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Abstract

This paper explores the use of Answer Set Programming (ASP) in solving Distributed Con-

straint Optimization Problems (DCOPs). The paper provides the following novel contributions:

(1) it shows how one can formulate DCOPs as logic programs; (2) it introduces ASP-DPOP,

the first DCOP algorithm that is based on logic programming; (3) it experimentally shows

that ASP-DPOP can be up to two orders of magnitude faster than DPOP (its imperative

programming counterpart) as well as solve some problems that DPOP fails to solve, due

to memory limitations; and (4) it demonstrates the applicability of ASP in a wide array of

multi-agent problems currently modeled as DCOPs.

KEYWORDS: DCOP, DPOP, logic programming, ASP

1 Introduction

Distributed constraint optimization problems (DCOPs) are optimization problems

where agents need to coordinate the assignment of values to their “local” variables

to maximize the overall sum of resulting constraint utilities (Mailler and Lesser

2004; Modi et al. 2005; Petcu and Faltings 2005a; Yeoh and Yokoo 2012). The

process is subject to limitations on the communication capabilities of the agents; in

particular, each agent can only exchange information with neighboring agents within

a given topology. DCOPs are well suited for modeling multi-agent coordination and

resource allocation problems, where the primary interactions are between local

subsets of agents. Researchers have used DCOPs to model various problems, such

as the distributed scheduling of meetings (Maheswaran et al. 2004; Zivan et al.

2014), distributed allocation of targets to sensors in a network (Farinelli et al. 2008),

distributed allocation of resources in disaster evacuation scenarios (Lass et al. 2008),

� This article extends our previous conference paper (Le et al. 2015) in the following manner: (1) it
provides a more thorough description of the ASP-DPOP algorithm; (2) it elaborates on the algorithm’s
theoretical properties with complete proofs; and (3) it includes additional experimental results.
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the distributed management of power distribution networks (Kumar et al. 2009;

Jain et al. 2012), the distributed generation of coalition structures (Ueda et al. 2010)

and the distributed coordination of logistics operations (Léauté and Faltings 2011).

The field has matured considerably over the past decade, since the seminal ADOPT

paper (Modi et al. 2005), as researchers continue to develop more sophisticated

solving algorithms. The majority of the DCOP resolution algorithms can be classified

in one of three classes: (1) Search-based algorithms, like ADOPT (Modi et al. 2005)

and its variants (Yeoh et al. 2009, 2010; Gutierrez et al. 2011, 2013), Asynchronous

Forward-Bounding (AFB) (Gershman et al. 2009), and MGM (Maheswaran et al.

2004), where the agents enumerate combinations of value assignments in a de-

centralized manner; (2) Inference-based algorithms, like DPOP (Petcu and Faltings

2005a) and its variants (Petcu and Faltings 2005b, 2007; Petcu et al. 2007, 2008),

max-sum (Farinelli et al. 2008), and Action GDL (Vinyals et al. 2011), where the

agents use dynamic programming techniques to propagate aggregated information

to other agents; and (3) Sampling-based algorithms, like DUCT (Ottens et al. 2012)

and D-Gibbs (Nguyen et al. 2013; Fioretto et al. 2014), where the agents sample the

search space in a decentralized manner.

The existing algorithms have been designed and developed almost exclusively

using imperative programming techniques, where the algorithms define a control

flow, that is, a sequence of commands to be executed. In addition, the local solver

employed by each agent is an “ad-hoc” implementation. In this paper, we are

interested in investigating the benefits of using declarative programming techniques

to solve DCOPs, along with the use of a general constraint solver, used as a black

box, as each agent’s local constraint solver. Specifically, we propose an integration of

Distributed Pseudo-tree Optimization Procedure (DPOP) (Petcu and Faltings 2005a),

a popular DCOP algorithm, with Answer Set Programming (ASP) (Niemelä 1999;

Marek and Truszczyński 1999) as the local constraint solver of each agent.

This paper provides the first step in bridging the areas of DCOPs and ASP;

in the process, we offer novel contributions to both the DCOP field as well as

the ASP field. For the DCOP community, we demonstrate that the use of ASP as

a local constraint solver provides a number of benefits, including the ability to

capitalize on (i) the highly expressive ASP language to more concisely define input

instances (e.g., by representing constraint utilities as implicit functions instead of

explicitly enumerating their extensions) and (ii) the highly optimized ASP solvers to

exploit problem structure (e.g., propagating hard constraints to ensure consistency).

