Automated Generation of Interaction Graphs for Value-Factored Dec-POMDPs

William Yeoh
New Mexico State University
Las Cruces, NM 88011, USA
wyeoh@cs.nmsu.edu

Abstract

The Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) is a powerful model for multi-
agent planning under uncertainty, but its applicability is
hindered by its high complexity — solving Dec-POMDPs
optimally is NEXP-hard. Recently, Kumar et al. intro-
duced the Value Factorization (VF) framework, which
exploits decomposable value functions that can be fac-
tored into subfunctions. This framework has been shown
to be a generalization of several models that leverage
sparse agent interactions such as TI-Dec-MDPs, ND-
POMDPs and TD-POMDPs. Existing algorithms for
these models assume that the interaction graph of the
problem is given. In this paper, we introduce three al-
gorithms to automatically generate interaction graphs for
models within the VF framework and establish lower and
upper bounds on the expected reward of an optimal joint
policy. We illustrate experimentally the benefits of these
techniques for sensor placement in a decentralized track-
ing application.

1 Introduction

Markov Decision Processes (MDPs) and Partially Observ-
able MDPs (POMDPs) have been shown to be effective mod-
els for planning under uncertainty involving a single deci-
sion maker. Consequently, Decentralized POMDPs (Dec-
POMDPs) [Bernstein et al., 2002] have emerged as a natu-
ral extension for modeling problems where a team of agents
needs to plan under uncertainty. Scalability of Dec-POMDP
algorithms, however, is a challenging issue because not only
is finding optimal solutions NEXP-hard [Bernstein et al.,
2002], but finding constant factor approximations is also
NEXP-hard [Rabinovich et al., 2003].

In general, researchers have taken two approaches to ad-
dress scalability. The first approach is motivated by the ob-
servation that many multi-agent planning problems, such as
the sensor network problem we present, have sparse agent
interactions, that is, each agent only interacts with a lim-
ited number of other agents. Thus, researchers have in-
troduced specialized models such as ND-POMDPs [Nair et
al., 2005], TD-POMDPs [Witwicki and Durfee, 2010] and
DPCL [Velagapudi et al., 20111, which exploit the sparsity
in these interactions to increase scalability. In the second ap-
proach, researchers assume that the problem can be factored

Akshat Kumar
IBM Research
New Delhi, India, 110070
akshat.kumar @gmail.com

Shlomo Zilberstein
University of Massachusetts
Ambherst, MA 01003, USA
shlomo @cs.umass.edu

into smaller factors. For example, Oliehoek et al. introduced
models where the state space and reward function are fac-
tored into subspaces and subfunctions [Oliehoek et al., 2008;
Oliehoek, 2010]. More recently, Kumar et al. introduced the
Value Factorization (VF) framework, where the value func-
tions are factored into subfunctions [Kumar ez al., 2011]. This
framework is appealing as it has been shown to unify and cap-
ture several existing sparse-interaction models like TI-Dec-
MDPs [Becker et al., 2004], ND-POMDPs [Nair et al., 2005]
and TD-POMDPs [Witwicki and Durfee, 2010]. We thus de-
scribe our work in the context of the VF framework and use
ND-POMDPs as one example model within this framework.

All the value-factored Dec-POMDP algorithms developed
thus far assume a given interaction graph, which specifies
the number of agents and all the possible interactions among
them. There have been no studies on the automated gener-
ation of interaction graphs, which is an important problem
because not only is the interaction graph often unspecified in
multi-agent applications, but the choice of interaction graph
is often a design decision that needs to be optimized as well.
For example, the placement of sensors (agents) to form a sen-
sor network (interaction graph) is often unspecified in a de-
centralized tracking application, and the choice of interaction
graph can directly affect the expected rewards of joint poli-
cies computed for that problem. In this paper, we address this
gap and introduce three algorithms to automatically generate
interaction graphs. These algorithms increase the size and
density of the interaction graph only when the increase is be-
lieved to be beneficial. We also show how one can calculate
lower and upper bounds on the expected reward of an optimal
joint policy across all possible interaction graphs.

