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Abstract. The Distributed Constraint Optimization Problem (DCOP)
formulation is a powerful tool to model multi-agent coordination prob-
lems that are distributed by nature. While DCOPs assume that variables
are discrete and the environment does not change over time, agents often
interact in a more dynamic and complex environment. To address these
limiting assumptions, researchers have proposed Dynamic DCOPs (D-
DCOPs) to model how DCOPs dynamically change over time and Con-
tinuous DCOPs (C-DCOPs) to model DCOPs with continuous variables
and constraints in functional form. However, these models address each
limiting assumption of DCOPs in isolation, and it remains a challenge to
model problems that both have continuous variables and are in dynamic
environment. Therefore, in this paper, we propose Dynamic Continuous
DCOPs (DC-DCOPs), a novel formulation that models both dynamic
nature of the environment and continuous nature of the variables, which
are inherent in many multi-agent problems. In addition, we introduce
several greedy algorithms to solve DC-DCOPs and discuss their theoret-
ical properties. Finally, we empirically evaluate the algorithms in random
networks and in distributed sensor network application.

Keywords: Multiagent Systems · Distributed Constraint Optimization
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1 Introduction

Distributed Constraint Optimization Problems (DCOPs) [22, 24, 37, 7] are prob-
lems where agents coordinate their value assignments to maximize the sum of
the utility functions. The model has been applied to solve a wide range of multi-
agent coordination problems including distributed meeting scheduling [20, 35],
sensor and wireless network coordination [6, 37], multi-robot coordination [40],
smart grid optimization [18, 21, 10], smart home automation [27, 9], and cloud
computing applications [23, 15].

Typically, DCOPs assume that the domains of variables are discrete and the
environment does not change over time. However, in many distributed multi-
agent problems, agents often interact in a more dynamic and complex environ-
ment. For example, in distributed sensor networks, targets usually move from
one location to another location over time, and to adapt to such a dynamic en-
vironment, the sensors should be augmented with the capability to change their
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sensing directions accordingly. To address this concern, researchers have pro-
posed Dynamic DCOPs (D-DCOPs) [25, 26, 19], which model how the problem
evolves during the solving process. Additionally, to better sense the targets of
interest, whose locations correspond to a wide range of possibilities (i.e., the set
of all possible locations in a two-dimensional plane or three-dimensional space
of the network), the sensors should be equipped with a continuous range of
sensing directions. Therefore, researchers have introduced Continuous DCOPs
(C-DCOPs) [29, 32], which model continuous variables with a bounded domain
and represent the constraints in functional form.

While D-DCOPs and C-DCOPs have been proposed to address the two lim-
iting assumptions of DCOPs, the two models only address these assumptions
in isolation. Thus, it remains a challenge to model and solve the problems that
are both dynamically changing over time and have continuous variables. There-
fore, in this paper, we propose Dynamic Continuous DCOPs (DC-DCOPs), a
novel formulation that models both the dynamic environment and continuous
variables, which are present in many multi-agent problems. In addition, we intro-
duce several greedy algorithms to solve DC-DCOPs and discuss their theoretical
properties. Finally, we empirically evaluate the algorithms in random networks
and in a distributed sensor network application.

2 Background

In this section, we provide a brief overview of DCOPs, Dynamic DCOPs, and
Continuous DCOPs.

2.1 Distributed Constraint Optimization Problems (DCOPs)

A Distributed Constraint Optimization Problem (DCOP) [22, 24, 7] is a tuple
〈A,X,D,F, α〉, where:
• A = {ai}pi=1 is a set of agents.
• X = {xi}ni=1 is a set of decision variables.
• D = {Dx}x∈X is a set of finite domains, where each variable x ∈ X takes

values from the set Dx ∈ D.
• F = {fi}mi=1 is a set of utility functions, each defined over a set of decision

variables: fi :
∏
x∈xfi Dx → R+

0 ∪ {−∞}, where infeasible configurations have
−∞ utilities and xfi ⊆ X is the scope of fi.1

• α : X→ A is a function that associates each decision variable to one agent.
A solution σ is a value assignment to a set xσ ⊆ X of decision variables that

is consistent with their respective domains. The utility F(σ) =
∑
f∈F,xf⊆xσ f(σ)

is the sum of the utilities across all applicable utility functions in σ. A solution
σ is complete if xσ =X. The goal of a DCOP is to find an optimal complete
solution x∗ = argmaxx F(x).