For the ASP community, the paper makes the equally important contribution of

increasing the applicability of ASP to model and solve a wide array of multi-

agent coordination and resource allocation problems, currently modeled as DCOPs.

Furthermore, it also demonstrates that general, off-the-shelf ASP solvers, which are

continuously honed and improved, can be coupled with distributed message passing

protocols to outperform specialized imperative solvers.

The paper is organized as follows. In Section 2, we review the basic definitions

of DCOPs, the DPOP algorithm, and ASP. In Section 3, we describe in detail

the structure of the novel ASP-based DCOP solver, called ASP-DPOP, and its

implementation. Section 4 provides an analysis of the properties of ASP-DPOP,
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including proofs of soundness and completeness of ASP-DPOP. Section 5 provides

some experimental results, while Section 6 reviews related work. Finally, Section 7

provides conclusions and indications for future work.

2 Background

In this section, we present an overview of DCOPs, we describe DPOP, a complete

distributed algorithm to solve DCOPs, and provide some fundamental definitions

of ASP.

2.1 Distributed constraint optimization problems

A DCOP (Mailler and Lesser 2004; Modi et al. 2005; Petcu and Faltings 2005a;

Yeoh and Yokoo 2012) can be described as a tuple M = 〈X,D,F,A, α〉, where

• X = {x1, . . . , xn} is a finite set of (decision) variables;

• D = {D1, . . . , Dn} is a set of finite domains, where Di is the domain of the

variable xi ∈ X, for 1 � i � n;

• F = {f1, . . . , fm} is a finite set of constraints, where fj is a kj-ary func-

tion fj : Dj1 × Dj2 × · · · × Djkj
�→ � ∪ {−∞} that specifies the utility of each

combination of values of variables in its scope; the scope is denoted by

scp(fj) = {xj1 , . . . , xjkj };
1

• A = {a1, . . . , ap} is a finite set of agents; and

• α : X �→ A maps each variable to an agent.

We say that a variable x is owned by an agent a if α(x) = a. We denote with αi the

set of all variables that are owned by an agent ai, i.e., αi = {x ∈ X | α(x) = ai}. Each

constraint inF can be either hard, indicating that some value combinations result in

a utility of −∞ and must be avoided, or soft, indicating that all value combinations

result in a finite utility and need not be avoided. A value assignment is a (partial or

complete) function x that maps variables of X to values in D, such that if x(xi) is

defined, then x(xi) ∈ Di for i = 1, . . . , n. For the sake of simplicity, and with a slight

abuse of notation, we will often denote x(xi) simply with xi. Given a constraint

fj and a complete value assignment x for all decision variables, we denote with xfj
the projection of x to the variables in scp(fj); we refer to this as a partial value

assignment for fj . For a DCOP M, we denote with C(M) the set of all complete

value assignments for M.

A solution of a DCOP is a complete value assignment x for all variables such that

x = argmax
x∈C(M)

m∑
j=1

fj(xfj ) (2.1)

A DCOP can be described by its constraint graph—i.e., a graph whose nodes

correspond to agents in A and whose edges connect pairs of agents who own

variables in the scope of the same constraint.

1 For the sake of simplicity, we assume a given ordering of variables.
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Definition 1 (Constraint Graph)

A constraint graph of a DCOP M = 〈X,D,F,A, α〉 is an undirected graph GM =

(V , E), where V =A and

E = {{a, a′} | {a, a′} ⊆ A, ∃f ∈ F and {xi, xj} ⊆ X, such that

{xi, xj} ⊆ scp(f), and α(xi) = a, α(xj) = a′}. (2.2)

Given the constraint graph GM and given a node a ∈ A, we denote with N(a)

the neighbors of a, i.e.,

N(a) = {a′ ∈ A | {a, a′} ∈ E}. (2.3)

Definition 2 (Pseudo-tree)

A pseudo-tree of a DCOP is a subgraph of GM that has the same nodes as GM such

that (i) the included edges (called tree edges) form a rooted tree, and (ii) two nodes

that are connected to each other in GM appear in the same branch of the tree.

The edges of GM that are not included in a pseudo-tree are called back edges. Notice

that tree edges connect a node with its parent and its children, while back edges

connect a node with its pseudo-parents and pseudo-children—i.e., nodes closer to

the root are parents or pseudo-parents, while those closer to the leaves are children

or pseudo-children. A pseudo-tree of a DCOP can be constructed using distributed

DFS algorithms (Hamadi et al. 1998) applied to the constraint graph of the DCOP.