2 Motivating Example: Sensor Placement

We motivate the work in this paper with sensor network prob-
lems, where multiple sensors need to coordinate with each
other to track non-adversarial targets that are moving in an
area. Examples of such problems include the tracking of ve-
hicle movements [Lesser and Corkill, 1983] and the track-
ing of weather phenomena such as tornadoes [Krainin et al.,
2007]. We assume that the sensors are immobile and at least
two sensors are required to scan a potential target location.
We also assume that the interaction graph, that is, the number
of sensors, their locations and their possible interactions, is
not given and, thus, the generation of the interaction graph is

Figure 1: Example Sensor Network

part of the problem. However, the possible sensor placement
locations are given and each sensor can only interact with its
neighboring sensor to scan the location between them. Lastly,
we assume that we have an insufficient number of sensors to
place at every location. (The interaction graph is otherwise
trivial.) The objective is to place the sensors and find their
joint policy such that the expected reward of that joint pol-
icy is maximized. For example, Figure 1 illustrates a sen-
sor network, where the crosses denote the 25 possible sensor
placement locations, the circles denote the 8 placed sensor lo-
cations and the lines denote the possible target locations. The
circles and solid lines form nodes and edges of the interaction
graph, respectively.

3 Sparse-Interaction Models

‘We now describe the VF framework and ND-POMDP model,
which we use to represent the problems in this paper.

3.1 Value Factorization Framework

The Value Factorization (VF) framework assumes that each
joint state s can be factored such that s = (s!,...,s™),
which is true in several multi-agent planning models such as
TI-Dec-MDPs [Becker et al., 2004], ND-POMDPs [Nair et
al., 2005] and TD-POMDPs [Witwicki and Durfee, 2010].
Without making further (conditional independence) assump-
tions on the problem structure, a general Dec-POMDP re-
quires exact inference in the full corresponding (finite-time)
DBNSs, which would be exponential in the number of state
variables and agents. The value factorization approach re-
lies on a general, simplifying property of agent interaction,
which can be shown to be consistent with many of the
existing multi-agent planning models [Kumar et al., 2011;
Witwicki and Durfee, 2011]. We next summarize key ideas
behind this framework.

Given a Dec-(PO)MDP defined by the set of agents N,
joint states S and joint actions A, a value factor f defines
a subset of agents Ny C N, joint states Sy C S, and joint
actions Ay C A. A multi-agent planning problem satisfies
value factorization if the joint-policy value function can be
decomposed into a sum over value factors:

V(s,0) = Vi(s',67), 1)
fer
where F is a set of value factors, 7 = 67 is the collection
of parameters of the agents of factor f, and s/ = s°/ is the
collection of state variables of this factor.
Even when the value factorization property holds, plan-
ning in such models is still highly coupled because factors

may overlap. That is, an agent can appear in multiple fac-
tors as state variables. Therefore, a value factor cannot be
optimized independently. But, it has been shown that such
structured agent interactions lead to tractable planning algo-
rithms [Kumar et al., 2011]. Such additive value functions
have also been used to solve large factored MDPs [Koller and
Parr, 1999].

3.2 Networked Distributed POMDPs

For concrete illustrations and evaluation of the results in this

paper, we use Network Distributed POMDPs (ND-POMDPs)

— one of the most commonly used model that satisfies the

value factorization property. Formally, an ND-POMDP is de-

fined as a tuple (S, A,Q, P,O, R, b, H), where

S is the set of joint states. S = Xi<i<n S; X Sy, where
S; is the set of local states of agent ¢ and S, is the set
of uncontrollable states that are independent of the ac-
tions of the agents. Each joint state s € S is defined by
(SuyS1,---,8n), where s; € S; and s, € S,,.

A is the set of joint actions. A = Xj<i<n, A;, Where A; is
the set of actions of agent 7. Each joint action a € A is
defined by (ay, ..., a,), where a; € A;.

(2 is the set of joint observations. {0 = x1<j<y, 2;, where {);
is the set of observations of agent ¢. Each joint observation
w € Qis defined by (w1, . ..,wy,), where w; € §;.

P is the set of joint transition probabilities that as-
sume conditional transition independence. P =
Xsres.ses.aca P(8'|s,a), where P(s'|s,a) = P, (s, |su)-
Mi<i<n Pi(S}|si, Su, ai) is the probability of transitioning
to joint state s” after taking joint action a in joint state s.

O is the set of joint observation probabilities
that assume conditional observation indepen-
dence. O = XueqseSaca Owls,a), where
O(wls,a) = TIli<i<n O;(wilsi, sy, a;) is the proba-

bility of jointly observing w after taking joint action a in
joint state s.

