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Explanation generation frameworks aim to make AI systems’ decisions transparent and understandable to human users.
However, generating explanations in uncertain environments characterized by incomplete information and probabilistic
models remains a significant challenge. In this paper, we propose a novel framework for generating probabilistic monolithic
explanations and model reconciling explanations. Monolithic explanations provide self-contained reasons for an explanandum
without considering the agent receiving the explanation, while model reconciling explanations account for the knowledge of
the agent receiving the explanation. For monolithic explanations, our approach integrates uncertainty by utilizing probabilistic
logic to increase the probability of the explanandum. For model reconciling explanations, we propose a framework that
extends the logic-based variant of the model reconciliation problem to account for probabilistic human models, where the goal
is to find explanations that increase the probability of the explanandum while minimizing conflicts between the explanation
and the probabilistic human model. We introduce explanatory gain and explanatory power as quantitative metrics to assess
the quality of these explanations. Further, we present algorithms that exploit the duality between minimal correction sets and
minimal unsatisfiable sets to efficiently compute both types of explanations in probabilistic contexts. Extensive experimental
evaluations on various benchmarks demonstrate the effectiveness and scalability of our approach in generating explanations
under uncertainty.
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1 Introduction
The rapid integration of artificial intelligence (AI) into critical and everyday applications has magnified the
importance of not just achieving high-performance metrics but also ensuring that AI decisions are transparent,
interpretable, and, above all, trustworthy. This imperative has given rise to the field of explainable AI (XAI),
which seeks to make AI systems’ workings comprehensible to their human users (Gunning et al. 2019). XAI
endeavors to demystify the often opaque processes of AI, providing insights into the reasoning behind decisions
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and actions. This transparency is not just a matter of ethical AI design but a practical necessity for enhancing
user trust, facilitating user decision-making, and ensuring the accountability of AI systems.
In the domain of machine learning (ML), significant strides have been made towards enhancing the explain-

ability of algorithms. Researchers have sought to categorize ML algorithms according to various dimensions of
explainability (Guidotti et al. 2018), improve the transparency of existing algorithms (Alvarez Melis and Jaakkola
2018; Petkovic et al. 2018), and even propose new algorithms that balance accuracy with increased explainability
(Dong et al. 2017; Gilpin et al. 2018). These efforts underscore a growing recognition within the ML community
of the critical role that explainability plays in the deployment of AI systems (Belle and Papantonis 2021).
Parallel to advancements in ML, the automated planning community has adopted a focused approach to

generating explanations for plans produced by AI (planning) agents, which led to the inception of explainable AI
planning (XAIP) (Fox et al. 2017). Predominantly, XAIP research focuses on the explanation generation problem,
which involves identifying explanations for plans that, when conveyed to human users, help them understand
and accept the agent’s proposed actions (Kambhampati 1990; Langley 2016). A noteworthy direction within
this space is the model reconciliation problem (MRP) (Chakraborti, Sreedharan, Zhang, et al. 2017; Nguyen et al.
2020; Sreedharan et al. 2018; Vasileiou, Previti, et al. 2021; Vasileiou, Yeoh, et al. 2022), aimed at aligning a user’s
model with that of an AI agent through the provision of explanations, especially when discrepancies in their
understanding of a planning problem lead to confusion or misinterpretation of the agent’s decisions. We will
refer to these explanations as model reconciling explanations. In contrast, we refer to explanations that do not
account for the user’s model as monolithic explanations.
Although MRP tackles essential facets of explainability, it often operates under the presumption that the AI

agent has a deterministic grasp of the human model—a scenario that may not always align with the complexities of
real-world interactions characterized by uncertainty about human knowledge. Indeed, this gap highlights a general
challenge in explanation generation from AI agents: Their operation within realms of incomplete information and
probabilistic decision-making models. Traditional explanation methods, which rely on deterministic knowledge,
falter under these conditions, unable to represent the uncertain nature of the agent’s knowledge adequately.

To bridge this gap in explainability, the first part of the paper presents a framework for explanation generation
under uncertainty. In particular, we use (propositional) probabilistic logic as our underlying mechanism for
modeling uncertainty, and introduce the notions of probabilistic monolithic explanation and probabilistic model
reconciling explanation. For the former, given an agent’s belief base B𝛼 (a weighted knowledge base1), and an
explanandum 𝜑 (a formula to be explained), the goal is to find a probabilistic monolithic explanation such that
the probability of the explanandum being true is increased. Moreover, we extend our work on logic-based model
reconciliation problems (L-MRPs) (Son et al. 2021; Vasileiou, Previti, et al. 2021; Vasileiou, Yeoh, et al. 2022) to
scenarios in which the human user’s model is uncertain. Specifically, given a knowledge base KB𝛼 of an agent, an
explanandum 𝜑 entailed by KB𝛼 , and a human belief base Bℎ , the goal is to find a probabilistic model reconciling
explanation such that the explanandum’s probability is increased while the probability of conflicts between
the explanation and Bℎ is decreased. To measure the quality of such explanations, we define the concepts of
explanatory gain and explanatory power, aimed at quantifying the effectiveness of these explanations with respect
to the explanandum.
In the second part of the paper, we describe algorithms for computing both types of explanations, where we

leverage the duality between minimal correction sets (MCSes) and minimal unsatisfiable sets (MUSes). These
algorithms, adapted from our prior work (Vasileiou, Previti, et al. 2021), integrate aweighted maximum satisfiability
procedure for computing probabilities. Our experimental evaluation across various benchmarks highlights the

1A weighted knowledge base, essentially, induces a probability distribution over the variables of the agent’s language (Richardson and
Domingos 2006).
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practicality and applicability of our algorithms, and demonstrate their capabilities to generate probabilistic
explanations within a propositional logic framework.
In summary, our contributions are the following:

• We propose a novel framework for generating probabilistic monolithic explanations and probabilistic model
reconciling explanations. Central to our framework are the concepts of explanatory gain and explanatory power,
metrics designed to quantitatively assess the quality and effectiveness of probabilistic explanations.

• We describe algorithms for computing both types of probabilistic explanations, using the duality of MCSes and
MUSes together with a weighted maximum satisfiability process. Through a series of benchmark evaluations,
we demonstrate the efficacy of our proposed algorithms in generating explanations.

The paper is structured as follows. In Section 2, we motivate the use and applicability of logic in explainability,
and discuss possible sources of uncertainty in explanation generation. In Section 3, we provide the background
knowledge needed, and in Section 4 we describe a motivating application that serves as a running example. In
Section 5, we present our explanation generation framework for monolithic and model reconciliation probabilistic
explanations. We present algorithms for computing explanations in Section 6, and experimentally evaluate
them on a set of benchmarks in Section 7. We then discuss related work in Section 8, address the assumptions,
limitations and future extensions of our framework in Section 9, and finally conclude the paper in Section 10.

2 A Logic-based Perspective on Explainable Decision-Making
In this work, we take the following perspective: Logic-based frameworks can serve as an explanatory representational
layer for AI systems, enabling the generation of rigorous and flexible explanations across diverse problem domains by
capturing the system’s decisions in a formal logical language that supports inference and reasoning.

According to this perspective, formal logic provides a robust foundation for creating explanatory mechanisms
by serving as an intermediate representational layer between AI systems and explanation generation processes.
Some of the reasons that justify this perspective are as follows:

• Structured Semantics: Logic has well-defined compositional semantic functions that compute the meaning
of a compound as a function of its constituents’ meanings. This composition is invertible, allowing us to trace
back from conclusions to premises—essentially performing inference in reverse. This property is fundamental
to explanation, as it enables us to identify precisely which components contributed to a particular decision or
output.

• Expressivity & Scrutability: Logic can represent complex knowledge and reasoning processes in a form
that can be traced and scrutinized. Depending on the formal language of choice, it allows for encoding rich,
relational information about the world, including classes, hierarchies, causal relationships, and quantified
statements. For instance, in planning domains, logical representations can express not only states and actions
but also the causal links between them, making it possible to explain why certain actions were selected in
a plan. Moreover, logic-based systems enable us to examine their internal properties, both through internal
verification techniques and external dialogues. This scrutability is crucial for building trust in AI systems, as it
allows for thorough validation of the reasoning process, ensuring that explanations are not just plausible but
provably correct within the system’s logical framework.

• Adaptability: Logic-based systems can be extended with new knowledge and can integrate with various AI
paradigms. This means that explanatory frameworks built on logic can evolve over time, incorporating new
concepts, rules, or meta-level reasoning principles as needed. This adaptability is important for explanation
systems that must operate across diverse domains or interact with different types of users.
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Fig. 1. The Logic-based Explainability Layer. Given a decision 𝑑 from an AI model, a monolithic explanation is generated with
respect to the AI system’s knowledge base (KB𝛼 ), while a model reconciling explanation is generated with respect to the AI
system’s (KB𝛼 ) as well as the human user’s knowledge base (KBℎ).

• Uncertainty Representation: While classical logic is deterministic, probabilistic extensions (which we use in
this work) allow for representing and reasoning about uncertainty. This is important in real-world scenarios
where AI systems must operate with incomplete information or where multiple interpretations of data are
possible. Probabilistic logic enables explanations that convey not just what the system “believes”, but also its
degree of confidence in those beliefs.

For more about logic and its suitability in explainability as well as the current AI landscape, please see some
good arguments presented by Belle (2017), Mocanu and Belle (2023), and Belle (2025).
Now, as illustrated in Figure 1, our approach positions logic as an intermediate explanatory layer between

AI systems and human users. The logic-based explainability layer functions as an abstraction mechanism that
captures the essential reasoning behind an AI system’s decisions in a formal logical representation, regardless of
the underlying implementation details of the AI system itself. This layer serves two critical functions. First, it
translates the internal decision processes of potentially opaque AI systems into a logical formalism that can be
systematically analyzed. Second, it enables the generation of explanations through formal reasoning over this
logical representation.
We will distinguish between two notions of explanation: monolithic explanations, which are generated with

respect to the AI system’s knowledge base (KB𝛼 ) alone, focusing on providing a self-contained justification for the
system’s decision; and model reconciling explanations, which are generated with respect to both the AI system’s
knowledge base (KB𝛼 ) and the human user’s knowledge base (KBℎ), explicitly addressing the discrepancies
between the two models that may lead to confusion or misunderstanding. The explainability layer thus provides
a unified framework for generating different types of explanations while maintaining a clear separation between
the underlying AI system and the explanation mechanism.
The effectiveness of the logic-based explainability framework depends crucially on the ability to encode the

problem domains of interest in logical formalisms. In general, it can be used for problems that can be represented
in a logical language for which satisfiability of sets is feasible. Fortunately, many problem domains admit logical
encodings, such as planning problems (Cashmore, Fox, et al. 2012; Cashmore, Magazzeni, et al. 2020; Kautz et al.
1996), scheduling problems (Ansótegui et al. 2011; Crawford and Baker 1994; Demirović et al. 2019), argumentation
problems (Besnard, Grégoire, et al. 2010; Besnard and Hunter 2001; Prakken 2006), as well as machine learning
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problems (Izza et al. 2023; Marques-Silva and Ignatiev 2022; Shrotri et al. 2022). Indeed, logic-based explanation
generation approaches have been successfully employed in numerous applications (Marques-Silva and Ignatiev
2022; Rago et al. 2023; Vasileiou, Previti, et al. 2021; Vasileiou, Xu, et al. 2023; Vasileiou, Yeoh, et al. 2022).

2.1 The Source of Uncertainty in Explanations
Traditional logic-based approaches have typically operated within deterministic settings. They assume that both
the AI system and the human user have definite, certain knowledge about the domain. This assumption, however,
fails to capture the reality of many real-world scenarios where uncertainty plays a crucial role. Succinctly,

• Incomplete Information: AI systems often operate with partial information about the environment, meaning
they operate with probabilistic rather than deterministic knowledge.

• Ambiguous Evidence: In domains like medical diagnosis or law, the available evidence may support multiple
hypotheses to varying degrees, requiring probabilistic reasoning.

• Uncertain Human Models: Human users may hold beliefs with varying degrees of confidence, and AI systems
may be uncertain about what humans know or believe.

• Probabilistic Effects: Inmore realistic, dynamic environments, actionsmay have probabilistic outcomes, requiring
explanations that account for these uncertainties.

Motivating Example. To ground our discussion, consider a service robot operating in an office building with
some uncertain information about its environment. The robot must navigate from its current location to deliver a
package to a specific office, choosing among multiple possible routes. In this scenario, uncertainty may arise
due to several reasons, such as environmental uncertainty, e.g., the robot has limited information about the
current state of different corridors (e.g., crowded or clear), outcome uncertainty, e.g., even with a chosen path,
the robot may not be able to perfectly predict travel times due to potential obstructions or changing conditions,
and uncertainty about the beliefs of humans, i.e., when explaining its decisions to building staff, the robot may
not know exactly what they believe about current building conditions.
Now, assume that the robot chooses a longer route through corridor B instead of a shorter path through

corridor A. When asked why it did not take the more direct route through corridor A, the robot could provide
different (monolithic) explanations. For instance, “Corridor A likely has high foot traffic at this time of day, which
would impede movement and potentially require frequent stops”, or “There is an ongoing maintenance operation
in corridor A that creates an obstruction risk and would likely result in a significant detour mid-route.” Both
explanations may increase our understanding of why the robot avoided corridor A, but they focus on different
aspects of the robot’s belief state and might have different explanatory power.
For the model reconciliation case, consider a human supervisor who expected the robot to take corridor A

because they believe the corridor should be clear at this time. This discrepancy arises because the supervisor and
the robot have different beliefs about the current state of the building. Then, a model reconciling explanation
would need to address these specific belief differences and help the supervisor understand why the robot’s
decision was reasonable given its information.
This example illustrates how uncertainty naturally arises in practical scenarios and how multiple potential

explanations must be compared to identify those with the highest explanatory power.

3 Background
In this section, we provide some background for propositional logic, the hitting set duality between minimal
unsatisfiable andminimal correction sets, modeling uncertainty in propositional logic, and themodel reconciliation
problem.
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3.1 Propositional Logic
Let L be a propositional language built from a finite set of atomic variablesV = {𝑎, 𝑏, 𝑐, . . .}. A possible world is
a truth-value assignment to each variable 𝜔 : V ↦→ {𝑇, 𝐹 }, where 𝑇 and 𝐹 denote truth and falsity respectively.
The set of all possible worlds of L is denoted by Ω. The simplest formulae in L are atoms: Individual variables
that may be true or false in a given possible world. More complex formulae are recursively constructed from
atoms using the classical logical connectives. A model of a formula is a possible world in which the formula is
satisfied (i.e., evaluates to true). A knowledge base KB is a set of formulae. If there exists at least one possible
world 𝜔 that satisfies all formulae in KB, then KB is consistent, otherwise we say that KB is inconsistent. We use
|= to denote the classical entailment relation and say that a (consistent) KB entails a formula 𝜑 , expressed as
KB |= 𝜑 , if and only if every model of KB is also a model of 𝜑 , or equivalently, if KB∪ {¬𝜑} is inconsistent. Unless
stated otherwise, it is assumed that all formulae are expressed in conjunctive normal form (CNF).2

Given a knowledge base KB and a formula 𝜑 , called the explanandum such that KB |= 𝜑 , we define a monolithic
explanation for 𝜑 from KB as a minimal set of formulae that entails 𝜑 :

Definition 1. (Monolithic Explanation) Let KB be a knowledge base and 𝜑 an explanandum such that KB |= 𝜑 .
We say that 𝜖 ⊆ KB is a monolithic explanation for 𝜑 from KB if and only if: (i) 𝜖 |= 𝜑 ; and (ii) ∄𝜖′ ⊂ 𝜖 such that
𝜖′ |= 𝜑 .