In this paper, we say that two variables are constrained to each other if they are

in the scope of the same constraint. Given a pseudo-tree, the separator of a node ai
is, intuitively, the set of variables that (i) are owned by the ancestors of ai, and (ii)

are constrained with some variables that are either owned by ai or the descendants

of ai. Formally, in a pseudo-tree, the separator of a node ai, denoted by sepi, is

sepi = {xi′ ∈ X | α(xi′ ) = ai′ where ai′ is an ancestor of ai; and

∃xi′′ ∈ X, f ∈ F, such that ai′′ is either ai or a descendant of ai,

α(xi′′ ) = ai′′ , and {xi′ , xi′′ } ⊆ scp(f)} (2.4)

We denote with Pi, PPi, Ci, and PCi the parent, the set of pseudo-parents, the set

of children, and the set of pseudo-children of a node ai, respectively. For simplicity,

if A is a set of agents in A, we also denote with αA the set of variables in X that

are owned by agents in A.

Example 1

Figure 1(a) shows the constraint graph of a DCOP M = 〈X,D,F,A, α〉, where

• X = {x1, x2, x3};
• D = {D1, D2, D3} where Di = {0, 1} (1 � i � 3) is the domain of the variable

xi ∈ X;

• F = {x1 cons x2, x1 cons x3, x2 cons x3} where, for each 1 � i < j � 3,

— for the constraint xi cons xj we have that scp(xi cons xj) = {xi, xj};
— the utilities specified by the constraint xi cons xj are given in Figure 1(c).
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a1

a2

a3

(a) Constraint Graph

a1

a2

a3

(b) Pseudo-tree

for i < j
xi xj Utilities
0 0 5
0 1 8
1 0 20
1 1 3

(c) Utilities of Constraints xi cons xj
with i < j

Fig. 1. Example DCOP. (a) Constraint graph. (b) Pseudo-tree. (c) Utilities of constraints

xi cons xj with i < j.

• A = {a1, a2, a3}; and

• α maps each variable xi to agent ai.

Figure 1(b) shows one possible pseudo-tree, where the dotted line is a back edge. In

this pseudo-tree, P3 = a2, PP3 = {a1}, C1 = {a2}, PC1 = {a3}, and sep3 = {x1, x2}.

In a pseudo-tree T of a DCOP 〈X,D,F,A, α〉, given ai ∈ A let RT
ai

be the set of

constraints in F, such that

RT
ai

= {f ∈ F | scp(f) ⊆ αi ∪ αPi
∪ αPPi

∧ scp(f) ∩ αi �= ∅} (2.5)

In the following, without causing any confusion, we often omit the superscript in

RT
ai

(i.e., Rai ) if there is only one pseudo-tree mentioned in the context.

Example 2

Considering again the DCOP in Example 1 and its pseudo-tree in Figure 1(b), we

have Ra3
= {x1 cons x3, x2 cons x3}.

2.2 The distributed Pseudo-tree optimization procedure

The DPOP (Petcu and Faltings 2005a) is a complete algorithm to solve DCOPs

with the following three phases:2 Pseudo-tree generation, UTIL propagation, and

VALUE propagation.

2.2.1 Phase 1: Pseudo-tree generation phase

DPOP does not require the use of any specific algorithm to construct the pseudo-

tree. However, in many implementations of DPOP, including those within the

DCOPolis (Sultanik et al. 2007) and FRODO (Léauté et al. 2009) repositories,

2 Here, we detail an extended version of DPOP described in Petcu and Faltings (2005a) that removes
the assumption that each agent owns exactly one variable.
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greedy approaches such as the Distributed DFS algorithm (Hamadi et al. 1998) are

used.

The distributed DFS algorithm operates as follows. First of all, the algorithm

assigns a score to each agent, according to a heuristic function. It then selects

an agent with the largest score as the root of the pseudo-tree. Once the root is

selected, the algorithm initiates a DFS-traversal of the constraint graph, greedily

adding the neighboring agent with the largest score as the child of the current agent.

This process is repeated until all agents in the constraint graph are added to the

pseudo-tree.