1 The scope of a function is the set of variables that are associated with the function.
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2.2 Dynamic DCOPs

A Dynamic DCOP (D-DCOP) [25, 26, 19, 36] is defined as a sequence of DCOPs
with changes between them. Changes between DCOPs occur over time due to
addition or removal of variables, addition or removal of values in the variable’s
domain, addition or removal of utility functions, and increase or decrease in
the utility values. Solving a D-DCOP optimally means finding a utility-maximal
solution for each DCOP in the sequence. Therefore, this approach is reactive
since solving each DCOP in the sequence does not consider future changes. Its
advantage is that solving a D-DCOP is no harder than solving h DCOPs, where
h is the horizon of the problem. Researchers have used this approach to solve
D-DCOPs, where they introduce search- and inference-based approaches that
are able to reuse information from previous DCOPs to speed up the search for
the solution for the current DCOP [25, 36]. Alternatively, a proactive approach
predicts future changes in the D-DCOP and finds robust solutions that require
little or no changes in the sequence of DCOP solutions despite future changes
to the DCOP [13, 14, 12]

2.3 Continuous DCOPs

A Continuous DCOP (C-DCOP) [29, 32, 15] is defined as a DCOP where the
variables take values from a continuous domain. In a typical (discrete) DCOP,
constraints are represented in tabular form, which enumerates all possible val-
ues of the discrete variables involved in the constraint. Since variables in C-
DCOPs are continuous, the model represents the constraints in functional forms
such as linear piecewise function, quadratic function, or a more general differen-
tiable function. Recently, researchers have proposed several algorithms to solve
C-DCOPs including approximate approaches [15, 28, 3] and exact approach that
solves C-DCOP under a specific setting [15].

3 Motivating Application: Distributed Radar
Coordination and Scheduling Problem

We motivate our work using the Distributed Radar Coordination and Scheduling
Problem (DRCSP) [12], which is based on NetRad, a real-time weather radar
sensor system [4, 17, 39]. The NetRad system is consisted meteorological com-
mand and controls (MCCs), each controls a set of radars with a limited sensing
range. The radars in NetRad are tasked by the MCCs to scan a specific area
of interest in a coordinated fashion, where each radar takes 360-degree volume
scan. For example, in Figure 1, the NetRad system has five radars scanning the
area with two weather phenomena, represented as a yellow star and a red star.
The goal of a DRCSP is to find a coordination strategy that maximizes the
aggregated utility by scanning the highest-utility phenomena in the area. Since
each sensor is able to take a continuous 360-degree scan, we model the sens-
ing direction of the sensors with the continuous variables. In addition, since the
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Fig. 1. Distributed Radar Coordination and Scheduling Problem

weather phenomena may move continuously over time, we model this dynamism
by incorporating random variables representing the weather phenomena.

4 Dynamic Continuous DCOP Model

A Dynamic Continuous DCOP (DC-DCOP) is a tuple
〈A,X,Y,Dx,Dy,F, p

0
Y,T, γ, h,C, α〉, where:

• A = {ai}pi=1 is a set of agents.
• X = {xi}ni=1 is a set of decision variables, which are variables controlled by

the agents.
• Y = {yi}mi=1 is a set of random variables, which are variables that are un-

controllable and model stochastic events (e.g., weather phenomena location or
intensity)

• Dx = {Dx}x∈X is a set of continuous domains of the decision variables. Each
variable x∈X takes values from the interval Dx = [LBx, UBx].

• Dy = {Dy}y∈Y is a set of continuous state space of the random variables.
Each variable y ∈ Y has state space Dy ∈ Dy.

• F = {fi}ki=1 is a set of utility functions, each defined over a mixed set of
decision and random variables: fi :

∏
x∈X∩xfi Dx ×

∏
y∈Y∩xfi Dy → R+

0 ∪
{−∞}, where infeasible configurations have −∞ rewards and xfi ⊆ X ∪Y is
the scope of fi. We divide the set of utility functions into two sets: FX = {fx},
where xfx∩Y = ∅, and FY = {fy}, where xfy∩Y 6= ∅. Note that FX∪FY = F
and FX ∩ FY = ∅.