Example 1. Consider the knowledge base KB = {𝑝,¬𝑝 ∨ 𝑞,¬𝑝 ∨ 𝑟 } built up from V = {𝑝, 𝑞, 𝑟 }. Notice that
KB |= 𝑞. Then, 𝜖 = {𝑝,¬𝑝 ∨ 𝑞} is a monolithic explanation for 𝑞 from KB.

3.1.1 Duality of Minimal Unsatisfiable and Minimal Corrections Sets.

Definition 2 (Minimal Unsatisfiable Set (MUS)). Given an inconsistent knowledge base KB, a subsetM ⊆ KB
is an MUS ifM is inconsistent and ∀M′ ⊂ M,M′ is consistent.

Definition 3 (Minimal Correction Set (MCS)). Given an inconsistent knowledge base KB, a subset C ⊆ KB is
an MCS if KB \ C is consistent and ∀C′ ⊂ C, KB \ C′ is inconsistent.

By definition, every inconsistent KB contains at least one MUS.

Definition 4 (Partial MUS). A set of formulae Φ is a partial MUS of an inconsistent knowledge base KB if there
exists at least one MUSM ⊆ KB such that Φ ⊆ M.

Partial MUSes in an inconsistent knowledge base KB appear when a subset of formulae is set as hard, that
is, formulae that must always be satisfied in a solution. Conversely, soft formulae may not always be satisfied.
Given a formula 𝜑 , we will write 𝜑∗ with ∗ ∈ {𝑠, ℎ} to denote it as soft and hard, respectively.

MUSes and MCSes are related by the concept of hitting set:

Definition 5 (Hitting Set). Given a collection Γ of sets from a universe 𝑈 , a hitting set for Γ is a set 𝐻 ⊆ 𝑈
such that ∀𝑆 ∈ Γ, 𝐻 ∩ 𝑆 ≠ ∅. A hitting set 𝐻 is minimal if ∄𝐻 ′ ⊂ 𝐻 such that 𝐻 ′ is a hitting set.

The relationship between MUSes and MCSes is discussed by Liffiton and Sakallah (2008) and Liffiton, Previti,
et al. (2016), and it was first presented by Reiter (1987), where MUSes and MCSes are referred to as (minimal)
conflicts and diagnoses, respectively.

Proposition 1. A subset of an inconsistent knowledge base KB is an MUS (resp. MCS) if and only if it is a minimal
hitting set of the collection of all MCSes (resp. MUSes) of KB.

2A CNF formula is a conjunction of clauses, where each clause is a disjunction of literals. A literal is either an atom or its negation. This is
not a restrictive requirement, since any propositional formula can be transformed into a CNF representation.
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It follows from the above proposition that a cardinality minimal MUS (resp. MCS) is a minimal hitting set.
Cardinality minimal MUS are referred to as SMUS, whereas a cardinality minimal MCS corresponds to the
complement of a MaxSAT solution (Li and Manya 2009). We may refer to a cardinality minimal set as a minimum
or smallest set.

Lemma 1. Given a subsetH of all the MCSes of knowledge base KB, a hitting set is an SMUS if: (1) It is a minimal
hitting set ℎ ofH , and (2) The subformula induced by ℎ is inconsistent.

See the work by Ignatiev, Previti, et al. (2015) for a proof.
Proposition 1 and Lemma 1 naturally extend to the case of partial MUS. Note that when some formulae are set

as hard in an inconsistent knowledge base, the set of all MCSes is a subset of the soft formulae. In this case, every
minimal hitting set on the set of all MCSes is a partial MUS.
Finally, MUSes and monolithic explanations are related by the following:

Proposition 2. Given a knowledge base KB, a consistent set of formulae 𝜖 ⊆ KB is a monolithic explanation for
𝜑 from KB (Definition 1) if and only if 𝜖 is a partial MUS of 𝜖 ∪ {¬𝜑}.

Example 2. Let KB = {𝑝,¬𝑝 ∨𝑞,¬𝑝 ∨ 𝑟 } and 𝜖 = {𝑝,¬𝑝 ∨𝑞} from Example 1. Notice howM = {𝑝,¬𝑝 ∨𝑞,¬𝑞}
is an MUS of KB ∪ {¬𝑞}. Then, it is easy to see that 𝜖 is a partial MUS ofM.

3.2 Modeling Uncertainty in Propositional Logic
Building on a propositional languageL, we canmodel the uncertainty of propositional formulae using a probability
distribution over the possible worlds Ω of L. Formally,

Definition 6 (Probability Distribution). Let Ω be the set of possible worlds of the language L. A probability
distribution 𝑃 on Ω is a function 𝑃 : Ω ↦→ [0, 1] such that

∑︁
𝜔∈Ω

𝑃 (𝜔) = 1.

In essence, a probability distribution over possible worlds creates a ranking between those worlds with respect
to how likely they are to be true. This then allows us to quantify the uncertainty in a formula as follows:

Definition 7 (Degree of Belief). Let Ω be the set of possible worlds and 𝑃 a probability distribution over Ω.
The degree of belief in a formula 𝜑 ∈ L is 𝑃 (𝜑) =

∑︁
𝜔 |=𝜑

𝑃 (𝜔).3

We may refer to 𝑃 (𝜑) as degree of belief or probability of 𝜑 interchangeably. Note that the possible worlds
approach to probabilities is essentially equivalent to probabilities assigned directly to the formulae (Bacchus
1990).

Now, the probability distribution on Ω can be induced from a weighted knowledge base, referred to as a belief
base:

B = {(𝜙1,𝑤1), . . . , (𝜙𝑛,𝑤𝑛)} (1)
where each formula 𝜙𝑖 ∈ L is associated with a weight𝑤𝑖 ∈ R+.4

Intuitively, the weights serve as meta-information and reflect the certainty about the truth of the corresponding
formulae—the higher the weight, the more certain the formula is. In that sense, formulae with higher weights
are prioritized for satisfaction, effectively capturing the certainty of the particular formulae. This mechanism is
especially useful for handling inconsistency and non-monotonic reasoning patterns, thus capturing a broader
3Note that, with a slight abuse of notation, we use 𝜔 |= 𝜑 to denote that 𝜑 is true (e.g., satisfied) in world 𝜔 .
4We assume, without loss of generality, that all weights are non-negative because a formula with a negative weight 𝑤 can be replaced by its
negation with weight −𝑤.
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spectrum of problems.5 Further, we will denote withB↓𝑤 the classical projection ofB, that is,B↓𝑤 = {𝜙𝑖 | (𝜙𝑖 ,𝑤𝑖 ) ∈
B}.
Given a belief base B, one way to induce a probability distribution is the following:

∀𝜔 ∈ Ω, 𝑃B (𝜔) =
1
𝑍
exp

( 𝑛∑︁
𝑖=1

𝑤𝑖 · I(𝜔,𝜙𝑖 )
)

(2)

where I(𝜔,𝜙) = 1 if 𝜔 |= 𝜙 and 0 otherwise, and 𝑍 =
∑

𝜔∈Ω
exp

(
𝑛∑
𝑖=1
𝑤𝑖 · I(𝜔,𝜙𝑖 )

)
is the normalization factor.

The induced probability distribution quantifies the likelihood that a given (possible) world is the actual world.
Higher formula weights amplify the (log-) probability difference between a world that satisfies the formula
and one that does not, other things being equal. Consequently, worlds that violate fewer formulas are deemed
more probable. Note that a belief base B is essentially a log-linear model (Bishop et al. 2007), from which a joint
probability distribution of the set of variables of L is induced. Interestingly, log-linear models are special cases of
Markov Logic Networks and can represent any positive distribution (Richardson and Domingos 2006). When
taken from context, we will simply use 𝑃 to denote the distribution induced from B.
Entailment in a belief base KB becomes graded, that is, we now say that B entails a formula 𝜙 with degree

of belief 𝑃 (𝜙). However, when all weights are equal and tend to infinity, a belief base represents a uniform
distribution over the worlds that satisfy it and, as such, entailment of a formula can be answered by computing
the probability of the formula and checking whether it is 1. In other words, entailment under belief bases collapses
to classical entailment under knowledge bases. See Richardson and Domingos (2006) for a proof.
Finally, the weighted formulae in a belief base B can be viewed as soft constraints in the sense described in

Section 3.1.1. In contrast, hard constraints can be imposed as formulae with “infinite” weights.6

3.3 The Model Reconciliation Problem
TheModel Reconciliation Problem (MRP), as introduced by Chakraborti, Sreedharan, Zhang, et al. (2017), highlights
the critical need for aligning the planning models of a human user and an agent to facilitate effective collaboration
and understanding. This alignment becomes especially pertinent in scenarios where the agent’s plan deviates
from human expectations, necessitating a mechanism to reconcile these differences through explanations. In
this approach, the (planning) agent must have knowledge of the human’s model in order to contemplate their
goals and foresee how its plan will be perceived by them. When there exist differences between the models of the
agent and the human such that the agent’s plan diverges from the human’s expectations, the agent provides a
minimal set of model differences, namely a model reconciling explanation, to the human.

It is important to highlight that, in order to effectively solve MRP, the following (implicit) assumptions typically
hold:
1. The agent model represents the ground truth or, in other words, the agent model is the “correct” encoding of

the domain. This assumption is predicated on the notion that the explanation is generated from the agent’s
perspective, thereby rendering it reasonable to assume that the agent “thinks” that its model is accurate or
correct.

5For example, the notion of inconsistency is relaxed as follows: Given two formulae 𝜙 and ¬𝜙 that contradict each other (e.g., {𝜙,¬𝜙 } is
inconsistent), if 𝑃 (𝜙 ) = 0.9, then from the axioms of probability we have that 𝑃 (¬𝜙 ) = 0.1. This then means that the worlds where ¬𝜙 is
true are more unlikely than the worlds where 𝜙 is true, but not impossible.
6In practice, infinite weights can be replaced with

𝑛∑
𝑖=1

𝑤𝑖 + 1.
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2. The agent has access to the human model, which is an approximation of the actual human model. In the worst
case, it can be empty; but, practically, it can be approximated based on past interactions (Juba et al. 2021;
Sreedharan et al. 2018).

3. Both models are assumed to be deterministic, and they thus are able to represent only deterministic domains.
Note that while this is a restricting assumption, in Section 5.2 we present a framework that relaxes it.

Now, building upon the MRP foundation, we introduced its logic-based variant (L-MRP), where the models of
the agent and the human user are represented as logical knowledge bases (Vasileiou, Yeoh, et al. 2022).7 As a
model reconciling explanation must take into account both the knowledge base KB𝛼 of the agent providing an
explanation as well as the knowledge base KBℎ of the human receiving the explanation, it is defined slightly
differently compared to monolithic explanations defined by Definition 1:

Definition 8 (Model Reconciling Explanation). Given the knowledge bases of an agent KB𝛼 and a human
user KBℎ as well as an explanandum 𝜑 , such that KB𝛼 |= 𝜑 and KBℎ ̸ |= 𝜑 , E = ⟨𝜖+, 𝜖−⟩ is a model reconciling
explanation if and only if 𝜖+ ⊆ KB𝛼 , 𝜖− ⊆ KBℎ , and (KBℎ ∪ 𝜖+) \ 𝜖− |= 𝜑 .

When KBℎ is updated with a model reconciling explanation E = ⟨𝜖+, 𝜖−⟩, new formulae 𝜖+ from KB𝛼 are
added to KBℎ and formulae 𝜖− from KBℎ are retracted to ensure consistency. Note that since a model reconciling
explanation is from the perspective of the agent’s knowledge base KB𝛼 , we implicitly assume that if a formula in
KBℎ is inconsistent with KB𝛼 , then that formula is “false” from the perspective of the agent.

Example 3. Let KB𝛼 = {𝑎,¬𝑎 ∨ 𝑏,¬𝑎 ∨ 𝑐} and KBℎ = {¬𝑎,¬𝑎 ∨ 𝑏} be the knowledge bases of an agent and a
human user, respectively, where KB𝛼 |= 𝑏 and KBℎ ̸ |= 𝑏. A model reconciling explanation is then E = ⟨{𝑎}, {¬𝑎}⟩,
where (KBℎ ∪ {𝑎}) \ {¬𝑎} = {𝑎,¬𝑎 ∨ 𝑏} |= 𝑏.

4 Motivating Application: Office Robot Delivery
To demonstrate our ideas, let us revisit the service robot scenario described earlier. Consider a robot operating in
an office building with the task of delivering a package from its current location (Room 1) to a destination (Room
2). The robot can navigate through two possible corridors: corridor A, which is shorter but often crowded, or
corridor B, which is longer but typically less crowded. Figure 2 illustrates a simplified abstraction of this problem
in the form of a grid world.

The robot’s action dynamics include two primary actions: move and deliver. The move action allows the robot
to navigate between rooms through a specified corridor, subject to preconditions (the robot must be at the origin
location) and probabilistic effects that depend on the corridor’s crowding status, i.e., when attempting to move
through a crowded corridor, the robot has a higher probability of failing to move and remaining in its current
location. The deliver action can only be performed when the robot is at the destination room and results in the
package being delivered. The complete problem specification and encoding is provided in the appendix.
We encode this probabilistic planning scenario as a belief base B containing weighted formulae (with

subscripts denoting time steps) that represent the robot’s beliefs about the environment states and actions. For
instance, the initial states and the action dynamics for the move action (for 𝑡 = 0) are:

Initial state beliefs:
(robot-at(𝑟𝑜𝑜𝑚1)0,∞),
(¬package-delivered0,∞),
(crowded(𝐴), 3),

7We have also introduced extensions that are complementary to the work presented in this paper (Vasileiou, Kumar, et al. 2024; Vasileiou and
Yeoh 2023).

Journal of Artificial Intelligence Research, Vol. 84, Article 5. Publication date: September 2025.



5:10 • Vasileiou, Yeoh, Previti & Tran

Fig. 2. Grid world illustration of the package delivery problem. The robot has to deliver the package from Room 1 to Room 2
using either Corridor A or Corridor B.

(crowded(𝐵), 0.5),
Move preconditions:

(move(𝑟𝑜𝑜𝑚1, 𝑟𝑜𝑜𝑚2, 𝐴)0 → robot-at(𝑟𝑜𝑜𝑚1)0,∞),
(move(𝑟𝑜𝑜𝑚1, 𝑟𝑜𝑜𝑚2, 𝐵)0 → robot-at(𝑟𝑜𝑜𝑚1)0,∞),

Move effects:
(move(𝑟𝑜𝑜𝑚1, 𝑟𝑜𝑜𝑚2, 𝐴)0 ∧ crowded(𝐴) → robot-at(𝑟𝑜𝑜𝑚2)1, 0.5),
(move(𝑟𝑜𝑜𝑚1, 𝑟𝑜𝑜𝑚2, 𝐴)0 ∧ crowded(𝐴) → robot-at(𝑟𝑜𝑜𝑚1)1, 3).

In this belief base, the weights encode the robot’s degrees of belief. For instance, the weight of 3 for 𝑐𝑟𝑜𝑤𝑑𝑒𝑑 (𝐴)
represents a strong belief that corridor A is crowded, while the weight of 0.5 for 𝑐𝑟𝑜𝑤𝑑𝑒𝑑 (𝐵) indicates a weaker
belief that corridor B is crowded. Similarly, the probabilistic action effects encode that when a corridor is crowded,
it is less likely that the robot will move through it to the next room. Given its belief base B, the robot computes
that the optimal plan is 𝜋 = ⟨move(𝑟𝑜𝑜𝑚1, 𝑟𝑜𝑜𝑚2, 𝐵)0, deliver1⟩, with probability 𝑃 (𝜋) = 0.6.
Now, suppose a human supervisor observes the robot’s choice and asks: “Why didn’t you take corridor A

instead?” This query can be formalized as the explanandum 𝜑 = ¬move(𝑟𝑜𝑜𝑚1, 𝑟𝑜𝑜𝑚2, 𝐴), essentially encoding
“not moving from Room 1 to Room 2 through corridor A”, and allowing the robot to generate an explanation of
why that is the case. In the following section, we will revisit this scenario and show how our methods can be
used to generate probabilistic explanations that answer the query.