R is the set of joint reward functions that are decompos-
able among the agent subgroups e = {ey,...,ex}. R =
XseS,aca R(s,a), where R(s,a) = ¢ Re(Se, Su,ae)
is the reward of taking joint action a in joint state s.
R(Se, Su,ae) is the reward of taking joint action a,
which is defined by (ae,,...,ae,), in joint states s.,
which is defined by (s¢,,...,S¢,), and $,. a., and s,
is the action and state of agent e; € e, respectively.

b is the belief over the initial joint state. b = Xegb(s),
where b(s) = b(sy) - ITi<i<n b(s;) is the belief for joint
state s.

H is the horizon of the problem. In this paper, we address
finite-horizon problems.

ND-POMDPs can be represented within the VF framework
by associating one value factor with each agent subgroup e.
In our sensor network problem, each agent subgroup corre-
sponds to an edge in the graph.

4 Automated Interaction Graph Generation

All the existing value-factored Dec-POMDP algorithms as-
sume that the interaction graph of the problem is given. How-

ever, in many multi-agent applications the interaction graph is
initially unknown. Moreover, the choice of interaction graph
is an important design decision that affects the quality of the
best plan the agents can execute. For example, when there
is an insufficient number of sensors to place in every possi-
ble location, the placement of sensors to form a sensor net-
work can directly affect the expected rewards of joint policies
computed for that problem. Additionally, the choice of inter-
action graph can also affect the time and space complexities
of ND-POMDP algorithms. For example, the time and space
complexities of CBDP, a current state-of-the-art ND-POMDP
algorithm, are exponential in the induced width of the interac-
tion graph [Kumar and Zilberstein, 2009]. Therefore, in this
paper, we formalize the problem of finding an optimal inter-
action graph and introduce three algorithms to automatically
generate interaction graphs based on contribution estimates
of edges to the expected reward: two greedy algorithms and
a mixed integer linear programming-based algorithm.

4.1 Problem Statement

Given a fixed number of available homogeneous agents and
a set of feasible value factors (which is the set of all feasible
edges in our sensor network) and their transition, observa-
tion and reward functions, a solution is a subset of value fac-
tors (which together define an interaction graph and accompa-
nying Dec-POMDP) that satisfy some feasibility constraints
(e.g., the number of agents involved in the value factors is no
more than the number of available agents). The quality of a
solution is the expected reward of an optimal Dec-POMDP
policy for that solution. An optimal solution is a solution
with the best quality. While our approaches only apply to
problems with homogeneous agents, they can be extended to
work with heterogeneous agents with additional constraints
in the MILPs.

4.2 Greedy Algorithm

Since not all the candidate edges that can be added to the in-
teraction graph are equally important, a natural starting point
would be to consider a greedy algorithm that generates an in-
teraction graph by incrementally adding edges based on their
contribution, or estimates of their contributions, to the ex-
pected reward. This idea is similar to how the algorithm pre-
sented in [Krause et al., 2008] incrementally places sensors
based on the additional information that they provide about
the unsensed locations. We now introduce two variants of
this greedy algorithm.

Naive Greedy Algorithm: This algorithm greedily adds
value factors based on their actual contribution to the ex-
pected reward. In each iteration, it repeatedly loops over all
candidate value factors, that is, unchosen value factors that
does not require more agents than available; computes a joint
policy with each candidate value factor when it is added to
the interaction graph; and chooses the value factor with the
largest positive gain in expected reward to be added to the
interaction graph. This process continues until no candidate
value factor results in a positive gain or there are no remaining
candidate value factors to consider.

Heuristic Greedy Algorithm: The computation of the joint
policy for each candidate value factor can be inefficient. For
example, the time and space complexities of a current state-
of-the-art ND-POMDP algorithm is exponential in the in-
duced width of the interaction graph [Kumar and Zilberstein,
2009]. Thus, we also introduce a variant of the greedy algo-
rithm that uses contribution estimates of each value factor to
the expected reward to greedily select value factors.