• p0Y = {p0y}y∈Y is a set of initial probability density functions of the random
variable y ∈ Y.

• T = {Ty}y∈Y is a set of transition functions, where each transition function
is a conditional density function Ty : Dy × P(Dy) → [0, 1] that specifies the
transition from a value dy ∈ Dy to a subset of Dy.
• γ ∈ [0, 1] is a discount factor, which represents the decrease in the importance

of future rewards.
• h ∈ N is a finite horizon.
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• C = {cx}x∈X is a set of switching cost functions, each defined over a set of
decision variables: cx : Dx×Dx → R+

0 . Each switching cost function cx models
the cost associated with the change in the value of the decision variable x from
one time step to the next.

• α : X→ A is a function that associates each decision variable to one agent.
Throughout this article, we assume that each agent controls exactly one de-

cision variable and that each utility function is associated with at most one
random variable.2 In the case where one agent controls more than one variable,
one can use standard DCOP reformulation techniques [2, 38], such as compi-
lation, where each agent creates a new pseudo-variable, whose domain is the
Cartesian product of the domains of all variables of the agent; and decompo-
sition, where each agent creates a pseudo-agent for each of its variables. More
recently, researchers have also proposed a multi-variable decomposition method
that exploits the co-locality of variables to more efficiently solve the problem [8].

The goal of a DC-DCOP is to find a sequence of h+1 assignments x∗ for all
the decision variables in X:

x∗ = argmax
x=〈x0,...,xh〉∈Σh+1

Fh(x)

Fh(x) =
h∑
t=0

γt
[
F tx(xt) + F ty(xt)

]
︸ ︷︷ ︸

P

−
h−1∑
t=0

γt
[
Cx(x

t,xt+1)
]

︸ ︷︷ ︸
Q

where Σ is the assignment space for the decision variables of the DC-DCOP.
The first term P refers to the optimization over h+ 1 time steps, with:

F tx(x) =
∑
fi∈FX

fi(xi)

F ty(x) =
∑
fi∈FY

∫
Dyi

fi(xi, yi) · ptyi(yi)dyi

where xi is an assignment for all the variables in the scope xfi of the function
fi; ptyi is the probability density function of the random variable yi at time step
t, and defined as:

ptyi(yi) =

∫
Dyi

pt−1yi (yi) · T (yi, Dyi)dyi

The second term Q considers the penalty due to changes in decision vari-
ables’ values during the optimization process:

Cx(x
t,xt+1) =

∑
x∈X

cx(x
t, xt+1)

is a penalty function that takes into account the difference in the decision variable
assignments between two time steps.
2 If multiple random variables are associated with a utility function, w.l.o.g., they can
be merged into a single variable.
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5 DC-DCOP Algorithms

We now introduce our DC-DCOP algorithms, which are built upon two sequen-
tial greedy Dynamic DCOP algorithms: Forward and Backward [14]. The
two algorithms have been applied to solve the Dynamic DCOPs where each sub-
problem is a discrete DCOP. However, in DC-DCOPs, the subproblem at every
time step is a Continuous DCOP. Thus the original version of Forward and
Backward cannot be applied to solve DC-DCOPs. In this section, we propose
a new version of the two algorithms that can address and solve the C-DCOP at
every time step.

5.1 Forward

In general, Forward greedily solves each subproblem in DC-DCOPs one time
step at a time starting from the first time step. In other words, it successively
solves the C-DCOP at each time step starting from t = 0 to t = h. When solving
each C-DCOP, it takes into account the switching cost incurred by changing the
solution from time step t− 1 to the optimal solution at time step t. Specifically,
before solving the C-DCOP at each time step, the agents run a pre-processing
step, where they (1) reformulate the constraint between decision and random
variables, and (2) capture the cost of switching values between time steps in
new unary constraints of decision variables. For each constraint fi ∈ FY between
decision variables xi and a random variable yi, the following new constraint is
created for each time step 0 ≤ t ≤ h:

F ti (xi) =

∫
Dyi

fi(xi, yi) · ptyi(yi)dyi (1)

where ptyi(·) is the probability density function of random variable yi at time
step t.