5 A Framework for Probabilistic Explanation Generation
In this section, we approach the notion of probabilistic explanation in the following setting, where B is a belief
base and 𝑃 its induced probability distribution:

Definition 9 (Probabilistic Explanation Generation Problem (PEGP)). Given a belief base B and an
explanandum 𝜑 in logic L, the goal of PEGP is to identify an explanation (i.e., a set of formulae) 𝜖 ⊆ B such
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that the probability of the explanandum given the explanation is higher than the probability of the explanandum,
i.e., 𝑃 (𝜑 | 𝜖) > 𝑃 (𝜑).

Under this definition, we account for the uncertainty inherent in knowledge bases, and seek to find explanations
that not only identify contributing factors for an explanandum but also quantify the uncertainty in these factors.
Intuitively, a solution 𝜖 to PEGP seeks to increase the degree of belief in the explanandum 𝜑 . If 𝑃 (𝜑 | 𝜖) > 𝑃 (𝜑),
this then represents the case where 𝜖 increases the degree of belief in 𝜑 and the greater the value of 𝑃 (𝜑 | 𝜖) the
greater the degree of belief in 𝜑 .

In what follows, we present a framework designed to extend the classical concepts of monolithic explanation,
as defined by Definition 1, and model reconciling explanation, as defined by Definition 8, into our probabilistic
setting.

5.1 Probabilistic Monolithic Explanations
Building on the classical notion of monolithic explanation presented in Definition 1, a probabilistic monolithic
explanation for an explanandum 𝜑 from belief base B is defined as follows:

Definition 10 (Probabilistic Monolithic Explanation). Let B be a belief base, B↓𝑤 its classical projection,
and 𝜑 an explanandum. We say that 𝜖 ⊆ B↓𝑤 is a probabilistic monolithic explanation for 𝜑 from B if and only if
𝑃 (𝜑 | 𝜖) > 𝑃 (𝜑).

Example 4. Consider the belief base B = {(𝑎, 1), (¬𝑎 ∨ 𝑏, 2)} and the explanandum 𝑏. The probability of the
explanandum is 𝑃 (𝑏) = 0.73. Then, 𝜖1 = {𝑎} and 𝜖2 = {¬𝑎 ∨ 𝑏} are two probabilistic monolithic explanations for 𝑏
from B, that is, 𝑃 (𝑏 | 𝜖1) = 0.88 > 𝑃 (𝑏) and 𝑃 (𝑏 | 𝜖2) = 0.78 > 𝑃 (𝑏).

It is important to note that Definition 10 can be extended to the case where the formulae 𝜖 do not necessarily
come from B, but rather from the language L. However, we restrict our attention only to formulae from B in
order to be compatible with the classical notion of monolithic explanations (see Definition 1) and the algorithms
that we will present in Section 6. For brevity, and until the end of this section, we will refer to probabilistic
monolithic explanations as monolithic explanations.

Looking at Example 4, we can see that monolithic explanations will typically vary in their capacity to increase
the degree of belief in the explanandum. In other words, each monolithic explanation provides us with some
explanatory gain for the explanandum. Following Good (1968, 1960), explanatory gain is defined as follows:8

Definition 11 (Explanatory Gain of Monolithic Explanations). Let 𝜖 be a monolithic explanation for
explanandum 𝜑 from belief base B. The explanatory gain of 𝜖 for 𝜑 is defined as 𝐺 (𝜖, 𝜑) = log

(
𝑃 (𝜑 | 𝜖 )
𝑃 (𝜑 )

)
.9,10

In essence, the explanatory gain can be thought of as ameasure that quantifies howwell themonolithic explanation
𝜖 explains the explanandum 𝜑 or, equivalently, the degree to which 𝜖 entails 𝜑 . The greater the value of 𝐺 (𝜖, 𝜑),
the more substantial the explanatory gain and, hence, the more effective 𝜖 is at explaining 𝜑 .

It is essential to recognize that this measure, while initially introduced to assess the weak explanatory power of
hypotheses in light of evidence (Good 1960), it is used here to evaluate monolithic explanations. By quantifying
the extent to which a monolithic explanation explains an explanandum, we can systematically identify the most
informative monolithic explanations within a probabilistic framework.

8Good (1960) originally introduced this measure to quantify the (weak) explanatory power of a hypothesis with respect to evidence, essentially
evaluating how effectively the hypothesis explains the evidence.
9We use log with base 2 in our calculations.
10Note that𝐺 (𝜖,𝜑 ) is always positive due to the requirement of monolithic explanations that 𝑃 (𝜑 | 𝜖 ) > 𝑃 (𝜑 ) (Definition 10).
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Example 5. Continuing from Example 4, consider the monolithic explanations 𝜖1 = {𝑎}, 𝜖2 = {¬𝑎 ∨ 𝑏}, and
𝜖3 = {𝑎,¬𝑎 ∨ 𝑏} for explanandum 𝑏. The explanatory gains of 𝜖1, 𝜖2, and 𝜖3 for 𝑏 are 𝐺 (𝜖1, 𝑏) = log

(
𝑃 (𝑏 | 𝜖1 )
𝑃 (𝑏 )

)
=

log
( 0.88
0.73

)
= 0.27, 𝐺 (𝜖2, 𝑏) = log

(
𝑃 (𝑏 | 𝜖2 )
𝑃 (𝑏 )

)
= log

( 0.78
0.73

)
= 0.11, and 𝐺 (𝜖3, 𝑏) = log

(
𝑃 (𝑏 | 𝜖3 )
𝑃 (𝑏 )

)
= log

( 1
0.73

)
= 0.45,

respectively.

A natural course of action when seeking monolithic explanations for an explanandum is to seek the one with
the highest explanatory gain. While tempting, it is important to emphasize that when a monolithic explanation
entails the explanandum, then the explanatory gain takes on its greatest value. For example,

Example 6. Consider the three monolithic explanations 𝜖1, 𝜖2, and 𝜖3 from Example 5. Notice that 𝜖3 = {𝑎,¬𝑎∨𝑏}
entails 𝑏 (i.e., 𝜖3 |= 𝑏) and that its explanatory gain is higher than that of 𝜖1 and 𝜖2. As 𝜖1, 𝜖2, and 𝜖3 are the only
three possible explanations for 𝑏, 𝐺 (𝜖3, 𝑏) is indeed the maximum achievable explanatory gain for 𝑏.

We formalize this in the following proposition:

Proposition 3. Given a monolithic explanation 𝜖 for an explanandum 𝜑 from belief base B, if 𝜖 |= 𝜑 , then
𝐺 (𝜖, 𝜑) achieves its maximal value for 𝜑 , specifically 𝐺 (𝜖, 𝜑) = − log 𝑃 (𝜑).

Proof. If 𝜖 |= 𝜑 , then for all possible worlds 𝜔 in which 𝜔 |= 𝜖 , it holds that 𝜔 |= 𝜑 . That is, the worlds
𝜔 in which 𝜖 is true are subsumed by the worlds in which 𝜑 is true, which implies that also 𝜔 |= 𝜑 ∧ 𝜖 .

Consequently, 𝑃 (𝜑 | 𝜖) =

∑
𝜔 |=𝜑∧𝜖

𝑃 (𝜔 )∑
𝜔 |=𝜖

𝑃 (𝜔 )
=

∑
𝜔 |=𝜖

𝑃 (𝜔 )∑
𝜔 |=𝜖

𝑃 (𝜔 )
= 1. Therefore, when 𝜖 |= 𝜑 , the explanatory gain of 𝜖 for 𝜑 is

𝐺 (𝜖, 𝜑) = log
(
𝑃 (𝜑 | 𝜖 )
𝑃 (𝜑 )

)
= log

(
1

𝑃 (𝜑 )

)
= − log 𝑃 (𝜑). □

The following corollary follows naturally from Proposition 3:

Corollary 1. Let 𝐸 (𝜑) denote the set of all monolithic explanations for explanandum 𝜑 from belief base B. For
any two monolithic explanations 𝜖1, 𝜖2 ∈ 𝐸 (𝜑), if 𝜖1 |= 𝜑 and 𝜖2 |= 𝜑 (resp. 𝜖2 ̸ |= 𝜑), then 𝐺 (𝜖1, 𝜑) = 𝐺 (𝜖2, 𝜑) (resp.
𝐺 (𝜖1, 𝜑) > 𝐺 (𝜖2, 𝜑)).

What Proposition 3 and Corollary 1 essentially underscore is that the exclusive focus on explanatory gain as an
evaluation metric for a monolithic explanation neglects the inherent likelihood of the explanation itself. That is,
the explanatory gain of a monolithic explanation for an explanandum evaluates how effectively the explanation
explains the explanandum, assuming that the explanation itself is true. Nonetheless, this premise often lacks
practical relevance because, in probabilistic contexts, each monolithic explanation is associated with a probability
reflecting its likelihood for being true. Therefore, a good measure for evaluating monolithic explanations should
incorporate the explanation’s inherent plausibility.
Addressing this gap, Good (1968) introduced the concept of (strong) explanatory power that integrates the

monolithic explanation’s explanatory gain with its probability, offering a more balanced metric for evaluating
monolithic explanations.11 Building on Good’s measure of explanatory power, we adapt it to our setting and
define it as follows:12

11Good’s measure of (strong) explanatory power is defined as log
(
𝑃 (𝜑 | ℎ) ·𝑃 (ℎ)𝛾

𝑃 (𝜑 )

)
, where ℎ is a hypothesis and 0 < 𝛾 < 1 a constant (Good

1968).
12For a detailed defense of Good’s measure as a quantitative criterion for explanatory power, alongside a discussion of relevant properties
and a comprehensive comparison with other measures, we refer the reader to the work by Glass (2023).
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Definition 12 (Explanatory Power of Monolithic Explanations). Let 𝜖 be a monolithic explanation for
explanandum 𝜑 from belief base B. The explanatory power of 𝜖 for 𝜑 is defined as EP(𝜖, 𝜑) = 𝐺 (𝜖, 𝜑) + 𝛾 · 𝑃 (𝜖),
where 𝛾 ∈ [0, 1] is a constant.

This definition effectively combines the measure of how much a monolithic explanation explains the ex-
planandum (explanatory gain) with the likelihood of the explanation itself, mediated by a parameter 𝛾 . The
constant 𝛾 serves as a tuning parameter, enabling the adjustment of the relative importance of the monolithic
explanation’s probability in the overall assessment of explanatory power. This flexibility is important for tailoring
the evaluation process to specific contexts or preferences, where the balance between the informativeness of a
monolithic explanation and its plausibility may vary.

Example 7. Consider the belief base B = {(𝑎, 1.5), (𝑏, 3), (¬𝑎 ∨ 𝑐, 1), (¬𝑏 ∨ 𝑐, 1)} and the explanandum 𝑐 with
initial probability 𝑃 (𝑐) = 0.84. Notice that 𝜖1 = {𝑎,¬𝑎 ∨ 𝑐} and 𝜖2 = {𝑏,¬𝑏 ∨ 𝑐} are two monolithic explanations
for 𝑐 from B, each of which entail 𝑐 (i.e., 𝜖1 |= 𝑐 and 𝜖2 |= 𝑐), with probabilities 𝑃 (𝜖1) = 0.68 and 𝑃 (𝜖2) = 0.80,
respectively. This means that their explanatory gain for 𝑐 is equal (Corollary 1), that is, 𝐺 (𝜖1, 𝑐) = 𝐺 (𝜖2, 𝑐) = 0.25.
Now, assuming 𝛾 = 0.5, the explanatory power of 𝜖1 and 𝜖2 respectively is EP(𝜖1, 𝑐) = 0.25 + 0.5 · 0.68 = 0.59 and
EP(𝜖2, 𝑐) = 0.25 + 0.5 · 0.80 = 0.65.

With the introduction of explanatory power as an evaluative measure of (probabilistic) monolithic explanations,
we can now define a (probabilistic) preference relation among monolithic explanations, which allows for a
systematic approach to determining the most effective monolithic explanation for a given explanandum:

Definition 13 (Preference Relation for Monolithic Explanation). Let 𝜖1 and 𝜖2 be two monolithic
explanations for explanandum 𝜑 from belief base B. 𝜖1 is preferred over 𝜖2, denoted as 𝜖1 ⪰ 𝜖2, if and only if
EP(𝜖1, 𝜑) ≥ EP(𝜖2, 𝜑).

This definition enables a quantitatively grounded approach to preference among monolithic explanations,
where the preference is directly tied to the explanatory power of each explanation. It facilitates a structured
way to navigate the space of potential monolithic explanations, prioritizing those that not only explain the
explanandum more effectively, but also align more closely with the existing knowledge represented by the belief
base B.

Example 8. Continuing from Example 7, the two monolithic explanations for 𝑐 from B are 𝜖1 and 𝜖2 and have
explanatory power EP(𝜖1, 𝑐) = 0.59 and EP(𝜖2, 𝑐) = 0.65. Thus, 𝜖2 is preferred over 𝜖1 (i.e., 𝜖2 ⪰ 𝜖1).

Finally, given the set of all monolithic explanations for an explanandum, we say that a monolithic explanation
is most preferred if and only if it is (probabilistically) preferred over every other possible monolithic explanation
for that explanandum. Formally,

Definition 14 (Most-Preferred Monolithic Explanation). Let 𝐸 (𝜑) denote the set of all monolithic expla-
nations for explanandum 𝜑 from belief base B. A monolithic explanation 𝜖∗ ∈ 𝐸 (𝜑) is the most-preferred monolithic
explanation if and only if 𝜖∗ ⪰ 𝜖 for all 𝜖 ∈ 𝐸 (𝜑).

5.1.1 Motivating Application: Illustrative Example. Recall from our motivating scenario in Section 4 that we are
interested in explaining the explanandum 𝜑 = ¬move(𝑟𝑜𝑜𝑚1, 𝑟𝑜𝑜𝑚2, 𝐴), which is akin to asking “why didn’t you
take corridor A?” Using our framework, we identify two potential explanations for this explanandum:
(1) 𝜖1 = {crowded(𝐴)} or, in natural language, “Corridor A is very likely crowded.”
• 𝑃 (𝜑 |𝜖1) = 0.62
• Explanatory gain: 𝐺 (𝜖1, 𝜑) = 0.1
• Explanatory power: 𝐸𝑃 (𝜖1, 𝜑) = 0.5
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(2) 𝜖2 = {crowded(𝐴), move(𝑟𝑜𝑜𝑚1, 𝑟𝑜𝑜𝑚2, 𝐴)0∧crowded(𝐴) → robot-at(𝑟𝑜𝑜𝑚1)1, move(𝑟𝑜𝑜𝑚1, 𝑟𝑜𝑜𝑚2, 𝐴)0∧
crowded(𝐴) → robot-at(𝑟𝑜𝑜𝑚2)1} or, in natural language, “Corridor A is very likely crowded, and when
attempting to move through a crowded corridor, my movement outcomes are uncertain; I may either
succeed or fail to move through to the next room.”
• 𝑃 (𝜑 |𝜖2) = 1
• Explanatory gain: 𝐺 (𝜖2, 𝜑) = 0.79
• Explanatory power: 𝐸𝑃 (𝜖2, 𝜑) = 1.04

Comparing the two explanations, we see that explanation 𝜖2 has the highest explanatory power (1.04), and
is thus the most-preferred explanation according to Definition 14. Such an explanation can help the human
supervisor to understand both the robot’s belief about the environment (crowded corridor) and how this belief
influences action outcomes (movement outcomes under crowded conditions), thereby providing a more complete
picture of the robot’s decision-making process.