We estimate the contribution of each value factor as the
sum of expected joint rewards gained by agents defined for
that value factor from coordinating with each other across all
time steps. More precisely, we calculate the estimated contri-
bution w of each value factor f:

wr = g’:}é}i};w (2)
= be(s,t) - Ry (s,) (3)

ses

where, for each value factor f, Ay is the set of joint actions,
b’ (s, t) is the belief at state s and time step ¢ calculated using
MDP-based sampling starting from the initial belief b [Szer
and Charpillet, 2006], and R (s, @) is the reward given state
s and joint action @. For ND-POMDPs, value factors corre-
spond to edges. Thus, the equations are:

a,t
Z max we 4)
Zb (s,@) 5)
seS

We expect this version of the greedy algorithm to run sig-
nificantly faster since it only needs to compute the joint policy
once at the end of the algorithm instead of each time it evalu-
ates a candidate value factor.

4.3 MILP-based Algorithm

While the Heuristic Greedy algorithm can efficiently gener-
ate interaction graphs, it uses heuristic values that assume that
an agent involved in multiple VFs can take different actions
for each VF, which is an incorrect assumption. Thus, we in-
troduce a mixed integer linear program (MILP) that assumes
that each agent must choose the same action for all VFs that
it is involved in. This MILP finds an open-loop joint policy'
that is optimal across all possible interaction graphs and re-
turns the interaction graph that joint policy is operating on.
Figure 2 shows the MILP, where

B is the maximum number of available agents.
input parameter.

It is an

w?t is the normalized estimate of the expected joint rewards
of agents in value factor f taking joint action a at time
step t. It is the same input parameter described earlier
in Eq. 3, except that it is now normalized.

n; is a Boolean variable indicating if agent ¢ is chosen for
the interaction graph (Line 9). The constraint on Line 2

'An open-loop joint policy is a policy that is independent of
agent observations. In other words, the joint policy is a sequence
of H actions for each agent, where H is the horizon of the problem.

Maximize Z obj f "* subject to (Line 1)
t,f,a€Ay

> ni<B (Line 2)

Zfacf <n; Vf,ief (Line3)

> actit<1 Vt,i (Line4)

acAs act?t < facy Vi, f,ae Ay (Line 5)
act?t <act®"’ vt f,i € f,

a€Ar,ac A;na (Line 6)

objf’t Sact?t Vt, f,ae Ay (Line7)

obj it <wi? Vt, f,d@€ Ay (Line 8)

ni,act?t €{0,1} Vit i,a € A; (Line9)

facy, act?t €{0,1} Vt, f,d € Ay (Line 10)

obj " € [0,1] Vt, f,@e As (Line 11)

Figure 2: MILP for the VF Framework

ensures that the number of agents chosen does not ex-
ceed the maximum number of available agents.

facy is a Boolean variable indicating if value factor f is cho-
sen for the interaction graph (Line 10). The constraint
on Line 3 ensures a value factor is chosen only if all
agents involved in that factor are chosen.

act?’t is a Boolean variable indicating if agent ¢ is taking ac-
tion a at time step ¢ (Line 9). The constraint on Line 4
ensures that an agent can take at most one action in each
time step.
act‘;’t is a Boolean variable indicating if all the agents in-
volved in value factor f are taking joint action @ at time
step t (Line 10). Note that we use the vector notation to
represent joint actions and the regular notation to rep-
resent individual actions. The constraint on Line 5 en-
sures that the joint action @ € Ay is taken only if value
factor f is chosen and the constraint on Line 6 ensures
that the joint action @ is taken only if all the individual
actions a € @ are taken.
obj;’t is the objective variable whose sum is maximized by
the MILP (Lines 1 anq 11). The C(lnstraintsqon Lines 7
and 8 ensure that obj; * equals w;’t if act;’t is 1 and
equals 0 otherwise. Thus, maximizing the objective
variables over all time steps, value factors and joint ac-
tions maximizes the expected reward of the open-loop
joint policy.

Once we solve the MILP, the interaction graph is formed
by exactly those agents i and value factors f whose Boolean
variables n; and fac, respectively, equals 1. One can then

use it to compute a closed-loop joint policy.?
Optimizations for ND-POMDPs: For ND-POMDPs, a pos-

itive reward is typically obtained for only one joint action in
each edge (value factor). For example, in our sensor network

2A closed-loop joint policy is a regular Dec-POMDP joint policy
that is dependent on agent observations.