The agents’ scores can be chosen arbitrarily. A commonly used heuristic is the

max-degree heuristic h(ai):

h(ai) = |N(ai)| (2.6)

which sets an agent’s score to its number of neighbors. In situations where multiple

agents have the same maximal score, the algorithm breaks ties according to a

different heuristic, such as the variable-ID heuristic, which assigns to each agent

a score that is equal to its unique ID. In our experiments, we use the max-degree

heuristic and break ties with the variable-ID heuristic in the construction of the

pseudo-tree.

2.2.2 Phase 2: UTIL propagation phase

The UTIL propagation phase is a bottom-up process, which starts from the leaves

of the pseudo-tree and propagates upward, following only the tree edges of the

pseudo-tree. In this process, the agents send UTIL messages to their parents.

Definition 3 (UTIL Messages (Petcu 2009))

UTIL
aj
ai , the UTIL message sent by agent ai to agent aj , is a multi-dimensional

matrix, with one dimension for each variable in sepi. With a slight abuse of notation,

we denote with scp(UTIL
aj
ai ) the set of variables in the message.

Instead of using a multi-dimensional matrix, one can also flatten the multi-

dimensional matrix into a table where each row of the table is for one combination of

value assignment of variables in sepi and the respective utility for that combination.

For simplicity, in this paper, we will represent UTIL messages under their tabular

form. We can observe that it is always true that αj∩scp(UTIL
aj
ai ) �= ∅. The semantics

of such a UTIL message is similar to a constraint whose scope is the set of all

variables in the context of the message (its dimensions). The size of such a UTIL

message is the product of the domain sizes of variables in the context of the message.

Intuitively, a UTIL message summarizes the optimal sum of utilities in its subtree

for each value combination of variables in its separator. An agent ai computes its

UTIL message by (i) summing the utilities in the UTIL messages received from its

child agents and the utilities of constraints whose scopes are exclusively composed

of the variables of ai and the variables in its separator (i.e., Rai ), and then (ii)

projecting out the variables of ai, by optimizing over them. Algorithm 1 provides a

formal description of Phase 2.
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Algorithm 1: DPOP Phase 2 (UTIL Propagation Phase)

1 Each agent ai does:

2 JOINPi
ai

= null

3 forall the ac ∈ Ci do

4 wait for UTILai
ac

message to arrive from ac
5 JOINPi

ai
= JOINPi

ai
⊕UTILai

ac
// join UTIL messages from children as they arrive

6 end

7 JOINPi
ai

= JOINPi
ai
⊕

(
⊕f∈Rai

f
)
// also join all constraints with parent/pseudo-parents

8 UTILPi
ai

= JOINPi
ai
⊥αi // use projection to eliminate its owned variables

9 Send UTILPi
ai

message to its parent agent Pi

Algorithm 1 uses the JOIN operator (i.e., ⊕) and the PROJECTION operator

(i.e., ⊥).

Definition 4 (JOIN ⊕ Operator)

U = UTILai
ak
⊕UTILai

al
is the join of two UTIL matrices (constraints). U is also a

matrix (constraint) with scp(U) = scp(UTILai
ak

) ∪ scp(UTILai
al
) as dimensions. For

each possible combination x of values of variables in scp(U), the corresponding

value of U(x) is the sum of the corresponding cells in the two source matrices,

i.e., U(x) = UTILai
ak

(xUTIL
ai
ak
) + UTILai

al
(xUTIL

ai
al
) where xUTIL

ai
ak

and xUTIL
ai
al

are

partial value assignments from x for all variables in scp(UTILai
ak

) and scp(UTILai
al
),

respectively.

Since UTIL messages can be seen as constraints, the ⊕ operator can be used to join

UTIL messages and constraints.

Example 3

Given 2 constraints x1 cons x3 and x2 cons x3 in Example 1, let JOINa2
a3

=

x1 cons x3 ⊕ x2 cons x3. It is possible to see that scp(JOINa2
a3

) = {x1, x2, x3}. The

utility corresponding to x1 = x2 = x3 = 0 is JOINa2
a3

(x1 = 0, x2 = 0, x3 = 0) =

5 + 5 = 10. Moreover, JOINa2
a3

(x1 = 0, x2 = 0, x3 = 1) = 8 + 8 = 16.

For the ⊥ operator, knowing that αi ⊆ scp(JOINPi
ai

), JOINPi
ai
⊥αi is the projection

through optimization of the JOINPi
ai

matrix along axes representing variables in αi.

