a modified LOGISTICS domain
where the only action that introduces noise is “drive-truck”
and there is a 20% probability that the truck ends up in one of
three wrong cities. Each instance in this domain is defined by
the number of boxes, trucks, airplanes, cities and goals. Ta-
bles 1 and 2 tabulate the results when the number of actions
that can be blocked (k) is 1 and 2, respectively. The experi-
ments were conducted on a 3.1GHz quad-core machine with
6GB of RAM and we imposed a timeout of 2 days.

We compared three algorithms to compute the wcdag:
ENUM, which explicitly enumerates through all policies us-
ing Equation 4 and both VI and TVI as described in Sec-
tion 5. We also computed the wcd using the REDUCE-WCD
algorithm with optimization [Wayllace et al., 2016] (labeled
as R-W(O)). To compute the ecd, we only compared VI and
TVI because explicit enumeration of policies is not needed
as it is equivalent to evaluating a single policy. Finally, we

4http://www.cs.rutgers.edu/∼mlittman/topics/ipc04-pt/



Domain wcdag Runtime (s) wcd Runtime (s) ecd Runtime (s)
Instances Reduction ENUM VI TVI Reduction R-W(O) Reduction VI TVI

R
O

O
M

8-8-3 6.2→ 6.2 7 8 8 6.0→ 6.0 6.4 6.2→ 6.2 8 8
32-32-2 86.6→ 86.6 234,126 50,609 40,303 — timeout 86.6→ 86.6 47,690 42,057
32-32-3 86.6→ 86.6 timeout timeout 78,245 — timeout 86.6→ 86.6 85,417 84,134
44-44-5 — timeout timeout timeout — timeout — timeout timeout

G
R

ID
-N

A
-

V
IG

A
T

IO
N 5-5-3 4.4→ 2.2 2 1 1 4.4→ 2.2 1 3.7→ 2.2 1 1

4-12-3 10→ 8.9 timeout 14 5 10→ 8.9 13,739 10→ 7.8 12 5
4-12-3 5.6→ 4.4 246 5 5 5.6→ 4.4 8 4.9→ 3.9 6 6
4-12-3 6.7→ 4.4 418 5 5 6.7→ 4.4 32 6.7→ 4.4 5 6
4-12-6 13.3→ 12.2 timeout 7 7 13.3→ 12.2 8,095 9.4→ 8.4 8 8

B
L

O
C

K
S
-

W
O

R
L

D 5-3 1.3→ 1.3 2 2 1 1.3→ 1.3 2 1.3→ 1.3 1 1
6-5 4.9→ 4.9 10,883 10,836 9,832 — timeout 3.7→ 3.7 9,586 10,313
6-3 3.4→ 3.4 6,776 6,721 5,027 — timeout 3.1→ 3.1 4,464 4,368

C
O

L
O

R
E

D
B

L
O

C
K

S
-

W
O

R
L

D

3-2-2 2.8→ 2.8 1 1 1 2.8→ 2.8 1 2.8→ 2.8 1 1
5-2-3 4.1→ 2.8 timeout 448 429 — timeout 4.1→ 2.8 453 426
5-3-3 4.9→ 3.5 timeout 380 385 — timeout 4.9→ 3.5 383 393
6-2-3 14.6→ 14.6 timeout 17,539 16,553 — timeout 10.2→ 7.9 16,665 17,378
6-3-3 6.3→ 5.3 timeout 16,778 16,132 — timeout 5.9→ 5.3 15,667 16,888

B
O

X
W

O
R

L
D 2-1-1-5-3 4.1→ 4.1 43 37 128 4.1→ 4.1 56 4.1→ 4.1 133 132

2-1-1-6-3 4.3→ 4.3 51 51 14 4.1→ 4.1 17 4.3→ 4.3 14 14
3-1-1-6-3 5.2→ 5.2 1,011 976 482 4.9→ 4.9 519 5.2→ 5.2 667 584
3-1-1-6-5 8.1→ 8.1 12,003 1,164 735 7.3→ 7.3 823 7.8→ 7.8 738 736
3-2-1-6-3 5.2→ 5.2 57,807 53,001 55,788 5.2→ 5.2 75,546 5.2→ 5.2 59,778 59,715

Table 2: Experimental Results for k = 2

assumed that all goals have equal weights when computing
the ecd in order to have a fair comparison with wcdag .

We make the following observations:
• As expected, when k increases, the runtimes increased but

the wcdag and ecd were reduced in more instances. In the
ROOM, BLOCKSWORLD, and BOXWORLD domains, the
wcdag and ecd remained unchanged. The reason is that,
in all three domains, each goal has only very few (either 1
or 2) optimal policies and removing any action that affects
these policies will increase the expected cost to that goal,
which is prohibited by the definition of S-GRDs.

• In general, consistent with the trends in regular MDPs with
multiple SCCs [Dai et al., 2011], TVI is often faster than
VI, which is faster than ENUM. The reason is that TVI
does not need to perform Bellman updates on states outside
the SCC being considered, thereby reducing the runtime of
each iteration.

• Computing wcdag is up to three orders of magnitude faster
than computing wcd. The reason is that the wcd compu-
tation needs to iterate through all possible pairs of goals
and all possible enumerated policies, each of which must
be solved via VI, while the wcdag computation solves the
whole problem in a single shot via VI or TVI. The wcdag
andwcd values are the same in all instances except for four
instances, indicating that the wcd metric is intuitively cor-
rect except for those four instances.

• There are several instances where the ecd is reduced but the
wcdag remains unchanged. The reason is that it is possible
to shorten some of the paths to the goals before the agent is
forced to reveal its action, but not the longest path. There-

fore, one can use ecd as a tie-breaking metric between two
solutions with identical wcdag values, which is important
given that wcdag usually remains unchanged for small val-
ues of k.

7 Conclusions and Future Work
The Stochastic Goal Recognition Design (S-GRD) model is
an important variant of the GRD model. Unfortunately, the
original wcd metric proposed has a formal definition that is
inconsistent with its intuitive definition. Further, the wcd def-
initions for all the GRD variants make the implicit assump-
tion that all goals have equal likelihood of being the true goal,
which is unrealistic in many practical applications. There-
fore, in this paper, we proposed a new wcd metric, called all-
goals wcd (wcdag), that remedies the inconsistency above as
well as a new expected-case distinctiveness (ecd) metric that
weighs the possible goals based on their likelihood of being
the true goal. We further show the complexity of comput-
ing these metrics and introduced efficient algorithms to com-
pute them. Experimental results show that it is possible to
reduce the ecd in several cases where the wcdag remained
unchanged. This result highlights the need for more metrics
that can be better used by practitioners to trade off the differ-
ent possible solutions.

Future work includes the generalization of the ecd met-
ric to the other GRD variants as well as the investigation of
heuristic search techniques to compute the wcdag and ecd
values. We suspect that such techniques may be useful in
cases one can prune significant portions of the search space
due to the differences in the weights of the goals.
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