Maximize Z objf’j subject to (Line 12)
t,i,5

> ni<B (Line 13)

Jac;; <n; fac;; <n; (Line 14)

fac,;=facy, actzj = act§i (Line 15)

Z actfj <1 actﬁj <fac;; (Line 16)

@ actfj =0 for all ¢ and j that are not neighbors (Line 17)

obj}; <act; obj; <wf; (Line 18)

n; € {0,1} fac;; €{0,1} (Line 19)

act}; €{0,1} obj; € [0,1] (Line 20)

Figure 3: MILP for ND-POMDPs

problem, a reward is obtained only if two agents sharing an
edge coordinates with each other to scan the area between
them (denoted by that edge). If either agent does not scan
that area, then neither agent gets any reward. As such, one
can optimize the general MILP for the VF framework to a
specialized MILP for ND-POMDPs by removing the super-
scripts @ (since each edge maps to exactly one useful joint
action) resulting in a significant reduction in the number of
variables and constraints.

Figure 3 shows this MILP, where subscripts ¢ and j denote
agent IDs and ¢5 denotes the edge between agents ¢ and j. The
constraints on Lines 13 and 14 correspond to those on Lines 2
and 3, respectively. The constraints on Line 15 are to ensure
symmetry. The constraints on Lines 16 and 17 correspond
to those on Lines 4 and 5, and the constraints on Line 18
correspond to those on Lines 7 and 8.

Complexity: The MILP requires O(H -n-| A;|) variables and
O(H|F|\f|\Af H/L\) constraints, where H is the horizon, n
is the number of agents, \/L| is the maximum number of ac-
tions per agent, }| is the
maximum number of agents in a value factor and | A | is the

maximum number of joint actions in a value factor. The dom-
inating terms for the number of variables and constraints are
the number of act;’t variables and the constraints on Line 6,
respectively.

While the number of constraints might appear intractably
large, bear in mind that one of the main motivations of sparse-
interaction models is that the number of agents and joint ac-
tions in a value factor is small such that they can be exploited
for scalability.

F| is the number of value factors,

4.4 Bounds

Lower Bounds: The open-loop joint policy found by the
MILP can be extracted from its result by taking the union of
all actions a of agent ¢ at time step ¢ whose Boolean variable

act?’t equals 1. One can then evaluate that policy to get an ex-
pected reward, which will form a lower bound on the optimal
expected reward. For ND-POMDPs, evaluating an open-loop
joint policy 7 to get the expected reward V™ (b) for the initial
belief b can be done:

V() = b(s)- > Vi(s,0) 6)
seS eelk
VI (s,t) = Re(s,m(t)) + Y _ P(s'|s,m(t)) - Y _ O(w|s',m(t))
s'es we
V(S 4 1) 7
= Re(s,m(t)) + > _ P(s'|s, (1) - VI (s',t+1) (8)
s’'eS

where E is the set of edges in the interaction graph and 7 (¢) is
the joint action of the agents at time step ¢ according to joint
policy m. Eq. 7 simplifies to Eq. 8 because 7 is independent
of the observations received.

Upper Bounds: To obtain an upper bound on the optimal ex-
pected reward, one can solve the underlying MDP for each
possible interaction graph and take the largest expected re-
ward. For ND-POMDPs with a given interaction graph, one
can calculate the upper bound V' (b) for initial belief b using
the expected rewards V' (s) for starting states s:

V(b) = b(s) V(s) ©
seSs
V(s) = max {R(s,a) + Y P(s']s,a) - V(s’)} (10)
s’'eS
—mac{ ST R(s,0)} + S P(1s) V() A
ec s'es

where E is the set of edges in the given interaction graph.
Eq. 10 simplifies to Eq. 11 because all the states in our prob-
lem are uncontrollable states that are independent of the ac-
tion of agents. If not all states are uncontrollable states, then
one can still calculate an upper bound on the expected re-
ward of an optimal joint policy for the MDP [Kumar and Zil-
berstein, 2009] or use existing techniques to solve factored
MDPs [Guestrin et al., 2001].

S Experimental Evaluation

We compare the greedy and MILP-based algorithms on a
problem with 25 possible sensor placement locations ar-
ranged in a 5 x 5 grid as in Figure 1. We model the prob-
lem within the VF framework as an ND-POMDP, varying the
maximum number of available sensors from 5 to 15 to inves-
tigate the scalability of the algorithms. The number of targets
to track is 2. To simulate problems with both known and un-
known target trajectories, we experiment with two types of
trajectories: fixed trajectories, where each target can stay at
its current location with probability 0.1 and move to the next
location in its trajectory with probability 0.9, and random tra-
jectories, where each target can stay at its current location or
move to any neighboring location with equal probability.