After reformulating the constraints between decision variables and random
variable, the agents create a new constraint to capture the cost of switching val-
ues across time steps. Specifically, for each decision variable x ∈ X, the following
new unary constraint is created for each time step 0 < t ≤ h:

Ctx(x
t) = −cx(xt−1, xt) (2)

After adding the switching cost constraints, the agents successively solve each C-
DCOP from time step t = 0 onwards using any off-the-shelf C-DCOP algorithm.

In this paper, we use the following off-the-shelf C-DCOP algorithms to solve
the problem at each time step: AC-DPOP, CAC-DPOP, HCMS, and C-DSA [15].
AC-DPOP, CAC-DPOP, and HCMS are inference-based algorithms, while C-
DSA is a local search algorithm. AC-DPOP solves C-DCOPs by first discretizing
the domains of the variables into initial discrete values and then using gradient
methods to move the values of the parent and psedo-parent variables in or-
der to better approximate the constraint utilities. CAC-DPOP is a variant of
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AC-DPOP that reduces the memory and time consumption of AC-DPOP by
clustering the values of the agents before sending them up the pseudo-tree. In-
stead of using pseudo-tree, HCMS uses a factor graph to represent C-DCOPs and
gradually adjusts agents’ values over a number of iterations. Finally, C-DSA is
a continuous stochastic algorithm, where each agent communicates their assign-
ment with neighboring agents and stochastically determines to keep the current
assignment or change to a better one.

5.2 Backward

Instead of solving the DC-DCOP one time step at a time forward starting from
t = 0 towards h, one can also greedily solve the problem backwards from t = h
towards the first time step. Similar to Forward, before solving the C-DCOP at
each time step, agents in Backward run a pre-processing step to reformulate the
constraint between decision and random variables, and to capture the switching
cost between two time steps. To reformulate the constraints between decision
variables and a random variable, the agents calls Equation (1) and create a new
constraints for each time steps 0 ≤ t ≤ h. However, the key difference between
Backward and Forward is how the agents compute the new switching cost
constraint at each time step t. Specifically, when solving the C-DCOP at time
step t, instead of taking into account the switching cost between time step t
and time step t− 1, agents in Backward takes into account the switching cost
between time step t and time step t+ 1.

Specifically, before solving each subproblem, Backward creates a unary
constraint for each time step 0 ≤ t < h:

Ctx(x
t) = −cx(xt, xt+1) (3)

After adding the switching cost constraints and the reformulated constraints
between decision variables and a random variable, the agents successively solve
each C-DCOP from time step t = h backward using any off-the-shelf C-DCOP
algorithm. Similar to Forward, we use AC-DPOP, CAC-DPOP, HCMS, and
C-DSA to solve the C-DCOP at each time step. We will empirically evaluate
both greedy versions of these C-DCOP algorithms in the experimental result
section and will also discuss their theoretical properties in Section 6.

6 Theoretical Properties

We now describe below some theoretical properties on the error bounds and
communication complexities for some of our algorithms.

We denote U∞ as the optimal solution quality of a DC-DCOP with an in-
finite horizon and Uh as the optimal solution quality when the horizon h is
finite. Let Fy(x) be the utility of a regular C-DCOP where the decision vari-
ables are assigned x given values y of the random variables. We define F∆y =
maxx∈Σ Fy(x)−minx∈Σ Fy(x) as the maximum loss in solution quality of a reg-
ular DCOP for a given random variable assignment y and F∆ = maxy∈ΣY

F∆y
where ΣY =

∏
y∈Y Ωy is the assignment space for all random variables.
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Theorem 1. When γ < 1, the error U∞−Uh of the optimal solution from solv-
ing DC-DCOPs with a finite horizon h instead of an infinite horizon is bounded
from above by γh

1−γF
∆.

Proof. Let x̂∗ = 〈x̂∗0, . . . , x̂∗h, x̂∗h+1, . . .〉 be the optimal solution of DC-DCOPs
with infinite horizon ∞:

U∞ =

∞∑
t=0

γt
[
F tx(x̂∗t ) + F ty(x̂∗t )− Cx(x̂

∗
t , x̂
∗
t+1)

]
Ignoring switching costs after time step h, an upper bound U∞+ of U∞ is defined
as:

U∞+ =

h−1∑
t=0

γt
[
F tx(x̂∗t ) + F ty(x̂∗t )− Cx(x̂

∗
t , x̂
∗
t+1)

]
+

∞∑
t=h

γt
[
F tx(x̂∗t ) + F ty(x̂∗t )