Definition 5 (PROJECTION ⊥ Operator)

Let αi be a set of variables where αi ⊆ scp(JOINPi
ai

), and let Xi be the set of all

possible value combinations of variables in αi. A matrix U = JOINPi
ai
⊥αi is defined

as: (i) scp(U) = scp(JOINPi
ai

) \ αi, and (ii) for each possible value combination x of

variables in scp(U), U(x) = maxx′∈Xi
JOINPi

ai
(x, x′).

Example 4

Considering again JOINa2
a3

in Example 3, let U = JOINa2
a3
⊥{x3}. We have scp(U) =

{x1, x2}, and U(x1 = 0, x2 = 0) = max
(
JOINa2

a3
(x1 = 0, x2 = 0, x3 = 0), JOINa2

a3
(x1 =

0, x2 = 0, x3 = 1)
)

= max(10, 16) = 16.

As an example for the computations in Phase 2 (UTIL propagation phase), we

consider again the DCOP in Example 1.
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Table 1. UTIL phase computations in DPOP

x1 x2 Utilities

0 0 max( 5 + 5 , 8 + 8 ) = 16

0 1 max( 5 + 20 , 8 + 3 ) = 25

1 0 max( 20 + 5 , 3 + 8 ) = 25

1 1 max( 20 + 20 , 3 + 3 ) = 40

(a)

x1 Utilities

0 max( 5 + 16 , 8 + 25 ) = 33

1 max( 20 + 25 , 3 + 40 ) = 45

(b)

Example 5

In the DCOP in Example 1, the agent a3 computes its UTIL message, UTILa2
a3

(see

Table 1(a)), and sends it to its parent agent a2. The agent a2 then computes its UTIL

message, UTILa1
a2

(see Table 1(b)), and sends it to its parent agent a1. Finally, the

agent a1 computes the optimal utility of the entire problem, which is 45.

2.2.3 Phase 3: VALUE propagation phase

Phase 2 finishes when the UTIL message reaches the root of the tree. At that point,

each agent, starting from the root of the pseudo-tree, determines the optimal value

for its variables based on (i) the computation from Phase 2, and (ii) (for non-root

agent only) the VALUE message that is received from its parent. Then, it sends these

optimal values to its child agents through VALUE messages. Algorithm 2 provides

a formal description of Phase 3.

A VALUE message that travels from the parent Pi to the agent ai, VALUE ai
Pi
,

contains the optimal value assignment for variables owned by either the parent

agent or the pseudo-parent agents of the agent ai.

Algorithm 2: DPOP Phase 3 (VALUE Propagation Phase)

1 Each agent ai do:

2 wait for VALUE
ai
Pi

(sep∗i ) message from its parent agent Pi // sep∗i is the optimal value

assignment for all variables in sepi
3 α∗i ← argmaxαi∈Xi

JOINPi
ai

(sep∗i , αi) // Xi is the set of all possible value combinations of

variables in αi
4 forall the ac ∈ Ci do

5 let sep∗∗i be the partial optimal value assignment for variables in sepc from sep∗i
6 send VALUE (sep∗∗i , α∗i ) as VALUE ac

ai
message to its child agent ac

7 end

Example 6

In the DCOP in Example 1, the agent a1 determines that the value with the largest

utility for its variable x1 is 1, with a utility of 45, and then sends this information

down to its child agent a2 in a VALUE message, i.e., VALUE a2
a1

(x1 = 1). Upon

receiving that VALUE message, the agent a2 determines that the value for its

variable x2 with the largest utility of the subtree rooted at the agent a2, assuming

that x1 = 1, is 0, with a utility of 45. The agent a2 then sends this information down
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to its child agent a3, i.e., VALUE a3
a2

(x1 = 1, x2 = 0). Finally, upon receiving such

VALUE message, the agent a3 determines that the value for its variable x3 with

the largest utility of the subtree rooted at the agent a3, assuming that x1 = 1 and

x2 = 0, is 0, with a utility of 25.

2.3 Answer set programming

Let us provide some general background on ASP (see, for example, Baral 2003;

Gelfond and Kahl 2006 for more details).