We use CBDP [Kumar and Zilberstein, 2009], a state-of-
the-art ND-POMDP algorithm, as a subroutine in the greedy
and MILP-based algorithms to compute joint policies. We
set the horizon to 10 and the number of samples to 5. We ran
the experiments on a quad core machine with 16GB of RAM
and 3.1GHz CPU, and set a cut-off time limit of 40 hours.
Figures 4 and 5 show the results for problems with random
and fixed target trajectories, respectively, and Table 1 shows
the size of interaction graphs built.

(a) Random Trajectories

Max Sensors || Naive Greedy | Heuristic Greedy | MILP
5 4.0 4.0 4.0
7 6.0 7.0 6.0
9 8.5 10.0 8.5
11 10.0 13.5 11.0
13 10.0 17.0 11.5
15 11.0 18.5 13.0

(b) Fixed Trajectories

Max Sensors || Naive Greedy | Heuristic Greedy | MILP
5 4.0 4.0 5.0
7 7.0 7.0 8.0
9 9.0 10.0 10.0
11 12.5 12.5 12.0
13 15.5 14.5 14.5
15 16.5 16.0 16.0

Table 1: Number of Edges in the Interaction Graphs

Runtime: The runtimes are similar for both problem types.
The only exception is that the upper bound computations are
one order of magnitude slower on random trajectory problems
than on fixed trajectory problems. This result is to be ex-
pected since there is a larger number of state transitions with
non-zero probabilities in random trajectory problems and, as
such, more computation is necessary.

For both problem types, Naive Greedy runs up to one order
of magnitude longer than the Heuristic Greedy and MILP-
based algorithms. The reason is that Naive Greedy runs
CBDP multiple times each time it adds an edge to the interac-
tion graph. (It runs CBDP each time it evaluates a candidate
edge.) On the other hand, the Heuristic Greedy and MILP-
based algorithms run CBDP only once to compute the joint
policy for its interaction graph.

For random trajectory problems, the MILP-based algo-
rithm is faster than the Heuristic Greedy algorithm except for
problems that are very small (problems with 5 sensors). The
reason for this behavior is the following: In these problems,
there is a large number of edges with non-zero probabilities
that a target will be at those edges since the targets are per-
forming random walks. Additionally, the Heuristic Greedy
algorithm uses heuristic values (in Eq. 4) that assume that the
sensors at locations connected by an edge will coordinate with
each other to get the reward at that edge (since we are taking
the maximum over all joint actions in that edge). Therefore,
the algorithm will add a large number of edges with non-zero
probabilities to its interaction graph as long as adding those
edges do not require more sensors than available.

On the other hand, the MILP-based algorithm takes into
account the fact that sensors can only coordinate with at most
one neighboring sensor at each time step in choosing their
edges. (Each agent must have the same action for all value
factors.) Thus, the number of edges in the MILP interaction
graph is smaller than that in the Greedy Heuristic interaction
graph, as shown in Table 1(a). Thus, the runtime of CBDP on
the MILP interaction graph is also smaller that on the Greedy
Heuristic interaction graph.

For fixed trajectory problems, the Heuristic Greedy algo-
rithm is faster than the MILP-based algorithm. The reason

i NaiveyGreedy' —9—'
Heuristic Gr’alel_dy - 4

i NaiveVGreedy' —0—'
1800 | Heuristic Greedy > 7 108 |
MILP

L L L L L
11 13 15
Maximum Number of Available Sensors

m,
~
©

5 7 9 11 13 15
Maximum Number of Available Sensors

Figure 4: Results for Random Trajectories

for this behavior is the following: In these problems, there
is a small number of edges with non-zero probabilities that
a target will be at those edges since the targets are always in
one of the edges in their respective trajectories. Therefore, the
Heuristic Greedy algorithm will add a small number of edges
to its interaction graph. The MILP-based algorithm is also
able to exploit this property and only include a small number
of edges to its interaction graph. Thus, the number of edges
in the MILP interaction graph is similar to that in the Greedy
Heuristic interaction graph, as shown in Table 1(b). Thus, the
runtime of CBDP on both interaction graphs are also similar.