]
Let x∗ = 〈x∗0, . . . ,x∗h〉 be the optimal solution of the DC-DCOPs with a finite
horizon h:

Uh =

h−1∑
t=0

γt
[
F tx(x∗t ) + F ty(x∗t )− Cx(x

∗
t ,x
∗
t+1)

]
+

∞∑
t=h

γt
[
F tx(x∗h) + F ty(x∗h)

]
For x̂∗, if we change the solution for every C-DCOP after time step h to x̂∗h,

as 〈x̂∗0, . . . , x̂∗h, x̂∗h, . . .〉, we get a lower bound U∞− of Uh:

U∞− =

h−1∑
t=0

γt
[
F tx(x̂∗t ) + F ty(x̂∗t )− Cx(x̂

∗
t , x̂
∗
t+1)

]
+

∞∑
t=h

γt
[
F tx(x̂∗h) + F ty(x̂∗h)

]
Therefore, we get U∞− ≤ Uh ≤ U∞ ≤ U∞+ .

Next, we compute the difference between the two bounds:

U∞−Uh ≤ U∞+ − U∞−

=

∞∑
t=h

γt
[
(F tx(x̂∗t ) + F ty(x̂∗t ))− (F tx(x̂∗h) + F ty(x̂∗h))

]
Notice that the quantity (F tx(x̂∗t )+F ty(x̂∗t ))−(F tx(x̂∗h)+F ty(x̂∗h)) is the utility

difference between the value assignment x̂∗t and x̂∗h for a subproblem in time step
t, and thus is bounded by the maximum loss of a regular C-DCOP:

(F tx(x̂∗t ) + F ty(x̂∗t ))− (F tx(x̂∗h) + F ty(x̂∗h)) ≤ F∆
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Thus,

U∞ − Uh ≤ U∞+ − U∞−

≤
∞∑
t=h

γt
[
F tx(x̂∗t ) + F ty(x̂∗t )−F tx(x̂∗h)−F ty(x̂∗h)

]
≤
∞∑
t=h

γtF∆

≤ γh

1− γ
F∆

which concludes the proof. �

Error Bounds from C-DCOP Algorithms: For each reward function
f(xi, xi1 , . . . , xik) of an agent xi and its separator agents xi1 , . . . , xik , assume
that agent xi discretizes the domains of the reward function into hypercubes of
size m (i.e., the distance between two neighboring discrete points for the same
agent xij is m). Let ∇f(v) denote the gradient of the function f(xi, xi1 , . . . , xik)
at v = (vi, vi1 , . . . , vik):

∇f(v) = (
∂f

∂xi
(vi),

∂f

∂xi1
(vi1), . . . ,

∂f

∂xik
(vik))

Furthermore, let |∇f(v)| denote the sum of magnitude:

|∇f(v)| = | ∂f
∂xi

(vi)|+ |
∂f

∂xi1
(vi1)|+ . . .+ | ∂f

∂xik
(vik)|

Assume that |∇f(v)| ≤ δ holds for all utility functions in the DCOP and for
all v.

Theorem 2. The error of AC-DPOP-based algorithms is bounded above by h ·
|F|(m + |A|kαδ)δ + (h − 1) · Θ|A|, where k is the number of times each agent
“moves” values of its separator, and Θ = maxx∈X cx(v, v

′) is the maximum of
the bounded switching cost functions.

Proof. According to Theorem 5.2 by Hoang et al. [15], the error bound of solving
a C-DCOP using AC-DPOP algorithm is |F|(m + |A|kαδ)δ. In DC-DCOPs,
there are h C-DCOPs, each is a subproblem at every time step. Without taking
into account the switching cost, the error bound of AC-DPOP-based algorithms
(e.g., Forward-AC-DPOP and Backward-AC-DPOP) is h · |F|(m + |A|kαδ)δ.
Given Θ = maxx,x′ c(x, x′) as the maximum value of switching cost between two
time steps, and considering there are at most h − 1 switching times between h
time steps from |A| agents, the upper bound is thus h · |F|(m+ |A|kαδ)δ+(h−
1) ·Θ|A|. �

Theorem 3. In a binary constraint graph G = (X, E), the number of messages
of HCMS-based algorithms and C-DSA-based algorithms with k iterations is
h ·4k|E| and h ·2k|E|, respectively. The number of messages of AC-DPOP-, and
CAC-DPOP-based algorithms is h · 2|X|.
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Proof. According to Theorem 5.3 by Hoang et al. [15], the number of messages
of HCMS -based algorithms and C-DSA-based algorithms with k iterations is
4k|E| and 2k|E|, respectively. The number of messages of AC-DPOP -, and CAC-
DPOP -based algorithms is 2|X|. Since solving a DC-DCOP is equivalent to
solving h C-DCOPs, each at a time step, the number of messages is thus h times
the number of messages needed to solve a single C-DCOP. �

7 Related Work

Aside from the D-DCOP model described in the introduction and background,
several approaches have been proposed to solve related constraint models with
discrete variables including Dynamic CSPs, where value assignments of variables
or utilities of constraints may change according to some probabilistic model [33,
16]. The goal is typically to find a solution that is robust to possible changes.
Other related models include Mixed CSPs [5], which model decision problems
under uncertainty by introducing state variables, which are not under control of
the solver, and seek assignments that are consistent to any state of the world;
and Stochastic CSPs [34, 31], which introduce probability distributions that are
associated to outcomes of state variables, and seek solutions that maximize the
probability of constraint consistencies. While these approaches have been used to
solve CSP variants, they have not been used to solve D-DCOPs with continuous
variables to the best of our knowledge.

Researchers have proposed several algorithms to solve C-DCOPs. One of
such algorithms is Continuous Max-Sum (CMS) [29], which is based on Max-
Sum [6], a belief propagation algorithm. To represent the constraints, CMS uses
multivariate continuous piecewise linear functions (CPLFs) and later encodes
the n-ary CPLFs as n-simplexes. To add two CPLFs, CMS partitions the do-
mains of the two functions and then finds the simplexes that make up the re-
sulting summation function. To project a CPLF, the function is projected onto
the corresponding plane and the result is the upper envelope of the simplexes.
However, CMS is not suitable for the problems where constraint functions are
smooth, and it does not provide quality guarantee for the solution. Later, Voice
et al. [32] proposed Hybrid Continuous Max-Sum (HCMS) to solve C-DCOPs
with differentiable functions. Instead of working directly on continuous domains,
HCMS first discretizes the domain into a number of initial discrete points and
then uses continuous non-linear optimization techniques such as gradient method
and Newton method to optimize the marginal function at each variable. However,
similar to CMS, HCMS does not provide solution quality guarantee. Recently,
Choudhury et al. [3] proposed Particle Swarm Optimization Based Functional
DCOP (PFD) which is based on the Particle Swarm Optimization (PSO) tech-
nique. While being an iterative and a heuristic algorithm, PFD shares the same
limitation with CMS and HCMS that they do not provide guarantee for their
solutions. Finally, Fransman et al. [11] proposed Bayesian DPOP (B-DPOP),
a Bayesian optimization based algorithm, to solve C-DCOPs. While B-DPOP
guarantees that it will eventually converge to the global optimum for Lipschitz-
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Fig. 2. Experimental Results Varying Horizon and Switching Cost on Sparse Random
Networks

continuous objective functions, it does not provide guarantees on intermediate
solutions prior to convergence.

8 Experimental Evaluations

We empirically evaluate the following DC-DCOP algorithms: Forward- (la-
beled ‘F-’ in the tables) and Backward- (labeled ‘B-’ in the tables) versions of
AC-DPOP, CAC-DPOP, C-DSA, and HCMS [15] on random networks and dis-
tributed sensor network problems. Our experiments are performed on a 2.1GHz
machine with 16GB of RAM using JADE framework [1]. We report solution qual-
ity and simulated runtime [30] averaged over 30 independent runs, each with a
timeout of 30 minutes.