Comparison with MPE: It is important to highlight the difference with the traditionalMost Probable Explanation
(MPE) method. MPE typically consists of finding the world with the highest probability given some evidence
(Shterionov et al. 2015). However, a world does not show the chain of inferences of a given explanandum, and
importantly, it is not minimal by definition since it usually includes a (possibly large) number of probabilistic
facts whose truth value is irrelevant for the explanandum. For example, applying standard MPE to our running
example we get the following outcome:

𝜔MPE = {crowded(𝐴),¬crowded(𝐵),¬deliver0, deliver1,¬move(𝑟𝑜𝑜𝑚1, 𝑟𝑜𝑜𝑚2, 𝐴)0,
¬move(𝑟𝑜𝑜𝑚1, 𝑟𝑜𝑜𝑚2, 𝐴)1, move(𝑟𝑜𝑜𝑚1, 𝑟𝑜𝑜𝑚2, 𝐵)0,¬move(𝑟𝑜𝑜𝑚1, 𝑟𝑜𝑜𝑚2, 𝐵)1,
¬move(𝑟𝑜𝑜𝑚2, 𝑟𝑜𝑜𝑚1, 𝐴)0,¬move(𝑟𝑜𝑜𝑚2, 𝑟𝑜𝑜𝑚1, 𝐴)1,¬move(𝑟𝑜𝑜𝑚2, 𝑟𝑜𝑜𝑚1, 𝐵)0,
¬move(𝑟𝑜𝑜𝑚2, 𝑟𝑜𝑜𝑚1, 𝐵)1,¬package-delivered0,¬package-delivered1,
package-delivered2, robot-at(𝑟𝑜𝑜𝑚1)0,¬robot-at(𝑟𝑜𝑜𝑚1)1,
¬robot-at(𝑟𝑜𝑜𝑚1)2,¬robot-at(𝑟𝑜𝑜𝑚2)0, robot-at(𝑟𝑜𝑜𝑚2)1,
robot-at(𝑟𝑜𝑜𝑚2)2}

While 𝜔MPE is indeed the most probable world (𝑃 (𝜔MPE) = 0.32) in which the query (¬move(𝑟𝑜𝑜𝑚1, 𝑟𝑜𝑜𝑚2, 𝐴)) is
true, it does not pinpoint to the (minimal) combination of formulae that justify the query.

5.2 Probabilistic Model Reconciling Explanations
Recall from Section 3.3 that, in the model reconciliation problem (MRP), the models of the agent and the human
user diverge with respect to an explanandum, insofar as the explanandum is explicable in the agent’s model but
inexplicable in the human’s model. The goal is then to find a model reconciling explanation (i.e., a set of model
differences) such that the explanandum becomes explicable in the human’s model. Three important assumptions
underlying MRP typically hold: (1) the agent model is the ground truth; (2) the agent has access to the human
model; and (3) both models are deterministic.

As we described in Section 3.3, assumption (1) is reasonable since explanations are generated from the agent’s
perspective. In other words, the agent “thinks” that its model is correct. For assumption (2), the agent does
not have access to the human’s actual model, but an approximation of it. In the worst case, it can be empty;
but, practically, it can be approximated based on past interactions (Juba et al. 2021; Sreedharan et al. 2018). For
assumption (3), we will relax the assumption that the human model is deterministic in our work, but we will still
assume that the agent model is deterministic.
The motivation for moving away from deterministic human models becomes stronger when we consider

two key points. First, since the agent is using an approximated human model, deterministic approximations are
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more likely to be inaccurate compared to probabilistic ones. Consequently, deterministic models may generate
explanations that are incorrect or not meaningful for the user, thereby reducing the effectiveness of MRP. Secondly,
it is likely that humans hold beliefs with varying degrees of certainty, highlighting a shortfall of deterministic
models in capturing this range of uncertainties. These factors together underscore the necessity for models that
incorporate probabilistic aspects, thus potentially enabling a more accurate and user-relevant application of MRP.

To that end, we will now expand the scope of MRP to cases in which the agent is uncertain about the human
model. Particularly, we build on our previous work (Vasileiou, Yeoh, et al. 2022), wherein both the agent and
human models are represented as (logical) knowledge bases (see Definition 8), and extend it to the case where the
human knowledge base is probabilistic (i.e., a belief base). In other words, we are now interested in probabilistic
model reconciling explanations.

First, we show through the following example how the concepts surrounding probabilistic monolithic explana-
tions introduced in the previous section are applicable to the case of an agent knowledge base KB𝛼 and a human
belief base Bℎ .

Example 9. Let KB𝛼 = {𝑎,¬𝑎 ∨ 𝑏, 𝑐} and Bℎ = {(𝑐, 2), (¬𝑐 ∨ ¬𝑎, 2)} be the knowledge bases of an agent and the
belief base of a human, respectively. Additionally, let 𝑏 be the explanandum, where KB𝛼 |= 𝑏 and 𝑃ℎ (𝑏) = 0.5. The
goal in this example would then be to find which formulae from KB𝛼 increase the probability of the explanandum
for Bℎ , that is, to find a probabilistic monolithic explanation 𝜖 for 𝑏 from KB𝛼 for Bℎ such that 𝑃ℎ (𝑏 | 𝜖) > 𝑃ℎ (𝑏)
(Definition 10).

Given KB𝛼 , there are three possible monolithic explanations: 𝜖1 = {𝑎}, 𝜖2 = {¬𝑎 ∨ 𝑏}, and 𝜖3 = {𝑎,¬𝑎 ∨ 𝑏}.
Evaluating them with respect to the probability distribution induced by Bℎ , we get 𝑃ℎ (𝑏 | 𝜖1) = 0.5, 𝑃ℎ (𝑏 | 𝜖2) = 0.55,
and 𝑃ℎ (𝑏 | 𝜖3) = 1. Notice now that only 𝜖2 and 𝜖3 qualify as monolithic explanations since 𝑃ℎ (𝑏 | 𝜖2) > 𝑃ℎ (𝑏) and
𝑃ℎ (𝑏 | 𝜖3) > 𝑃ℎ (𝑏), whilst 𝜖1 does not qualify as a monolithic explanation as 𝑃ℎ (𝑏 | 𝜖1) = 𝑃ℎ (𝑏) = 0.5.
Given 𝜖2 and 𝜖3 as the two possible monolithic explanations, we can now evaluate their effectiveness in terms

of explanatory gain (Definition 11) and explanatory power (Definition 12). In terms of explanatory gain, we get
𝐺 (𝜖2, 𝑏) = 0.14 and 𝐺 (𝜖3, 𝑏) = 1. In terms of explanatory power (for 𝛾 = 0.5), we get EP(𝜖2, 𝑏) = 0.59 and
EP(𝜖3, 𝑏) = 1.04. Finally, following the definition of most-preferred monolithic explanation (Definition 14), we get
that 𝜖3 is the most-preferred monolithic explanation for 𝑏 from KB𝛼 for Bℎ .

On the one hand, example 9 shows that the definitions introduced in Section 5.1 can be directly applied to
the case of an agent knowledge base KB𝛼 and a human belief base Bℎ . On the other hand, there is something
important to highlight here. Despite 𝜖3 being the most-preferred monolithic explanation (i.e., it has the highest
explanatory power), notice that its probability 𝑃ℎ (𝜖3) = 0.09 is rather low, which means that its negation ¬𝜖3
has a much higher probability with 𝑃ℎ (¬𝜖3) = 0.91. Logically, this is explained by the fact that 𝜖3 is inconsistent
with the formulae in B↓𝑤

ℎ
. Therefore, the probabilistic monolithic explanation 𝜖3 may not achieve the intended

“reconciliation” between the agent and the human.
Recall that a model reconciling explanation (see Definition 8) is of the form E = ⟨𝜖+, 𝜖−⟩, where 𝜖− is specifically

intended to resolve the inconsistency between the agent and the human with respect to the explanandum.
Intuitively, the provision of 𝜖− can be thought of as the agent’s suggestion of what is “false” in the human
knowledge base, at least compared to the agent knowledge base. In the case of a human belief base Bℎ , we can
account for 𝜖− by finding a set of formulae from Bℎ such that 𝑃ℎ (𝜖+ | ¬𝜖−) > 𝑃ℎ (𝜖+). For example,

Example 10. Let KB𝛼 = {𝑎,¬𝑎 ∨ 𝑏, 𝑐} and Bℎ = {(𝑐, 2), (¬𝑐 ∨ ¬𝑎, 2)} from Example 9. From the perspective of
KB𝛼 , explanation 𝜖 = {𝑎,¬𝑎 ∨ 𝑐} can be seen as the formulae that should be true (e.g., added) in Bℎ (i.e., 𝜖+ = 𝜖).
However, notice that 𝜖+ is inconsistent with B↓𝑤

ℎ
= {𝑐,¬𝑐 ∨ ¬𝑎}. Thus, from the perspective of KB𝛼 , some formulae

from B↓𝑤
ℎ

are false (e.g., they should be retracted). One can see that 𝜖− = ¬𝑐 ∨ ¬𝑎 is the only formula that should
be false as it is the only one that is inconsistent with KB𝛼 . Indeed, if 𝜖− is assumed to be false, then the probability
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of 𝜖+ increases, i.e., 𝑃ℎ (𝜖+ | ¬𝜖−) = 0.5 > 𝑃ℎ (𝜖+) = 0.09. Therefore, 𝜖+ and 𝜖− can be seen as a model reconciling
explanation for 𝑏 from KB𝛼 for Bℎ .

Before formally defining what constitutes a probabilistic model reconciling explanation, we state the following
assumptions underlying our framework:

• Shared Domain Language: The agent and the human user share the same (propositional) language L, that is,
they share the same set of atomic variablesV from which formulae specific to a domain can be constructed.

• Agent Knowledge Base: The agent model is represented by the (deterministic) knowledge base KB𝛼 , encoding
the ground truth of the domain.

• Human Belief Base: The human model is represented by the belief base Bℎ (and its associated probability
distribution 𝑃ℎ), reflecting the agent’s uncertainty, for example, its degrees of belief about the human model.
The agent has access to Bℎ a-priori.13

We define a probabilistic model reconciling explanation as follows:

Definition 15 (Probabilistic Model Reconciling Explanation). Given the knowledge base KB𝛼 of an agent,
the belief base Bℎ of a human user, and an explanandum 𝜑 such that KB𝛼 |= 𝜑 and 𝑃ℎ (𝜑) < 1, Ẽ = ⟨𝜖+, 𝜖−⟩ is a
probabilistic model reconciling explanation if and only if 𝜖+ ⊆ KB𝛼 and 𝜖− ⊆ B↓𝑤

ℎ
, and 𝑃ℎ (𝜑 | 𝜖+) > 𝑃ℎ (𝜑) and

𝑃ℎ (𝜖+ | ¬𝜖−) > 𝑃ℎ (𝜖+).

A probabilistic model reconciling explanation Ẽ = ⟨𝜖+, 𝜖−⟩ for 𝜑 from KB𝛼 for Bℎ is a tuple that increases the
degree of belief in 𝜑 with 𝜖+, as well as increasing the degree of belief in 𝜖+ with 𝜖− if 𝜖+ is inconsistent with
B↓𝑤
ℎ

. For brevity, until the end of this section, we will refer to probabilistic model reconciling explanations Ẽ as
model reconciling explanations. In this context, the notion of explanatory gain takes the following form:

Definition 16 (Explanatory Gain for Model Reconciling Explanations). Let Ẽ = ⟨𝜖+, 𝜖−⟩ be a model
reconciling explanation for explanandum 𝜑 from KB𝛼 for Bℎ . The explanatory gain of Ẽ for 𝜑 is defined as𝐺 (Ẽ, 𝜑) =
log

(
𝑃 (𝜑 | 𝜖+ )
𝑃 (𝜑 )

)
+ log

(
𝑃 (𝜖+ | ¬𝜖− )

𝑃 (𝜖+ )

)
.

In essence, the explanatory gain of Ẽ = ⟨𝜖+, 𝜖−⟩ for 𝜑 evaluates to what extent 𝜖+ increases the probability of
𝜑 , as well as the extent to which 𝜖− increases the probability of 𝜖+, assuming that 𝜖− is false.

Example 11. Let Ẽ = ⟨{𝑎,¬𝑎 ∨ 𝑏}, {¬𝑐 ∨ ¬𝑎}⟩ be the model reconciling explanation for 𝑏 from KB𝛼 for Bℎ in
Example 10. The explanatory gain of Ẽ for 𝑏 is 𝐺 (Ẽ, 𝑏) = log

( 1
0.5

)
+ log

( 0.5
0.09

)
= 1 + 2.47 = 3.47.

Similarly, the notion of explanatory power is defined in the following way:

Definition 17 (Explanatory Power for Model Reconciling Explanations). Let Ẽ = ⟨𝜖+, 𝜖−⟩ be a model
reconciling explanation for explanandum 𝜑 from KB𝛼 for Bℎ . The explanatory power of Ẽ for 𝜑 is defined as
EP(Ẽ, 𝜑) = 𝐺ℎ (Ẽ, 𝜑) + 𝛾 · (𝑃ℎ (𝜖+) + 𝑃ℎ (𝜖−)), where 𝛾 ∈ [0, 1] is a constant.

This definition of explanatory power of Ẽ = ⟨𝜖+, 𝜖−⟩ for 𝜑 assesses, in addition to the explanatory gain of Ẽ,
the likelihoods of 𝜖+ and 𝜖− , with 𝛾 parameterizing their relative importance in the overall assessment.

Example 12. Continuing from Example 11, the explanatory power of Ẽ = ⟨{𝑎,¬𝑎 ∨ 𝑏}, {¬𝑐 ∨ ¬𝑎}⟩ for 𝑏 (for
𝛾 = 0.5) is EP(Ẽ, 𝑏) = 3.47 + 0.5 · (0.09 + 0.90) = 3.96

13We leave the question of acquiring (or learning) the human belief base open for future work.
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Finally, a preference relation and a most-preferred model reconciling explanation can be defined in the same
manner as in Definition 13 and Definition 14, respectively.

Definition 18 (Preference Relation for Model Reconciling Explanation). Let Ẽ1 and Ẽ2 be two model
reconciling explanations for explanandum 𝜑 from knowledge base KB𝛼 for beleif base Bℎ . Ẽ1 is preferred over Ẽ2,
denoted Ẽ1 ⪰ Ẽ2, if and only if EP(Ẽ1) ≥ EP(Ẽ2).

Definition 19 (Most-Preferred Model Reconciling Explanation). Let 𝐸 (𝜑) denote the set of all model
reconciling explanations for explanandum 𝜑 from knowledge base KB𝛼 for belief base Bℎ . A model reconciling
explanation Ẽ∗ ∈ 𝐸 (𝜑) is the most-preferred model reconciling explanation for 𝜑 if and only if Ẽ∗ ⪰ Ẽ for all
Ẽ∈𝐸 (𝜑).