However, on the computational effort in generating the in-
teraction graph, the Heuristic Greedy algorithm is more ef-
ficient than the MILP-based algorithm — Heuristic Greedy
takes approximately 0.5s while the MILP-based algorithm
takes approximately 25s. This difference is more noticeable
when the problems are small (as the runtimes of CBDP are
small) and diminishes as the problems become larger.

Solution Quality: The expected rewards of joint policies
found for random trajectory problems are smaller than those
found for fixed trajectory problems, which is to be expected
since there is a larger entropy in random trajectory problems.

For both problem types, all three algorithms find com-
parable joint policies except for problems with 5 maximum
available sensors. In these problems, both greedy algorithms
found joint policies with expected rewards that are about 20%
smaller than the expected rewards of joint policies found by
the MILP-based algorithm. The reason is that the first two
edges chosen by the greedy algorithm typically correspond to
the starting edges (locations) of the two targets. These edges
are typically disjoint, and four sensors are thus placed just to
track the targets along these two edges. On the other hand, the
MILP-based algorithm typically places the first four sensors
more efficiently by placing them in a square, and they can
thus track targets along the four edges of the square. Thus,
the MILP joint policies found by the MILP-based algorithm
have larger expected rewards than those found by the greedy
algorithm. Table 1(b) shows this behavior, where the MILP
interaction graph has 25% more edges than the greedy inter-
action graphs on problems with 5 sensors.

For both problem types, the lower bounds are at most 20%
smaller than the expected rewards of the joint policies found
by the MILP-based algorithm, which are at most 35% smaller
than the upper bounds. The lower bounds have smaller ex-
pected rewards since they are expected rewards of open-loop
joint policies. The upper bounds have larger expected rewards
since they are expected rewards of joint policies on fully ob-
servable problems. These bounds are tighter in fixed trajec-

2000 — T T T T T 107 T

1800 | | " Naive'Greedy' —0—'
a1 108 | Heuristic Greedy --->--
© 1600 - - 1@ ML
] e 3105 F 1
£ 1400 | . 15
ko) = o 4
o 1200 - 4 810" 3
b=y 2
£ 1000 - -) 1 “E’103 E g
& 800 p Naive Greedy —+— _ £
& Heuristic Greedy --->-- S510° F 3
600 MILP ---%--- = @ "
L LB i} 4 10 F 3
400 UB - -
200 L—t L L L L L 10°
5 7 9 11 13 15

Maximum Number of Available Sensors Maximum Number of Available Sensors

Figure 5: Results for Fixed Trajectories

tory problems than in random trajectory problems since fixed
trajectory problems are simpler.

Lastly, we also exhaustively enumerated all possible inter-
action graphs for small problems where it is possible to do so,
and in all of those cases, both the optimal and MILP-based
graphs are very similar.

In summary, our experimental results show that the Heuris-
tic Greedy and MILP-based algorithms are good ways to au-
tomatically generate interaction graphs and find joint poli-
cies that are within reasonable error bounds. The Heuris-
tic Greedy algorithm is better suited for problems with little
transition uncertainty and the MILP-based algorithm is better
suited for problems with more transition uncertainty. Fur-
thermore, one can use the open-loop joint policies if there is
an insufficient amount of time to compute better closed-loop
joint policies.

6 Conclusions

The VF framework has been shown to be a general framework
that subsumes many sparse-interaction Dec-POMDP models
including ND-POMDPs. Existing algorithms for these mod-
els assume that the interaction graph of the problem is given.
Thus far, there have been no studies on the automated gen-
eration of interaction graphs. In this paper, we introduced
two greedy algorithms and a MILP-based algorithm to auto-
matically generate interaction graphs and establish lower and
upper bounds on the expected reward of an optimal joint pol-
icy. The greedy algorithms incrementally add value factors
(or edges) to the interaction graph based on their actual or
estimated contribution to the expected reward. The MILP-
based algorithm generates an interaction graph by choosing
value factors to form an interaction graph such that an opti-
mal open-loop joint policy on that interaction graph is optimal
across all possible interaction graphs.

Our experimental results show that these methods produce
reasonable joint policies (their expected rewards are at least
65% of a loose upper bound). The Heuristic Greedy algo-
rithm is faster than the MILP-based algorithm in problems
with less transition uncertainty and vice versa in problems
with more transition uncertainty. In sum, we examined the
challenge of automatically generating interaction graphs and
offered several general methods that performed well in a sen-
sor network coordination testbed. These methods offer a
foundation for further exploration of this area.