8.1 Random Networks

We use the following default configuration: Number of agents and random
variables |A| = |X| = |Y| = 12; domains of decision and random variables
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Fig. 3. Experimental Results Varying Horizon and Switching Cost on Dense Random
Networks

Dx = Dy = [−10, 10]; discount factor γ = 0.9; horizon h = 6; switching cost
function c(x, x′) = c · (x−x′)2 with the default cost c = 1. We set the number of
discrete points to 3 for AC-DPOP-, CAC-DPOP-, and HCMS-based algorithms.
For all algorithms, we set the number of iterations as 20.3

We first vary the horizon h to evaluate the performance of the algorithms
with different horizon length. Figures 2(a) and 2(b) show the solution quality and
runtime with horizon varying from 2 to 10 on sparse networks with p1 = 0.2.
When the horizon increases, both Forward-C-DSA and Backward-C-DSA
produce the highest solution quality and outperform all other algorithms. The
reason is that C-DSA-based algorithms do not depend on a number of initial
discrete points and thus they are free to explore the search space. Interestingly,
when the horizon becomes longer, their runtime is as small as other algorithms.
This result shows that while C-DSA-based algorithms have the best solution
quality, they do not come with the cost of higher runtime. Since AC-DPOP

3 For AC-DPOP- and CAC-DPOP-based algorithms, that is the number of iterations
to move the values of parent and pseudo-parent variables. For HCMS- and C-DSA-
based algorithms, it is the number of iterations to perform the local search.
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|A| F-AC-DPOP B-AC-DPOP F-CAC-DPOP B-CAC-DPOP F-C-DSA B-C-DSA F-HCMS B-HCMS
q t q t q t q t q t q t q t q t

8 20789 285 20467 280 20778 284 20656 281 25824 280 26354 272 18668 285 18792 285
12 27269 420 27356 406 26378 341 27445 348 37653 371 38306 372 27423 357 27780 376
16 42473 111276 43327 119863 37708 874 39005 870 59390 542 59296 545 43511 611 44373 591
20 – – – – 65345 3697 65075 3690 100725 690 102904 709 73269 751 74140 760
24 – – – – 70058 49275 68965 43269 134213 774 134964 782 93427 958 94610 956
28 – – – – 88135 493444 88156 524903 176429 884 175571 887 120822 1247 120917 1259
32 – – – – – – – – 224743 1014 227258 1015 162918 1498 163627 1623

Table 1. Varying the Number of Agents on Sparse Random Networks with p1 = 0.2

|A| F-CAC-DPOP B-CAC-DPOP F-C-DSA B-C-DSA F-HCMS B-HCMS
q t q t q t q t q t q t

8 30359 6604 31158 6229 47747 436 47594 418 33166 684 32958 674
12 – – – – 95133 782 96722 791 62861 1289 62767 1273
16 – – – – 160255 1273 160713 1289 109128 2222 110232 2227
20 – – – – 217548 1603 215767 1601 148709 3243 149640 3284
24 – – – – 281505 1842 283987 1836 196808 4508 196467 4453
28 – – – – 375106 1972 374697 1986 255482 5565 252306 5643
32 – – – – 466945 2138 463594 2121 313125 6891 318854 6860

Table 2. Varying the Number of Agents on Dense Random Networks with p1 = 0.7

|A| F-AC-DPOP B-AC-DPOP F-CAC-DPOP B-CAC-DPOP F-C-DSA B-C-DSA F-HCMS B-HCMS
q t q t q t q t q t q t q t q t

4 4750 108 5053 104 4750 171 5052 168 7302 131 7432 136 4344 127 4406 125
8 19166 275 21155 263 19287 296 19208 298 24958 252 25045 253 17415 282 17969 282

12 31809 387 31916 387 31116 411 30773 418 40014 392 40912 404 28357 373 28892 358
16 37842 507 38427 493 36007 450 36615 469 50069 459 51274 458 36454 412 36265 411
20 58987 696 60088 695 51418 570 51265 567 70953 513 71888 514 52402 444 52201 465

Table 3. Varying the Number of Agents on Sensor Networks

takes the longest time to solve each single C-DCOP [15], Forward-AC-DPOP
and Backward-AC-DPOP are the slowest algorithms across different horizon
length. Similarly, on dense networks with p1 = 0.7, Figures 3(a) and 3(b) show
that both versions of C-DSA again outperform the HCMS-based algorithms in
terms of solution quality with smaller runtime. We do not include AC-DPOP-
and CAC-DPOP-based algorithms in Figure 3 since they time out on the dense
networks.