5.2.1 Motivating Application: Illustrative Example. Continuing with our motivating example, we will now examine
a case where the human’s belief base differs from the robot’s in a way that leads to divergent expectations about
the robot’s decision. Particularly, consider a deterministic version of the robot’s belief base KB𝛼 as described in
Section 4, and let us define the human’s belief base Bℎ with the following key differences:

(¬crowded(𝐴), 1)
(crowded(𝐵), 3)

The human user believes that corridor A is generally unlikely to be crowded and corridor B is very likely
crowded—the opposite of the robot’s beliefs. Additionally, the human believes that the robot can successfully
move through corridors A and B, whether crowded or not. Given their belief base Bℎ , the expected optimal plan
from the human’s perspective would be 𝜋ℎ = ⟨move(𝑟𝑜𝑜𝑚1, 𝑟𝑜𝑜𝑚2, 𝐴)0, deliver1⟩. When the human observes
the robot taking corridor B instead, they would naturally question this decision.
The robot, aware of this discrepancy, can then generate a probabilistic model reconciling explanation Ẽ =

⟨𝜖+, 𝜖−⟩ to address 𝜑 :

𝜖+ = {crowded(𝐴), move(𝑟𝑜𝑜𝑚1, 𝑟𝑜𝑜𝑚2, 𝐴)0 ∧ crowded(𝐴) → robot-at(𝑟𝑜𝑜𝑚1)1}
𝜖− = {¬crowded(𝐴)}
• 𝑃ℎ (𝜑 |𝜖+) = 0.7 (increased from 𝑃ℎ (𝜑) = 0.4)
• 𝑃ℎ (𝜖+ |¬𝜖−) = 1 (increased from 𝑃ℎ (𝜖+) = 0.15)
• Explanatory gain: 𝐺 (Ẽ, 𝜑) = 3.04
• Explanatory power: 𝐸𝑃 (Ẽ, 𝜑) = 3.22

The explanation essentially communicates: “I didn’t take corridor A because it is very likely crowded, contrary
to your belief that it’s not crowded. Additionally, when a corridor is crowded, my movement through it will likely
fail, causing me to remain in my original location.” What we see here is that if we focus on both environmental
factors (crowded corridor) and action dynamics (movement success), we get an explanation that provides a
complete account of the robot’s decision-making process, thereby helping the human gain a better understanding
of the robot.

6 Computing Explanations
We now describe algorithms for computing explanations. We first review two algorithms proposed in our previous
work (Vasileiou, Previti, et al. 2021) for computing classical (deterministic) monolithic explanations (Definition 1)
and model reconciling explanations (Definition 8), and then show how to extend them to the probabilistic case.
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Algorithm 1: monolithic-explanation(KB, 𝜑)
Input: Knowledge base KB and explanandum 𝜑

Result: A minimum size monolithic explanation 𝜖 for 𝜑 from KB
1 H ← ∅
2 while true do
3 𝑠𝑒𝑒𝑑 ← minHS(H) // compute a minimal hitting set

4 𝜖 ← {𝑐𝑖 | 𝑖 ∈ 𝑠𝑒𝑒𝑑}
5 if not SAT(𝜖 ∪ {¬𝜑}) then
6 return 𝜖 // minimum size monolithic explanation

7 else
8 C ← getMCS(𝑠𝑒𝑒𝑑,KB𝑠 ∪ {¬𝜑ℎ}) // compute a minimal correction set

9 H ← H ∪ {C}

6.1 Classical Explanations
We previously introduced an approach for computing minimum size monolithic explanations for an explanandum
𝜑 from a knowledge base KB, where KB |= 𝜑 (Vasileiou, Previti, et al. 2021). The principal idea of this approach
is to reduce the problem of computing a monolithic explanation of minimum size to the one of computing a
smallest minimal unsatisfiable set (SMUS) over an inconsistent knowledge base.

In particular, notice that, by definition, we have that KB |= 𝜑 if and only if KB∪ {¬𝜑} is inconsistent. Moreover,
in Proposition 2, we have already stated the relation between a monolithic explanation and aminimal unsatisfiable
set (MUS). This suggests that, in order to extract a monolithic explanation, we just need to run an MUS solver
over the knowledge base KB𝑠 ∪ {¬𝜑ℎ}, where KB𝑠 and 𝜑ℎ denote that KB and 𝜑 are treated as soft and hard
constraints, respectively, and then remove ¬𝜑 from the returned MUS.14 The hitting set duality relating MUSes
and minimal correction sets (MCSes) (see Lemma 1) is a key aspect for the computation of an SMUS.

Algorithm 1 describes the main steps of our approach.H is a collection of sets, where each set corresponds to
an MCS on KB. At the beginning, it is initialized with the empty set (line 1). Each MCS inH is represented as the
set of the indexes of the formulae in it.H stores the MCSes computed so far. At each step, a minimal hitting set
onH is computed (line 3). In line 4, the formulae induced by the computed minimal hitting set is stored in 𝜖 .
Then, 𝜖 ∪ {¬𝜑} is evaluated for satisfiability (line 5). If 𝜖 ∪ {¬𝜑} is inconsistent, then 𝜖 is a monolithic explanation
of minimum size and the algorithm returns 𝜖 . If instead 𝜖 ∪ {¬𝜑} is consistent, then it means that 𝜖 ̸ |= 𝜑 and
the algorithm continues in line 8. The computation of an MCS of this kind can be performed via standard MCS
procedures (Marques-Silva et al. 2013), using the set of formulae indexed by the seed as the starting formula to
extend. Since 𝜑 is set to hard (line 8), the returned MCS C is guaranteed to be contained in KB. Due to the hitting
set duality relation, we will also have 𝜖 ⊆ KB. Finally, notice that the procedure 𝑔𝑒𝑡𝑀𝐶𝑆 always reports a new
MCS because, by construction, we have 𝑠𝑒𝑒𝑑 ⊆ KB \ C. In fact, the 𝑠𝑒𝑒𝑑 contains at least one formula for each
previously computed MCS and, thus, 𝑠𝑒𝑒𝑑 ∩ C = ∅ (i.e., at least one formula for each previously computed MCS
is not in C).
Algorithm 1 is complete in the sense that eventually a monolithic explanation 𝜖 ⊆ KB of minimum size such

that 𝜖 |= 𝜑 will be returned. This can be easily verified by observing that every time 𝜖 ∪ {¬𝜑} is satisfiable, a new
MCS is computed. Eventually, all the MCSes will be computed and, from Propositions 1 and 2, it follows that a
minimal hitting set on the collection of all MCSes corresponds to the smallest MUS, and as such, to a monolithic
explanation of minimum size.

14Recall that soft constraints may be removed by the MUS solver, while hard constraints will not be removed.
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Table 1. Example of Algorithm 1 for computing a monolithic explanation of minimum size.

KB = {
𝐶1

𝑎 ∨ 𝑏,
𝐶2
¬𝑏 ∨ 𝑐, 𝐶3¬𝑐,

𝐶4
¬𝑏 ∨ 𝑑}

KB |= 𝑎

1. H ← ∅
2. 𝑠𝑒𝑒𝑑 ← ∅ #𝑚𝑖𝑛𝐻𝑆 (H)
3. ∅ ̸|= 𝑎 # 𝑆𝐴𝑇 (𝜖 ∪ {¬𝑎})
4. C ← {𝐶1} # MCS computed on 𝐾𝐵𝑠 ∪ {¬𝑎ℎ} starting with the seed 𝑠𝑒𝑒𝑑
5. H ← {{𝐶1}}
6. 𝑠𝑒𝑒𝑑 ← {𝐶1} #𝑚𝑖𝑛𝐻𝑆 (H)
7. {𝑎 ∨ 𝑏} ̸|= 𝑎 # 𝑆𝐴𝑇 (𝜖 ∪ {¬𝑎})
8. C ← {𝐶2} # MCS computed on 𝐾𝐵𝑠 ∪ {¬𝑎ℎ} starting with the seed 𝑠𝑒𝑒𝑑
9. H ← {{𝐶1}, {𝐶2}}
10. 𝑠𝑒𝑒𝑑 ← {𝐶1,𝐶2} #𝑚𝑖𝑛𝐻𝑆 (H)
11. {𝑎 ∨ 𝑏,¬𝑏 ∨ 𝑐} ̸|= 𝑎 # 𝑆𝐴𝑇 (𝜖 ∪ {¬𝑎})
12. C ← {𝐶3} # MCS computed on 𝐾𝐵𝑠 ∪ {¬𝑎ℎ} starting with the seed 𝑠𝑒𝑒𝑑
13. H ← {{𝐶1}, {𝐶2}, {𝐶3}}
14. 𝑠𝑒𝑒𝑑 ← {𝐶1,𝐶2,𝐶3} #𝑚𝑖𝑛𝐻𝑆 (H)
15. {𝑎 ∨ 𝑏,¬𝑏 ∨ 𝑐,¬𝑐} |= 𝑎 # ¬𝑆𝐴𝑇 (𝜖 ∪ {¬𝑎})
16. 𝑅𝑒𝑡𝑢𝑟𝑛 {𝑎 ∨ 𝑏,¬𝑏 ∨ 𝑐,¬𝑐} # minimum size monolithic explanation for 𝑎 from KB

Note that deciding whether there exists a monolithic explanation of size less or equal to 𝑘 is Σ𝑝2 -complete and
extracting a smallest monolithic explanation is in 𝐹𝑃Σ

𝑝

2 . This follows directly from the complexity of deciding
and computing an SMUS on which Algorithm 1 is based on (Ignatiev, Previti, et al. 2015).

6.1.1 Model Reconciling Explanations. We have also previously showed how Algorithm 1 can be further extended
for computing model reconciling explanations for an explanandum 𝜑 from an agent knowledge base KB𝛼 for a
human knowledge base KBℎ (Vasileiou, Previti, et al. 2021). However, we only considered the specific task of
finding a model reconciling explanation 𝜖 ⊆ KB𝛼 ∪ KBℎ such that KBℎ ∪ 𝜖 |= 𝜑 and 𝜖 \ KBℎ is of minimum size.
Notice that, in general, KBℎ ∪ 𝜖 might be inconsistent. However, in our approach, we discard this possibility by
preprocessing KBℎ . In particular, we create a new KB′

ℎ
⊆ KBℎ by removing a minimal set of formulae in KBℎ that

makes KBℎ ∪ KB𝛼 inconsistent. The new KB′
ℎ
is such that KB′

ℎ
∪ 𝜖 is always consistent.

We now modify this approach for computing model reconciling explanations E = ⟨𝜖+, 𝜖−⟩, where 𝜖+ ⊆ KB𝛼
and 𝜖− ⊆ KBℎ , such that (KBℎ ∪ 𝜖+) \ 𝜖− |= 𝜑 . Particularly, in addition to 𝜖+, our approach now computes 𝜖− as
well.

Algorithm 2 describes the pseudocode of our approach. At the beginning of the algorithm, we initialize R to
the null set (line 1). R is used to store the MCSes, which acts as a mediator between KB𝛼 and KBℎ . Lines 2-3 are
used to specify which clauses of KB𝛼 will be treated as hard and soft constraints, respectively. We then check if
KBℎ ∪ KB𝛼 is inconsistent (line 4). This is important in order to avoid the possibility of finding subsets 𝜖+ that
explain why KBℎ ∪ KB𝛼 is inconsistent instead of the target explanandum. In case KBℎ ∪ KB𝛼 is inconsistent,
we preprocess KBℎ by removing from KBℎ \ KB𝛼 a minimal set of formulae causing the conflict (i.e., an MCS)
(lines 5-6), where 𝐸− stores the set of potential formulae 𝜖− to retract. The reconciliation procedure starts in line 7.
The algorithm proceeds iteratively by computing a minimal hitting set on R and then testing for satisfiability the
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Algorithm 2: model-reconciling-explanation(KB𝛼 ,KBℎ𝛼 , 𝜑)
Input: Knowledge bases KB𝛼 and KBℎ and explanandum 𝜑

Result: A model reconciling explanation E = ⟨𝜖+, 𝜖−⟩ for 𝜑 from KB𝛼 for KBℎ
1 R← ∅
2 KBℎ𝛼 ← KB𝛼 ∩ KBℎ
3 KB𝑠𝛼 ← KB𝛼 \ KBℎ𝛼
4 if not SAT(KBℎ ∪ KB𝛼 ) then
5 𝐸− ← getMCS((KBℎ \ KB𝛼 )𝑠 ∪ KBℎ𝛼 ) // restore consistency on KBℎ
6 KBℎ ← KBℎ \ 𝐸−

7 while true do
8 𝑠𝑒𝑒𝑑 ← minHS(R)
9 𝜖+ ← {𝑐𝑖 | 𝑖 ∈ 𝑠𝑒𝑒𝑑} // explanation 𝜖+ induced by the seed

10 if not SAT(KBℎ ∪ 𝜖+ ∪ {¬𝜑}) then
11 𝜖− ← ∅
12 if not SAT(KBℎ ∪ 𝜖+ ∪ 𝐸−) then
13 𝜖− ← getMCS((KBℎ ∪ 𝜖+)ℎ ∪ (𝐸−)𝑠 )
14 return ⟨𝜖+, 𝜖−⟩
15 else
16 C ← getMCS(𝑠𝑒𝑒𝑑,KBℎ𝛼 ∪ {¬𝜑ℎ} ∪ KB𝑠𝛼 )
17 R← R ∪ {C}

formulae 𝜖+ (lines 8-10). The test checks whether adding 𝜖+ to KBℎ is sufficient for entailing 𝜑 . If KBℎ ∪𝜖+ ∪ {¬𝜑}
is unsatisfiable, then KBℎ ∪ 𝜖+ |= 𝜑 . In that case, the algorithm then checks whether KBℎ ∪ 𝜖+ ∪𝐸− is inconsistent,
and if it is, it computes an MCS 𝑒− on (KBℎ ∪ 𝜖+)ℎ ∪ (𝐸−)𝑠 (lines 12-13). The model reconciling explanation
⟨𝜖+, 𝜖−⟩ is then returned in line 14. Otherwise, the algorithm continues in line 16, where a new MCS is computed
and added to R.15

Table 2 shows an example trace of Algorithm 2.

6.2 Probabilistic Explanations
We now show how the algorithms described in the previous section can be used for computing probabilistic
monolithic explanations (Definition 10) and probabilistic model reconciling explanations (Definition 15).

6.2.1 Monolithic Explanations. Consider an explanandum 𝜑 and a belief base B. First, notice that if we assume
that the classical projection of B entails the explanandum 𝜑 , that is B↓𝑤 |= 𝜑 , then Algorithm 1 can directly be
applied on B↓𝑤 and 𝜑 .16 In that case, Algorithm 1 guarantees to find a monolithic explanation with maximum
explanatory gain, since we know from Proposition 3 that explanatory gain achieves its maximum value for 𝜑
when the monolithic explanation entails 𝜑 . Nevertheless, this does not guarantee that the monolithic explanation
will be the most-preferred one, that is, the one with the highest explanatory power (Definition 14).

Obviously, a straightforward way of computing a most-preferred monolithic explanation is to use Algorithm 1
to enumerate all possible monolithic explanations for 𝜑 , and return the one that has the highest probability, which
corresponds to the one with the highest explanatory power. But enumerating through all possible monolithic
15Note that the algorithm is complete as it is based on Algorithm 1, which is complete.
16Recall that the classical projection of belief base B is the unweighted version of the set of formulae from B.
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Table 2. Example of Algorithm 2 for computing a model reconciling explanation.