Acknowledgments

This work was funded in part by the National Science Foun-
dation Grant IIS-1116917.

References

[Becker et al., 2004] Raphen Becker, Shlomo Zilberstein,
Victor Lesser, and Claudia Goldman. Solving transition in-
dependent decentralized Markov decision processes. Jour-
nal of Artificial Intelligence Research, 22:423-455, 2004.

[Bernstein et al., 2002] Daniel Bernstein, Robert Givan, Neil
Immerman, and Shlomo Zilberstein. The complexity of
decentralized control of Markov decision processes. Math-
ematics of Operations Research, 27(4):819-840, 2002.

[Guestrin et al., 2001] Carlos Guestrin, Daphne Koller, and
Ronald Parr. Multiagent planning with factored MDPs.
In Advances in Neural Information Processing Systems
(NIPS), pages 1523-1530, 2001.

[Koller and Parr, 1999] Daphne Koller and Ronald Parr.
Computing factored value functions for policies in struc-
tured MDPs. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pages 1332—
1339, 1999.

[Krainin et al., 2007] Michael Krainin, Bo An, and Victor
Lesser. An application of automated negotiation to dis-
tributed task allocation. In Proceedings of the Interna-
tional Conference on Intelligent Agent Technology (IAT),
pages 138-145, 2007.

[Krause et al., 2008] Andreas Krause, Ajit Singh, and Car-
los Guestrin. Near-optimal sensor placements in Gaussian
processes: Theory, efficient algorithms and empirical stud-
ies. Journal of Machine Learning Research, 9:235-284,
2008.

[Kumar and Zilberstein, 2009] Akshat Kumar and Shlomo
Zilberstein. Constraint-based dynamic programming for
decentralized POMDPs with structured interactions. In
Proceedings of the International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), pages
561-568, 2009.

[Kumar et al., 2011] Akshat Kumar, Shlomo Zilberstein,
and Marc Toussaint. Scalable multiagent planning using
probabilistic inference. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pages
2140-2146, 2011.

[Lesser and Corkill, 1983] Victor Lesser and Daniel Corkill.
The Distributed Vehicle Monitoring Testbed: A tool for in-
vestigating distributed problem solving networks. A Mag-
azine, 4(3):15-33, 1983.

[Nair et al., 2005] Ranjit Nair, Pradeep Varakantham, Milind
Tambe, and Makoto Yokoo. Networked distributed
POMDPs: A synthesis of distributed constraint optimiza-
tion and POMDPs. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI), pages 133—-139,
2005.

[Oliehoek et al., 2008] Frans Oliehoek, Matthijs Spaan, Shi-
mon Whiteson, and Nikos Vlassis. Exploiting locality of
interaction in factored Dec-POMDPs. In Proceedings of

the International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 517-524, 2008.

[Oliehoek, 2010] Frans Oliehoek. Value-Based Planning for
Teams of Agents in Stochastic Partially Observable Envi-
ronments. PhD thesis, University of Amsterdam, Amster-
dam (Netherlands), 2010.

[Rabinovich et al., 2003] Zinovi Rabinovich, Claudia Gold-
man, and Jeffrey Rosenschein. The complexity of multia-
gent systems: The price of silence. In Proceedings of the
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 1102-1103, 2003.

[Szer and Charpillet, 2006] Daniel Szer and Francois
Charpillet. Point-based dynamic programming for DEC-
POMDPs. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), pages 1233-1238, 2006.

[Velagapudi ef al., 2011] Prasanna Velagapudi, Pradeep
Varakantham, Paul Scerri, and Katia Sycara. Distributed
model shaping for scaling to decentralized POMDPs with
hundreds of agents. In Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 955-962, 2011.

[Witwicki and Durfee, 2010] Stefan Witwicki and Edmund
Durfee. From policies to influences: A framework for
nonlocal abstraction in transition-dependent Dec-POMDP
agents. In Proceedings of the International Joint Confer-

ence on Autonomous Agents and Multiagent Systems (AA-
MAS), pages 1397-1398, 2010.

[Witwicki and Durfee, 2011] Stefan Witwicki and Edmund
Durfee. Towards a unifying characterization for quanti-
fying weak coupling in Dec-POMDPs. In Proceedings of
the International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 29-36, 2011.