Figures 2(c) and 2(d) show the result of varying the switching cost c in
the switching cost function c · (x − x′)2. The result shows that the solution
quality of all algorithms decreases when the switching cost increases. If there
is no switching cost (i.e., c = 0), the optimal solution of DC-DCOP consists of
the optimal solution of the C-DCOP at each time step. However, with higher
switching cost, the solution quality found by algorithms is likely to decreases
due to the higher penalty incurred by different solutions across time steps. We
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also observe that C-DSA-based algorithms have the best solution quality, which
is consistent with the result on dense graph reported in Figures 3(c) and 3(d).

Finally, we vary the number of agents |A| (and thus the number of decision
|X| and random variables |Y|) of the problems from 8 to 32 with horizon h = 10.
Table 1 tabulates the solution quality (denoted by q) and simulated runtime
(denoted by t in ms) of the algorithms on sparse networks with p1 = 0.2. Since
AC-DPOP takes the longest time to solve the C-DCOP at each time step, both
Forward-AC-DPOP and Backward-AC-DPOP can only solve small instances
with 8, 12 and 16 agents and time out with larger instances. CAC-DPOP, which
is the clustering version of AC-DPOP, reduces the memory used in the UTIL
phrase and is more scalable to solve C-DCOPs with more number of agents [15].
Thus both Forward- and Backward-CAC-DPOP are able to solve instances
with more number of agents than AC-DPOP-based algorithms and only time out
with 32 agents. On the other hand, since C-DSA and HCMS are more scalable,
it takes less time for them to solve each individual C-DCOP, and their DC-
DCOP algorithms are able to solve all instances with much smaller runtime
than AC-DPOP and CAC-DPOP. Interestingly, HCMS-based algorithms report
a slightly larger runtime than C-DSA-based algorithms. Similar to the results
from Figure 2, C-DSA-based algorithms report the highest solution quality than
those from AC-DPOP-, CAC-DPOP-, and HCMS-based algorithms on different
numbers of agents.

Table 2 shows the result varying agents on a dense random networks with
p1 = 0.7. Since both Forward- and Backward-AC-DPOP time out with 8
agents, we do not include these algorithms in the table. While CAC-DPOP-
based algorithms are able to solve the instances with 8 agents, they time out on
larger instances. Both C-DSA- and HCMS- based algorithms are able to scale to
solve larger instances with incremental runtime. While C-DSA-based algorithms
outperform HCMS-based algorithms on all instances, it also takes them less time
than the counterpart algorithms.

8.2 Distributed Sensor Network Problems

We evaluate our DC-DCOP algorithms on distributed sensor network problems,
which is our motivating application described in Section 3. We use grid networks
to represent the sensor networks where sensors are arranged in a rectangular
grid. Each sensor is connected to its four neighboring sensors in the cardinal
direction. Those sensors on the edges are connected to three neighboring sen-
sors, and corner sensors are connected to two neighbors. The random variables,
which represent the possible location of the targets, are randomly placed on the
network.

Table 3 shows the quality solution and runtime (in ms) of DC-DCOP al-
gorithms on sensor network problems with agents varying from 4 to 20. Both
AC-DPOP- and CAC-DPOP-based algorithms run from smaller (4 sensors) to
larger instances (20 sensors) without timeout and have slightly higher solution
quality than HCMS-based algorithms. However, both versions of C-DSA outper-
form all other algorithms by providing the best solution quality from small to
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large instances. In addition, C-DSA-based algorithms have smaller runtime than
AC-DPOP- and CAC-DPOP-based since C-DSA is a local search algorithm on
C-DCOP. However, on grid network problems, HCMS-based algorithms execute
faster than C-DSA-based algorithms.

9 Conclusions

In many real-world applications, agents often act in a complex and dynamic
environment. While DCOPs have been widely used to solve several multi-agent
problems, the formulation lacks the capability to model the dynamic and con-
tinuous nature in complex environments. Consequently, researchers have pro-
posed D-DCOPs to model how the environment changes over time and C-DCOPs
to model the continuous domain of decision variables. However, they can only
address the DCOP limitations in isolation. In this paper, we introduced Dy-
namic Continuous DCOPs (DC-DCOPs), which model both the dynamic envi-
ronment and decision variables with continuous domain. To solve DC-DCOPs,
we proposed several sequential greedy algorithms that can use any off-the-shelf
C-DCOP algorithms to solve DC-DCOPs and we discussed their theoretical
properties. Finally, we evaluated our algorithms on random networks and on
distributed sensor network problems, which are our motivating application for
this line of work.
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