KB𝛼 = {
𝐶1
(𝑎 ∨ 𝑏),

𝐶2
(¬𝑏 ∨ 𝑐), 𝐶3¬𝑐,

𝐶4
(¬𝑏 ∨ 𝑑),

𝐶5
¬𝑑}

}
We have that KB𝛼 |= 𝑎 and KBℎ ̸ |= 𝑎

KBℎ = {
𝐷1
𝑏 ,

𝐷2¬𝑐}
1. R ← ∅
2. KBℎ𝛼 ← KB𝛼 ∩ KBℎ = {𝐶3}
3. KB𝑠𝛼 ← KB𝛼 \ (KB𝛼 ∩ KBℎ) = {𝐶1,𝐶2,𝐶4,𝐶5}
4. 𝐸− ← {𝐷1} # MCS computed on (KBℎ \ KB𝛼 )𝑠 ∪ KBℎ𝛼
5. KBℎ ← {𝐷1, 𝐷2} \ {𝐷1} = {𝐷2}
6. 𝑠𝑒𝑒𝑑 ← ∅ #𝑚𝑖𝑛𝐻𝑆 (R)
7. {¬𝑐} ̸|= 𝑎 # 𝑆𝐴𝑇 (KBℎ ∪ 𝜖+ ∪ {¬𝑎})
8. C ← {𝐶1} # MCS computed on KBℎ𝛼 ∪ KB𝑠𝛼 ∪ {¬𝑎ℎ}
9. R ← {{𝐶1}}
10. 𝑠𝑒𝑒𝑑 ← {𝐶1} #𝑚𝑖𝑛𝐻𝑆 (R)
11. {¬𝑐, 𝑎 ∨ 𝑏} ̸|= 𝑎 # 𝑆𝐴𝑇 (KBℎ ∪ 𝜖+ ∪ {¬𝑎})
12. C ← {𝐶2,𝐶4} # MCS computed on KBℎ𝛼 ∪ KB𝑠𝛼 ∪ {¬𝑎ℎ}
13. R ← {{𝐶1}, {𝐶2,𝐶4}}
14. 𝑠𝑒𝑒𝑑 ← {𝐶1,𝐶4} #𝑚𝑖𝑛𝐻𝑆 (R)
15. {¬𝑐, 𝑎 ∨ 𝑏,¬𝑏 ∨ 𝑑} ̸|= 𝑎 # 𝑆𝐴𝑇 (KBℎ ∪ 𝜖+ ∪ {¬𝑎})
16. C ← {𝐶2,𝐶5} # MCS computed on KBℎ𝛼 ∪ KB𝑠𝛼 ∪ {¬𝑎ℎ}
17. R ← {{𝐶1}, {𝐶2,𝐶4}, {𝐶2,𝐶5}}
18. 𝑠𝑒𝑒𝑑 ← {𝐶1,𝐶2} #𝑚𝑖𝑛𝐻𝑆 (R)
19. {¬𝑐, 𝑎 ∨ 𝑏,¬𝑏 ∨ 𝑐} |= 𝑎 # ¬𝑆𝐴𝑇 (KBℎ ∪ 𝜖+ ∪ {¬𝑎})
20. 𝜖− ← {𝐷1} # MCS computed on (KBℎ ∪ 𝜖+)ℎ ∪ (𝐸−)𝑠
21. 𝑅𝑒𝑡𝑢𝑟𝑛 ⟨{𝐶1,𝐶2}, {𝐷1}⟩ # model reconciling explanation for 𝑎 from KB𝛼 for KBℎ

explanations and computing their probabilities can be computationally prohibitive, as even extracting a smallest
monolithic explanation is in 𝐹𝑃Σ

𝑝

2 (Ignatiev, Previti, et al. 2015) and computing the probability of a formula is
#𝑃-complete (Chavira and Darwiche 2008; Roth 1996). We can, however, account for this high computational
complexity by seeking for a monolithic explanation that is guaranteed to have a probability above a certain
threshold.

First, the following lemma notes that for all possible monolithic explanations 𝜖 for explanandum𝜑 , the following
upper and lower probability bounds hold:

Lemma 2. Let 𝐸 (𝜑) be the set of all monolithic explanations for explanandum 𝜑 from belief base B, where 𝜖 |= 𝜑
for all 𝜖 ∈ 𝐸 (𝜑), and let 𝜔1 be the most-probable world in which 𝜑 is true. Then, for any 𝜖 ∈ 𝐸 (𝜑), it holds that
𝑃 (𝜔1) ≤ 𝑃 (𝜖) ≤ 𝑃 (𝜑).

Proof. For the upper probability bound, since we assume that for all 𝜖 ∈ 𝐸 (𝜑), 𝜖 |= 𝜑 , then it must hold that
for all 𝜖 ∈ 𝐸 (𝜑), the worlds where 𝜖 is true are subsumed by the worlds where 𝜑 is true (entailment property).
This implies that for any 𝜖 ∈ 𝐸 (𝜑), 𝑃 (𝜖) ≤ 𝑃 (𝜑).

For the lower bound, since 𝜔1 is the most-probable world of 𝜑 , that is, the world where the highest number of
formulae from B are satisfied, then all monolithic explanations for 𝜑 must be true in 𝜔1 (i.e., 𝜔1 |= 𝜖). As such,
for any 𝜖 ∈ 𝐸 (𝜑), 𝑃 (𝜖) ≥ 𝑃 (𝜔1). □

Journal of Artificial Intelligence Research, Vol. 84, Article 5. Publication date: September 2025.



5:22 • Vasileiou, Yeoh, Previti & Tran

However, some monolithic explanations may have a higher lower probability bound. Formally, we call such
explanations 𝑘-bounded monolithic explanations:

Definition 20 (𝑘-Bounded Monolithic Explanation). Let 𝐸 (𝜑) be the set of all monolithic explanations for
explanandum 𝜑 from belief base B. Let Ω(𝜑) = {𝜔1, . . . , 𝜔𝑛} be the set of possible worlds in which 𝜑 is true, where

𝑃 (𝜔1) ≥ 𝑃 (𝜔2) ≥ . . . ≥ 𝑃 (𝜔𝑛). Also let 𝐼𝑘 =

𝑘⋂
𝑖=1
{𝜙 | 𝜙 ∈ B↓𝑤, 𝜔𝑖 |= 𝜙} be the intersection of formulae that are true

in worlds 𝜔1 to 𝜔𝑘 . We say that 𝜖 ∈ 𝐸 (𝜑) is a 𝑘-bounded monolithic explanation for 𝜑 from B, with lower bound

𝑃 (𝜖) ≥
𝑘∑︁
𝑖=1
𝑃 (𝜔𝑖 ), if and only if 𝜖 ⊆ 𝐼𝑘 .

Example 13. Consider the belief base B = {(𝑎, 1), (¬𝑎 ∨ 𝑏, 3), (𝑐, 2), (¬𝑐 ∨ 𝑏, 1)} and explanandum 𝑏. The two
monolithic explanations for 𝑏 from B that entail 𝑏 are 𝜖1 = {𝑎,¬𝑎 ∨ 𝑏} and 𝜖2 = {𝑐,¬𝑐 ∨ 𝑏}, where 𝑃 (𝜖1) = 0.64
and 𝑃 (𝜖2) = 0.77. Notice that there are four possible worlds in which 𝑏 is true: 𝜔1 = {𝑎 = 𝑇,𝑏 = 𝑇, 𝑐 = 𝑇 },
𝜔2 = {𝑎 = 𝐹, 𝑏 = 𝑇, 𝑐 = 𝑇 }, 𝜔3 = {𝑎 = 𝑇,𝑏 = 𝑇, 𝑐 = 𝐹 }, and 𝜔4 = {𝑎 = 𝐹, 𝑏 = 𝑇, 𝑐 = 𝐹 }, where 𝑃 (𝜔1) = 0.57,
𝑃 (𝜔2) = 0.20, 𝑃 (𝜔3) = 0.07, and 𝑃 (𝜔4) = 0.02. The maximum number of intersections that entail 𝑏 is 𝑘 = 2
(i.e., 𝐼2 = {¬𝑎 ∨ 𝑏, 𝑐,¬𝑐 ∨ 𝑏}). Indeed, 𝜖2 ⊆ 𝐼2 and 𝑃 (𝜖2) = 0.77 = 𝑃 (𝜔1) + 𝑃 (𝜔2). Finally, notice how 𝜖2 is also the
most-preferred monolithic explanation for 𝑏 from B; for 𝛾 = 0.5, EP(𝜖2, 𝑏) = 0.57 > EP(𝜖1, 𝑏) = 0.50.

Proposition 4. Let B be a belief base and 𝜑 an explanandum. A 1-bounded monolithic explanation 𝜖 for 𝜑 from
B always exists.

Proof. The proof follows directly from Lemma 2. □

Interestingly, there also exists a maximal 𝑘-bounded monolithic explanation.

Corollary 2. If 𝐼𝑘 |= 𝜑 and 𝐼𝑘+1 ̸ |= 𝜑 , then ∃𝜖 ⊆ 𝐼𝑘 with maximal lower bound 𝑃 (𝜖) ≥ 𝑃 (𝐼𝑘 )

Proof. First, notice that if 𝐼𝑘 |= 𝜑 and 𝐼𝑘+1 ̸ |= 𝜑 , then 𝐼𝑘+𝑗 ̸ |= 𝜑 for all 𝑗 = 1, . . . , 𝑛−𝑘 . As such, 𝑘 is the maximum
number of intersections (from 𝜔1 to 𝜔𝑘 ) such that 𝐼𝑘 |= 𝜑 . Thus, since 𝜖 |= 𝜑 for all 𝜖 ∈ 𝐸 (𝜑), it must be the case
that there exists at least one 𝜖 such that 𝜖 ⊆ 𝐼𝑘 , from which we know that 𝑃 (𝐼𝑘 ) ≤ 𝑃 (𝜖). Moreover, as 𝐼𝑘 is the set
of formulae that are true in worlds 𝜔1 to 𝜔𝑘 , its probability must be at least equal to the sum of the probabilities

of these worlds (i.e., 𝑃 (𝐼𝑘 ) ≥
𝑘∑︁
𝑖=1
𝑃 (𝜔𝑖 )). Therefore, 𝑃 (𝜖) ≥ 𝑃 (𝐼𝑘 ) ≥

𝑘∑︁
𝑖=1
𝑃 (𝜔𝑖 ), meaning that the probability of 𝜖

has a maximal lower bound by the top 𝑘 most-probable worlds of 𝜑 . □

The utility of a 𝑘-bounded monolithic explanation in computing probabilistic monolithic explanations can be
described as follows. If we take the top 𝑘 most-probable worlds in which the explanandum 𝜑 is true, then we
can prune the search space of possible monolithic explanations by taking the intersection of those worlds and
checking if it entails 𝜑—if it does, then we know that at least one monolithic explanation must be true in that
world with probability at least equal to the sum of the probabilities of these top 𝑘 worlds. Building on this, we now
present an algorithm for computing 𝑘-bounded monolithic explanations for 𝜑 from B, where we use Algorithm 1
as our core monolithic explanation generation engine.
Algorithm 3 describes the main steps of our approach. The important factor is the user-defined parameter 𝑘 ,

which dictates the number of worlds of 𝜑 to be considered. It is an integer with range 1 ≤ 𝑘 ≤ |Ω(𝜑) |, where
Ω(𝜑) is the set of all possible worlds of 𝜑 . Intuitively, the larger the 𝑘 , the more exhaustive the search will be as
more worlds will be considered. The algorithm starts in line 1 with 𝑘 taking the user-defined value 𝑘 , and then
proceeds to line 2, where it uses a weighted MaxSAT solver to find the top 𝑘 most-probable worlds of 𝜑 . Note that
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Algorithm 3: probabilistic-monolithic-explanation(B, 𝜑, 𝑘)
Input: Belief base B, explanandum 𝜑 , and user-defined parameter 𝑘
Result: A 𝑘-bounded monolithic explanation 𝜖 for 𝜑 from B for some 𝑘 ≤ 𝑘

1 𝑘 ← 𝑘

2 Ω𝜑 ← getTopKWorlds(B ∪ {(𝜑,∞)}, 𝑘) // find candidate set of formulae

3 while true do
// get intersecting formulae from top 𝑘 worlds of 𝜑

4 𝐼𝑘 ← getIntersections(B↓𝑤,Ω𝜑 , 𝑘)
5 if not SAT(𝐼𝑘 ∪ {¬𝜑}) then
6 𝜖 ← monolithic-explanation(𝐼𝑘 , 𝜑)
7 return 𝜖
8 else
9 𝑘 ← 𝑘 − 1

(𝜑,∞) denotes that 𝜑 is added to the solver as a hard constraint. The main loop of the algorithm starts in line 3.
In line 4, getIntersections extracts the set of intersecting formulae 𝐼𝑘 from B↓𝑤 that are true in worlds 𝜔1 to
𝜔𝑘 . If 𝐼𝑘 |= 𝜑 , then we know that a monolithic explanation is in 𝐼𝑘 and the algorithm proceeds to use Algorithm 1
with 𝐼𝑘 and 𝜑 as inputs to compute and return a monolithic explanation (lines 5-7). Otherwise, the algorithm
discounts 𝑘 by 1 and repeats the process until a suitable 𝑘 is found.
Algorithm 3 is complete in the sense that, eventually, a monolithic explanation will be returned.

Theorem 1. Algorithm 3 is guaranteed to terminate with a solution.

Proof. The proof rests on the fact that, in the worst case, the parameter 𝑘 will reach a value of 1. This will
then correspond to the most-probable world of 𝜑 , which entails all possible monolithic explanations for 𝜑 . From
Lemma 2, we know that the most-probable world of 𝜑 entails all possible monolithic explanations for 𝜑 , that
is, for any 𝐸 (𝜑), 𝜔1 |= 𝜖 , and 𝜖 ⊆ 𝐼1. Therefore, as Algorithm 3 uses 𝐼1 as an input to Algorithm 1, which is
guaranteed to return a solution, the algorithm is also guaranteed to terminate with a solution.

□

Theorem 2. Algorithm 3 is guaranteed to return a maximal 𝑘-bounded monolithic explanation if the user-defined
parameter 𝑘 is initialized to |Ω(𝜑) |.

Proof. First, note that if the user-defined parameter is initialized to 𝑘 = |Ω(𝜑) |, then Algorithm 3 will perform
an exhaustive and iterative search, starting from 𝑘 = |Ω(𝜑) |, to find 𝐼𝑘 , such that 𝐼𝑘 |= 𝜑 , and use it in Algorithm 1.
Now, as the algorithm discounts 𝑘 by 1 at each new iteration, eventually it will be the case that 𝐼𝑘 |= 𝜑 and

𝐼𝑘+1 ̸ |= 𝜑 . From Corollary 2, we then know that ∃𝜖 ⊆ 𝐼𝑘 such that 𝑃 (𝜖) ≥ 𝑃 (𝐼𝑘 ) ≥
𝑘∑︁
𝑖=1
𝑃 (𝜔𝑖 ), which means that 𝜖

corresponds to a 𝑘-bounded monolithic explanation. Therefore, the algorithm is guaranteed to return a maximal
𝑘-bounded monolithic explanation for 𝜑 . □

6.2.2 Model Reconciling Explanations. We now move on to the case of computing probabilistic model reconciling
explanations Ẽ = ⟨𝜖+, 𝜖−⟩ for an explanandum 𝜑 from an agent knowledge base KB𝛼 for a human belief base Bℎ .
Similarly to what we described in Section 6.2.1, Algorithm 2 can directly be used on KB𝛼 and B↓𝑤

ℎ
for computing
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Algorithm 4: probabilistic-model-reconciling-explanation(KB𝛼 ,Bℎ, 𝜑, 𝑘)
Input: Knowledge base KB𝛼 , belief base Bℎ , explanandum 𝜑 , and user-defined parameter 𝑘
Result: A probabilistic model reconciling explanation Ẽ = ⟨𝜖+, 𝜖−⟩ for 𝜑 from KB𝛼 for Bℎ

1 𝑘 ← 𝑘

2 KBℎ𝛼 ← KB𝛼 ∩ B↓𝑤ℎ
3 𝑊 ←

𝑛∑
𝑖=1
{𝑤𝑖 | (𝜙𝑖 ,𝑤𝑖 ) ∈ Bℎ}

4 B𝛼 ← {(𝜙,𝑊 ) | 𝜙 ∈ KB𝛼 \ KBℎ𝛼 }
5 Ω𝜑 ← getTopKWorlds(Bℎ ∪ B𝛼 ∪ {(𝜑,∞)}, 𝑘)
6 while 𝑡𝑟𝑢𝑒 do
7 𝐼𝑘 ← getIntersections(KB𝛼 ,Ω𝜑 , 𝑘)
8 if not SAT((𝐼𝑘 ∪ KBℎ𝛼 ∪ {¬𝜑})) then
9 ⟨𝜖+, 𝜖−⟩ ← model-reconciling-explanation(𝐼𝑘 ∪ KBℎ𝛼 ,B

↓𝑤
ℎ
, 𝜑)

10 return ⟨𝜖+, 𝜖−⟩
11 else
12 𝑘 ← 𝑘 − 1

model reconciling explanations. Additionally, the concept of a 𝑘-bounded explanation (Definition 20) can also be
used to guarantee a lower bound on the probability of 𝜖+.
Algorithm 4 shows the pseudocode of our approach. The initial computational steps are similar to those in

Algorithm 3, with the exception that KB𝛼 is now also considered in the computation of the most-probable worlds
of the 𝜑 . Specifically, in line 4, KB𝛼 is converted into a belief base B𝛼 where each formula is given a weight
that is larger than the sum of weights of Bℎ . This is to enforce these formulae to be true in the worlds of the
explanandum 𝜑 . Then, B𝛼 is used in conjunction with Bℎ to compute the top 𝑘 most-probable worlds of 𝜑 (line
5). The algorithm proceeds in line 7 to extract formulae from KB𝛼 that are true in the first 𝑘 intersections of the
worlds of 𝜑 . If they entail 𝜑 , the algorithm then proceeds to compute a model reconciling explanation by invoking
Algorithm 2 (lines 8-9). Otherwise, the algorithm continues by discounting 𝑘 by 1 and repeats the process.

Note that Algorithm 4 is complete and correct as it is based on Algorithms 2 and 3, which are complete and
correct.

7 Experimental Evaluations
This section presents a comprehensive evaluation of the proposed algorithms, assessing their effectiveness and
efficiency across a range of scenarios.

7.1 Experimental Setup
Experiments were conducted on a system equipped with an M1 Max processor and 32GB of memory. The
algorithms were implemented in Python, utilizing the PySAT toolkit (Ignatiev, Morgado, et al. 2018) for SAT
solving, MCS/MUS finding, weighted MaxSAT, and minimal hitting set computations. The time limit for all
experiments was set to 500𝑠 .17
For our benchmarks, we selected a diverse set of problem instances:

17Code repository: https://github.com/YODA-Lab/Probabilistic-Monolithic-Model-Reconciling-Explanations.
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Table 3. Number of Instances Solved (S) vs. Timed Out (T/O) by alg1 (𝑘 = 1) and alg3 (𝑘 = 50, 𝑘 = 100, 𝑘 = 150, 𝑘 = 200).
Note that Runtime denotes the average runtime over all solved instances.

Parameter 𝑘
Planning Scheduling Random CNF

S T/O Runtime S T/O Runtime S T/O Runtime
1 28 9 82.0s 30 5 80.0s 25 5 12.4s
50 32 5 79.0s 30 5 53.8s 25 5 8.6s
100 31 6 49.6s 30 5 44.7s 25 5 5.8s
150 31 6 45.5s 30 5 38.0s 25 5 3.4s
200 31 6 45.2s 30 5 37.2s 25 5 1.6s

• Classical Planning Problems: We encoded classical planning problems from the International Planning
Competition (IPC) in the style of Kautz et al. (1996), and used them as knowledge bases. The explanandum
for each problem was the plan optimality query, which we constructed as described by Vasileiou, Yeoh, et al.
(2022).

• Agent Scheduling Problems: We encoded logic-based agent scheduling problems based on the description
by Vasileiou, Xu, et al. (2023), and used them as the knowledge bases. The explanandum for each problem was
a set of unsatisfied agent constraints.

• Random CNF Problems: We generated random CNF formulae as knowledge bases using CNFgen (Lauria
et al. 2017). The explanandum for each problem was a conjunction of backbone literals,18 which we computed
using the minibones algorithm proposed by Janota et al. (2015).

Note that we created associated belief bases for each problem by simply adding a random weight to each formula
in the knowledge base.

7.2 Results and Discussion
We now describe and discuss our experimental results, first for monolithic explanations and then for model
reconciling explanations.

7.2.1 Monolithic Explanations. We evaluated Algorithm 3, referred to as alg3, on computing probabilistic mono-
lithic explanations. Since the core monolithic explanation generation engine of alg3 is powered by Algorithm 1,
referred to as alg1, we also evaluate its performance on the same instances. These experiments aim to answer
the following questions:

Q1: What is the performance of alg3 on computing monolithic explanations across different problem
instances?
Q2: Does the efficacy of alg3 change under different values of the user-defined parameter 𝑘?

Table 3 tabulates the instances solved (i.e., found a monolithic explanation within the time limit) and not solved
(i.e., timed out) by alg1 (𝑘 = 1) and alg3 at 𝑘 = {5, 100, 150, 200}.19 We observe that the algorithm managed
to solve most instances across different values of 𝑘 . Figure 3 shows the runtime distributions of alg3 across
all values of 𝑘 for computing a monolithic explanation. Interestingly, we observe that the runtimes decrease
as 𝑘 increases. This can be explained by the fact that for larger values of 𝑘 , alg3 considers the intersections of
more worlds where the explanandum is true, which means that the number of formulae that are true in these

18The backbone literals of a propositional knowledge base are the set of literals entailed by the knowledge base.
19alg3 at 𝑘 = 1 corresponds to alg1 because each encoded knowledge base is consistent and entails the explanandum. As such, all formulae
in the knowledge base are true in the most-probable world of the explanandum (i.e., 𝑘 = 1), which means that alg3 reduces to alg1.
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Fig. 3. Runtime distributions of alg1 (𝑘 = 1) and alg3 (𝑘 = 50, 𝑘 = 100, 𝑘 = 150, 𝑘 = 200) across all planning, scheduling, and
random CNF instances.

intersections decreases. As such, the overall search space of monolithic explanations decreases as well, thus
resulting in a reduced runtime needed for alg1 to compute a monolithic explanation. This can also be observed
more granularly in Figure 4, where we can see the runtime distributions of alg1 (𝑘 = 1) and alg3 at 𝑘 = 200 for
each instance of the planning, scheduling, and random CNF problems. Again, the runtime of alg3 at 𝑘 = 200 is
smaller than that of alg1. Moreover, and as expected, in Figure 5, we can observe a positive correlation between
runtime and the size of the encoded knowledge bases—as the size of the knowledge base increases, the runtimes
increase as well. This is due to the fact that there is an increasing number of variables and formulae that must be
considered, thus increasing the computational effort needed by the WMaxSAT, MCS, and hitting set solvers.
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Fig. 4. Runtime distributions of alg1 (𝑘 = 1) and alg3 (𝑘 = 200) across commonly solved planning, scheduling, and random
CNF instances.

All of these observations indicate the feasibility and practical efficacy of alg3 across all benchmarks. In
particular, from these experiments, we may conclude that the performance of alg3 increases as the user-defined
parameter 𝑘 increases. To reiterate, this is mainly because the overall search space of monolithic explanations
that needs to be considered by alg1 (the main monolithic explanation generation engine) decreases. Finally,
it is important to note that the performance of these algorithms lies in the effectiveness of the underlying
WMaxSAT, MCS, and hitting set solvers. In other words, this also implies that any advancement in those solvers
will automatically reflect in performance gains in our algorithms. Thus, future work can look at efficient and
optimized solvers and examine whether there is any variability in performance.

7.2.2 Model Reconciling Explanations. We now examine the effectiveness of Algorithm 2, referred to as alg2, and
Algorithm 4, referred to as alg4, on computing model reconciling explanations. We chose the value of 𝑘 = 200
for alg4 as it was the better performing parameter for alg3 in our previous experiments. More specifically now,
we are interested in scenarios with varying degrees of knowledge asymmetry between the agent and human
models. To simulate such scenarios, we used the actual encoded knowledge bases as the model of the agent (KB𝛼 ),
and tweaked that model and assigned it to be the model of the human (KBℎ or Bℎ). We considered the following
ways to tweak the human model, resulting in the following five scenarios:
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Fig. 5. Average runtime of alg1 (𝑘 = 1) and alg3 (𝑘 = 200) to compute an explanation across different knowledge base sizes
for the planning, scheduling, and random CNF instances.

• Scenario 1: We randomly removed 10% of the formulae and removed 20% of literals from 10% of the total
formulae in the human’s model.

• Scenario 2: We randomly removed 20% of the formulae and removed 20% of literals from 20% of the total
formulae in the human’s model.

• Scenario 3: We randomly removed 30% of the formulae and removed 20% of literals from 30% of the total
formulae in the human’s model.

• Scenario 4: We randomly removed 40% of the formulae and removed 20% of literals from 40% of the total
formulae in the human’s model.

• Scenario 5: We randomly removed 50% of the formulae and removed 20% of literals from 50% of the total
formulae in the human’s model.

In general, these experiments aim to answer the following two questions:

Q1: What is the performance of the algorithms on computing model reconciling explanations across
different problem instances?
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Table 4. Instances Solved (S) vs. Timed Out (T/O) for the Planning, Scheduling, and Random CNF Benchmarks for alg2 and
alg4 at 𝑘 = 200. Note that Runtime denotes the average runtime over all solved instances.

Sce- Planning Scheduling Random CNF

nario alg2 alg4 alg2 alg4 alg2 alg4
S T/O Runtime S T/O Runtime S T/O Runtime S T/O Runtime S T/O Runtime S T/O Runtime

1 25 12 67.0s 28 9 59.7s 33 2 51.4s 33 2 33.1s 27 5 30.4s 21 11 12.3s
2 25 13 69.2s 27 10 71.8s 31 4 40.9s 31 4 28.0s 26 6 18.7s 20 12 0.5s
3 24 14 67.9s 26 12 68.8s 32 3 60.3s 32 3 37.1s 29 3 20.4s 21 11 2.5s
4 25 13 82.6s 27 11 84.0s 30 4 35.7s 30 4 22.9s 23 9 5.2s 20 12 0.5s
5 22 15 84.3s 24 13 89.9s 30 4 34.4s 30 4 21.5s 24 8 3.8s 20 11 0.5s
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Fig. 6. Runtime distributions of alg2 and alg4 at 𝑘 = 200 to compute an explanation across all commonly solved instances.

Q2: What is the performance of the algorithms in scenarios with varying degrees of knowledge asymmetry
between the agent and the human model?

Table 4 tabulates the instances solved and timed out by alg2 and alg4 at 𝑘 = 200 across the five scenarios,
where we observe the following trends. For the planning instances, the runtime of both algorithms increases as the
difference between the models of the agent and human increases (Scenarios 1 to 5), since both algorithms search
over the explanation search space, which increases as the number of differences between the two models increases.
As in the previous experiments, alg4 at 𝑘 = 200 yields faster runtimes than alg2. For the scheduling instances,
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Fig. 7. Runtime distributions of alg2 and alg4 at 𝑘 = 200 to compute an explanation across commonly solved instances in
each of the five scenarios.

we observe that the runtimes increase from Scenario 1 to 3, but decrease from Scenarios 4 to 5. Upon closer
inspection, this is mainly because the instances solved in these scenarios were easier (i.e., smaller knowledge
base sizes) than those solved in the other three scenarios, thus resulting in smaller average runtimes. A similar
trend is observed for the random CNF instances. However, in the random CNF instances, alg2 managed to solve
more instances than alg4. After examining them more closely, we found that the main bottleneck of alg4 in
those instances was computing the most-probable worlds of the explanandum (i.e., the WMaxSAT solver). Even
for smaller values of 𝑘 , the solver failed to compute all the worlds under the specified time limit—the increase in
search space (e.g., because of considering B𝛼 and Bℎ) increased the complexity of these instances. We expect that
an optimized and more dedicated solver may be able to overcome this limitation. The runtime distributions for
alg2 and alg4 across all commonly solved instances and across commonly solved instances in each scenario can
be seen in Figures 6 and 7, respectively. For these instances, we observe, like in the previous experiments, that
alg4 has faster runtimes than alg2.

Moreover, in Figure 8 we see the distributions of the model reconciling explanation lengths computed by both
algorithms. As expected, the general trend is that the size of the explanation 𝜖+ (i.e., formulae from KB𝛼 for KBℎ
(or Bℎ)) increases with each scenario, as the difference between the agent and human models increase. The same
trend can be seen for 𝜖−—each scenario from 1 to 5 has an increasing amount of inconsistencies between the
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1 2 3 4 5
Scenario

0

5

10

15

20

25

E
xp

la
na

ti
on

L
en

gt
h

Explanation Type

ε+

ε−

(d) alg4 on Scheduling Instances.
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(e) alg2 on Random CNF Instances.
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Fig. 8. Distributions of the lengths of explanations 𝜖+ and 𝜖− computed by alg2 and alg4 at 𝑘 = 200 across all planning,
scheduling, and random CNF instances.

two models. Interestingly, 𝜖− was largest in the random CNF instances. This indicates that the inconsistencies
between the human model and the corresponding 𝜖+ were high. That can also be used to explain why alg4 failed
to solve a subset of random CNF instances—highly inconsistent knowledge bases are considered as the most
difficult instances for MaxSAT solvers.
In conclusion, the comparative analysis of alg2 and alg4 at 𝑘 = 200 across varied problem instances shows

some trends in performance and computational complexity. The observed increase in runtime with the increase
of differences between agent and human models underscores the direct relationship between model disparity and
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the explanation search space size. Notably, alg4 consistently outperforms alg2 in terms of runtime across most
scenarios, except in certain random CNF instances where the computation of most-probable worlds becomes a
bottleneck due to the limitations of the WMaxSAT solver. This highlights a potential area for further optimization
and development of more efficient solvers. Furthermore, the analysis of model reconciling explanation lengths
reveals an expected increase in inconsistency measures as the model differences widen, particularly highlighted
in random CNF instances.

8 Related Work
We now provide a discussion of related work from the planning and knowledge representation and reasoning
(KR) literature. We focus on these two areas as our approach is motivated by the model reconciliation problem
introduced by the planning community and it bears some similarity to other logic-based approaches in KR.

8.1 Related Planning Work
We have briefly discussed the body of work within explainable AI planning (XAIP) on the topic of model
reconciliation in Section 1 and situated our work within that literature.20 For model reconciling explanations,
a similar line of research that considers uncertainty about the human user’s model is that of Sreedharan et al.
(2018). In their work, they focus on scenarios where the human’s model is located within a space of possible
human models that the agent has, and their method operates in that space to find conformant explanations,
i.e., explanations applicable to a set of possible models. In contrast, in our approach we represent an uncertain
human model as a probability distribution that the agent has, and we have explicitly defined the notion of
probabilistic explanation as well as metrics to measure its quality.
For monolithic explanations, most XAIP works have focused on contrastive explanations in deterministic

settings. These explanations take the form of “Why not A (instead of B)?”, where A is an alternative (or foil)
suggested by the human to a decision B proposed by the agent. Contrastive explanations have found applications
in linear temporal logic systems (Kasenberg et al. 2020), general epistemic accounts (Belle 2023), multi-agent
optimization problems (Zehtabi et al. 2024), and in oversubscription planning (Eifler et al. 2020). There have also
been used to provide a taxonomy of user questions that often arise during interactive plan exploration (Krarup
et al. 2021), as well as towards creating user interfaces for decision support systems (Karthik et al. 2021; Kumar
et al. 2022).

8.2 Related KRWork
In the monolithic case, our definition of a probabilistic explanation (Definition 10) may appear similar to what
was proposed by Gärdenfors (1988). However, an important distinction is that Gärdenfors is dealing with
epistemic states that do not contain the explanandum, while we are dealing with belief bases that do contain the
explanandum. We also define a different notion of explanatory power as well as present algorithms for computing
explanations. Chajewska and Halpern (1997) have also considered the problem of defining what constitutes an
explanation in probabilistic systems, however they solely focus on epistemic states defined over causal structures.
The notion of (monolithic) explanation has also been explored by the probabilistic logic programming (PLP)

community (De Raedt and Kersting 2008; Fierens et al. 2011), a formalism that extends logic programming
languages with probabilities. In PLP, explanations have been associated with possible worlds.21 The most
prominent task there is that of the most probable explanation (MPE), which consists of finding the world with
the highest probability given some evidence (Shterionov et al. 2015). However, a world does not show the chain
of inferences of a given explanandum and it is not minimal by definition, since it usually includes a (possibly

20For a more complete discussion on XAIP related work, please see Section 9 of Vasileiou, Yeoh, et al. (2022).
21Recall that a possible world is a truth value assignment to the atoms in the language.
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large) number of probabilistic facts whose truth value is irrelevant for the explanandum. An alternative approach
is using the proof of an explanandum as an explanation (Kimmig et al. 2011), where a proof is a (minimal) partial
world 𝜔 ′ such that for all worlds 𝜔 ⊇ 𝜔 ′, the explanandum is true in 𝜔 . In this case, one can easily ensure
minimality, but even if the partial world contains no irrelevant facts, it is still not easy to determine the chain of
inferences behind a given explanandum. Finally, Renkens et al. (2014) have leveraged explanations in PLP as
approximation techniques for more efficiently computing weighted model counting problems.
It is important to mention that logic-based methods have also been employed in machine learning problems

(Marques-Silva and Ignatiev 2022). For example, Shrotri et al. (2022) proposed CLIME, a constraint-driven
explanation framework for black-box ML models that enables users to specify Boolean constraints to guide the
perturbation phase when generating explanations. Unlike their approach that focuses on constraining the input
space during perturbation, our approach integrates uncertainty directly into the explanation generation process
through probabilistic logic. Both approaches use concepts from formal methods, but our work addresses the
specific case of explanations in probabilistic scenarios and model reconciliation, providing a complementary
perspective to CLIME’s constraint-driven framework. A similar line of research is the work by Izza et al. (2023),
where they introduced an approach to computing probabilistic explanations across various classifier types (such
as decision trees and naive Bayes classifiers). Their framework addresses the challenge of generating minimal sets
of features that guarantee a prediction with a certain probability threshold. While Izza et al. focus on efficiently
computing explanations for specific classifier architectures, our framework provides a more general theoretical
foundation for explanation generation in uncertain environments and extends to the model reconciliation problem.

In the model reconciliation case, we have extended our previous work on the logic-based model reconciliation
problem (Vasileiou, Yeoh, et al. 2022) to handle scenarios where the human model is uncertain. To the best of our
knowledge, the application of probabilistic explanations in the context of model reconciliation that we consider
in this work is novel.

Finally, the algorithms presented in this paper are an extension of our previous work (Vasileiou, Previti, et al.
2021). Specifically, Algorithms 1 and 2 are inspired by a procedure for computing a smallest minimal unsatisfiable
set (SMUS) of an inconsistent formula, originally presented by Ignatiev, Previti, et al. (2015). The method is also
related to other similar approaches for enumerating MUSes and minimal correction sets (MCSes). Moreover, our
approach is similar in spirit to the HS-tree presented by Reiter (1987). Although the original purpose was to
enumerate diagnoses, Reiter’s procedure can be easily adapted to enumerate MUSes (called conflicts in that paper)
as already noted by Previti and Marques-Silva (2013). However, the computation of an SMUS might require more
substantial modifications. Procedures like the one presented by Reiter, which target MCSes (diagnoses) instead of
MUSes (conflicts), can be seen as the dual version of our algorithm. In particular, the algorithm MaxHS (Davies
and Bacchus 2011) applies the same idea of iteratively computing and testing a minimal hitting set for the
computation of a MaxSAT solution (the complement of the smallest MCSes).
There are other approaches that exploit the duality between MUSes and MCSes, but instead of iteratively

checking if the current hitting set is an MUS, they first compute the set of all MCSes (Liffiton and Sakallah 2008).
This has the potential advantage that once all the MCSes are known, every minimal hitting set on the collection
of all MCSes is guaranteed to be an MUS (Proposition 1). However, as the number of MCSes is, in the worst
case, exponential in the size of the formula, this approach might fail even before reporting the first MUS. This is
particularly unnecessary when the target is to return a single support, like the one presented in this paper.

9 Discussion
In this paper, we presented a logic-based framework for generating probabilistic explanations within uncertain
knowledge bases (e.g., belief bases). We distinguished between two notions of explanation—monolithic, where
explanations are defined with respect to an agent knowledge base, and model reconciling, where explanations
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are defined with respect to an agent knowledge base as well as a human user knowledge base. Particularly, we
introduced formal definitions for probabilistic monolithic and probabilistic model reconciling explanations, along
with metrics to evaluate their quality (explanatory gain and explanatory power).

Our framework operates under several assumptions that we need to address. First, a fundamental assumption
is that the problem domain can be encoded in a logical language. This assumption holds for many structured
decision-making scenarios but may not apply to domains where knowledge is primarily subsymbolic or where
the underlying decision processes are difficult to formalize in a logical language. The general effectiveness of our
approach thus depends critically on how well the domain can be represented within a logical framework. Further,
we used propositional (probabilistic) logic as our language of choice due to its simplicity, capacity to encode a
plethora of domains, as well as computationally efficiency (e.g., through SAT solvers). While our methods and
algorithms are presented within propositional logic, their underlying principles are broadly applicable to any
constraint system where the satisfiability of subsets can be decided. This opens avenues for extending our work
to other logical systems, such as Markov Logic Networks (Richardson and Domingos 2006) and Probabilistic
Logic Programs (Fierens et al. 2011).

For model reconciling explanations specifically, our framework makes some assumptions about human inferen-
tial capabilities. Notably, we presume that human users possess the reasoning capacity to process and understand
the explanations provided by the AI agent. However, this does not imply that humans can reason with the same
efficiency as AI agents—much like how humans can perform arithmetic operations correctly but are significantly
slower than calculators. Rather, we assume that given sufficient time and a properly formulated explanation,
humans can validate the logical correctness of the AI agent’s decision-making process.

Another big assumption in model reconciliation is that the agent has direct access to the human’s belief base.
This assumption, while necessary for the operationalizing our framework, is often unrealistic in practice. Thus, a
promising direction for future research involves approximating the human model through iterative interactions.
Indeed, in a recent work (Tang et al. 2025), we showed how (propositional) probabilistic logic can be effectively
used to learn a human model based on past, dialogue-based interactions. This line of work provides a fruitful
ground for our framework to create more personalized and effective model reconciliation processes.

At the other end of the spectrum, a practical challenge of explainable decision-making frameworks involves how
the explanations are communicated to human users.22 While we tackled the problem of generating explanations
with formal guarantees about their quality, we did not directly explore the presentation of these explanations to
users. There are several avenues to explore here. First, the emergence of large language models (LLMs) (Brown
et al. 2020) may offer an immediate solution to this problem. Specifically, one can use LLMs as translation engines
between logic and natural language, and thus create hybrid systems that generate natural language explanations
with formal guarantees (provided by logical framework). For example, we presented a system for tackling this
idea in the domain of coursework planning (Vasileiou and Yeoh 2025a,b). In future work, we plan to extend it
for general problems expressible in propositional logic. It is also worth emphasizing that explanations can also
be communicated in other forms, such as visualizations, something that has been shown to improve the users’
understanding when compared to text-based explanations alone (Karthik et al. 2021; Kumar et al. 2022).

Finally, it is important to acknowledge the resurgence of hybrid approaches that combine symbolic and neural-
based methods (A. D. Garcez and Lamb 2023; A. S. d. Garcez et al. 2009). These neuro-symbolic AI systems aim to
synergize the strengths of both paradigms: the robust learning capabilities and pattern recognition of neural
networks with the interpretability and reasoning power of symbolic systems. We position the methods proposed

22Note that, in certain settings, it has been shown that explanations in the form of model reconciliation are well understood and preferred by
human users (Chakraborti, Sreedharan, Grover, et al. 2019; Kumar et al. 2022; Vasileiou and Yeoh 2023; Vasileiou, Yeoh, et al. 2022; Zahedi
et al. 2019).
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in this work as complementary to the advancements in neuro-symbolic AI, potentially informing and enhancing
the explainability aspects of future neuro-symbolic systems.

10 Concluding Remarks
In this paper, we attempted to bridge the gap between classical explanation models and the inherent uncertainty
found in real-world scenarios. We started by describing a framework for generating probabilistic monolithic
explanations within uncertain knowledge bases (e.g., belief bases), and introduced the concepts of explanatory
gain and explanatory power as quantitative measures to evaluate the effectiveness and relevance of explanations,
thus offering a better characterization of explanation quality. Additionally, we presented an extension to the
model reconciliation problem for generating probabilistic model reconciling explanations, which addresses the
need for reconciling model differences between an agent and a human model, specifically when the human model
is not known with certainty.

Furthermore, we developed algorithms that leverage the duality between minimal correction sets (MCSes) and
minimal unsatisfiable subsets (MUSes) and demonstrated their potential for generating probabilistic explanations.
Our experimental evaluations across different benchmarks underscore the effectiveness of these algorithms,
suggesting they are promising in practical scenarios.
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A Illustrative Example: Simple Package Delivery Problem
In Section 4, we presented a simple probabilistic planning scenario (Littman 1997) that can be used by our
framework. This problem can be fully specified in the form of the probabilistic planning domain definition
language (PPDDL) (Younes and Littman 2004), as shown in Listings ?? and 2. Given the PPDDL descriptions, we
can then encode this problem into (propositional) probabilistic logic (Littman 1997), similarly to the encoding for
classical planning problems (cf. Kautz et al. (1996)). Specifically, for 𝑙, 𝑙 ′ ∈ {𝑟𝑜𝑜𝑚1, 𝑟𝑜𝑜𝑚2} and 𝑐 ∈ {𝐴, 𝐵}, we can
encode the belief base:

Initial States: (Starting states and belief about the environment)

(robot-at(𝑟𝑜𝑜𝑚1)0,∞)
(¬robot-at(𝑟𝑜𝑜𝑚2)0,∞)
(¬package-delivered0,∞)
(crowded(𝐴),𝑤1)
(crowded(𝐵),𝑤2)

Goal State: (Final state to be reached)

(package-delivered𝑡𝑛 ,∞)

Action Preconditions: (Fluents that must be true at timestep 𝑡 for the action to be executed)

(move(𝑙, 𝑙 ′, 𝑐)𝑡 → robot-at(𝑙)𝑡 ,∞)
(deliver(𝑙)𝑡 → robot-at(𝑙)𝑡 ,∞)

Deterministic Action Effects: (Fluents that become true at timestep 𝑡 + 1 if the action executed at timestep 𝑡 )

(deliver(𝑙)𝑡 → package-delivered𝑡+1,∞)

Probabilistic Action Effects: (Fluents that become true at timestep 𝑡 + 1 with a certain probability if the action
executed at timestep 𝑡 )

(move(𝑙, 𝑙 ′, 𝑐)𝑡 ∧ crowded(𝑐) → robot-at(𝑙 ′)𝑡+1 ∧ ¬robot-at(𝑙)𝑡+1,𝑤3)
(move(𝑙, 𝑙 ′, 𝑐)𝑡 ∧ crowded(𝑐) → robot-at(𝑙)𝑡+1,𝑤4)
(move(𝑙, 𝑙 ′, 𝑐)𝑡 ∧ ¬crowded(𝑐) → robot-at(𝑙 ′)𝑡+1 ∧ ¬robot-at(𝑙)𝑡+1,𝑤5)
(move(𝑙, 𝑙 ′, 𝑐)𝑡 ∧ ¬crowded(𝑐) → robot-at(𝑙)𝑡+1,𝑤6)
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Explanatory Frame Axioms: (Fluents do not change between subsequent timesteps 𝑡 and 𝑡 + 1 unless they are
effects of actions that are executed at timestep 𝑡 )

(robot-at(𝑙)𝑡 ∧ ¬robot-at(𝑙)𝑡+1 → move(𝑙, 𝑙 ′, 𝐴)𝑡 ∨ move(𝑟𝑜𝑜𝑚1, 𝑟𝑜𝑜𝑚2, 𝐵)𝑡 ,∞)
(¬robot-at(𝑙)𝑡 ∧ robot-at(𝑙)𝑡+1 → move(𝑙 ′, 𝑙, 𝐴)𝑡 ∨ move(𝑙 ′, 𝑙, 𝐵)𝑡 ,∞)
(package-delivered𝑡 → package-delivered𝑡+1,∞)
(¬package-delivered𝑡 ∧ package-delivered𝑡+1 → deliver(𝑙)𝑡 ,∞)

Action exclusions: (Only one action can occur at each timestep 𝑡 )
(¬move(𝑙, 𝑙 ′, 𝐴)𝑡 ∨ ¬move(𝑙, 𝑙 ′, 𝐵)𝑡 ,∞)
(¬move(𝑙, 𝑙 ′, 𝑐)𝑡 ∨ ¬deliver(𝑙)𝑡 ,∞)

Finally, we can extract a plan by finding an assignment of truth values that satisfies the belief base (i.e., for all
timesteps 𝑡 = 0, ..., 𝑛 − 1, there will be exactly one action 𝑎 such that 𝑎𝑡 = 𝑇𝑟𝑢𝑒).
Note that a formula’s weight represents the log odds comparing worlds where the formula is true versus

where it is false, assuming all else remains unchanged. However, when formulae share variables with each other,
it is impossible to flip one formula’s truth value without affecting others. Despite that, we can still determine
appropriate weights through collective formula probabilities. By treating desired probabilities as empirical
frequencies for maximum likelihood estimation (MLE) (Della Pietra et al. 2002), we can derive optimal weights.
This approach involves specifying how often each formula should be true, using these as observed frequencies,
and applying standard MLE algorithms (e.g., (Richardson and Domingos 2006)) to compute weights.

Listing 1. PPDDL Domain of Office Robot Delivery.

( define ( domain Of f i c e−Robo t−De l i v e r y )
( :requirements : s t r i p s : typing : p r o b a b i l i s t i c − e f f e c t s )
( : t ypes

l o c a t i o n c o r r i d o r )
( : p r ed i c a t e s

( r o bo t − a t ? l − l o c a t i o n )
( connec ted ? l 1 ? l 2 − l o c a t i o n ? c − c o r r i d o r )
( p a c k ag e−de l i v e r e d )
( crowded ? c − c o r r i d o r )

)

( : a c t i on move
:parameters ( ? from ? to − l o c a t i o n ? c − c o r r i d o r )
:precondi t ion ( and

( r o bo t − a t ? from )
( connec ted ? from ? to ? c ) )
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: e f f e c t ( and
(when ( crowded ? c )

( p r o b a b i l i s t i c
p ( and ( r o bo t − a t ? to ) ( not ( r o bo t − a t ? from ) ) )
1−p ( and ( r o bo t − a t ? from ) ) ) )

(when ( not ( crowded ? c ) )
( p r o b a b i l i s t i c

p ' ( and ( r o bo t − a t ? to ) ( not ( r o bo t − a t ? from ) ) )
1−p ' ( and ( r o bo t − a t ? from ) ) ) ) )

)

( : a c t i on d e l i v e r
:parameters ( ? l − l o c a t i o n )
:precondi t ion ( r o bo t − a t ? l )
: e f f e c t ( p a c k ag e−de l i v e r e d )

)
)

Listing 2. PPDDL Problem of Office Robot Delivery.

( define ( problem o f f i c e − d e l i v e r y )
( :domain Of f i c e−Robo t−De l i v e r y )

( : o b j e c t s
room1 room2 − l o c a t i o n
A B − c o r r i d o r )

( : i n i t
( r o bo t − a t room1 )
( connec ted room1 room2 A)
( connec ted room1 room2 B )
( p r o b a b i l i s t i c p ( crowded A ) )
( p r o b a b i l i s t i c p ' ( crowded B ) )

)

( : goa l ( p a c k ag e−de l i v e r e d room2 ) )
)
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