An answer set program Π is a set of rules of the form

c← a1, . . . , aj , not aj+1, . . . , not am (2.7)

where 0 � j � m, for 1 � i � m each ai or c is a literal of a first-order language

L, and not represents negation-as-failure (naf). For a literal a, not a is called a

naf-literal. For a rule of the form (2.7), the left- and right-hand sides of the rule

are called the head and the body of the rule, respectively. Both the head and the

body can be empty. When the head is empty, the rule is called a constraint. When

the body is empty, the rule is called a fact. A literal (resp. rule) is a ground literal

(resp. ground rule) if it does not contain any variable. A rule with variables is

simply used as a shorthand for the set of its ground instances from the language

L. Similarly, a non-ground program (i.e., a program containing some non-ground

rules) is a shorthand for all ground instances of its rules. Throughout this paper,

we follow the traditional notation in writing ASP rules, where names that start with

an upper case letter represent variables. For a ground instance r of a rule of the

form (2.7), head(r) denotes the set {c}, while pos(r) and neg(r) denote {a1, . . . , aj}
and {aj+1, . . . , am}, respectively.

Let X be a set of ground literals. X is consistent if there is no atom a such that

{a,¬a} ⊆ X. The body of a ground rule r of the form (2.7) is satisfied by X if

neg(r) ∩ X = ∅ and pos(r) ⊆ X. A ground rule of the form (2.7) with nonempty

head is satisfied by X if either its body is not satisfied by X or head(r) ∩ X �= ∅. A

constraint is satisfied by X if its body is not satisfied by X.

For a consistent set of ground literals S and a ground program Π, the reduct of

Π w.r.t. S , denoted by ΠS , is the program obtained from Π by deleting (i) each rule

that has a naf-literal not a in its body where a ∈ S , and (ii) all naf-literals in the

bodies of the remaining rules.

S is an answer set (or a stable model) of a ground program Π (Gelfond and

Lifschitz 1990) if it satisfies the following conditions: (i) if Π does not contain

any naf-literal (i.e., j = m in every rule of Π), then S is a minimal consistent

set of literals that satisfies all the rules in Π; and (ii) if Π contains some naf-

literals (j < m in some rules of Π), then S is an answer set of ΠS . Note that

ΠS does not contain naf-literals, and thus its answer set is defined in case (i). A

program Π is said to be consistent if it has some answer sets. Otherwise, it is

inconsistent.

The ASP language includes also language-level extensions to facilitate the encod-

ing of aggregates (min, max, sum, etc.).
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Problem

Answer Set 
Program Grounder Solver Answer Sets

Solutions

Modeling Interpreting

Fig. 2. Solving a problem using ASP.

Example 7

Let us consider an ASP program Π that consists of two facts and one rule:

int(5) ← (2.8)

int(10) ← (2.9)

max(U) ← U = #max{V : int(V )} (2.10)

The third rule uses an aggregate to determine the maximum in the set {V : int(V )}.
Π has one answer set: {int(5), int(10), max(10)}. Thus, Π is consistent.

Moreover, to increase the expressiveness of logic programming and simplify its

use in applications, the syntax of ASP has been extended with choice rules. Choice

rules are of the form:

l {a1, . . . , am} u← am+1, . . . , an, not an+1, . . . , not ak (2.11)

where l {a1, . . . , am} u is called a choice atom, l and u are integers, l � u, 0 � m �
n � k, and each ai is a literal for 1 � i � k. This rule allows us to derive any subset

of {a1, . . . , am} whose cardinality is between the lower bound l and upper bound u

whenever the body is satisfied. l or u can be omitted. If l is omitted, l = 0, and

if u is omitted, u = +∞. Standard syntax for choice rules has been proposed and

adopted in most state-of-the-art ASP solvers, such as clasp (Gebser et al. 2007) and

dlv (Citrigno et al. 1997).

Figure 2 visualizes how to solve a problem using ASP. In more detail, the problem

is encoded as an answer set program whose answer sets correspond to solutions. The

answer set program, which may contains variables, is then grounded using an ASP

grounder, e.g., gringo (Gebser et al. 2011). The grounding process employs smart

techniques to reduce the size of the resulting ground program, e.g., removing literals

from rules that are known to be true, removing rules that will not contribute to the

computation of answer sets.

Example 8

Let us consider an ASP program Π that consists of two facts and one rule:

int(1) ← (2.12)

int(−1) ← (2.13)

isPositive(X) ← int(X), X > 0 (2.14)
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Using a naive grounder that simply replaces consistently the variable X with the

two constants 1 and −1, the ground program of Π consists of the two facts (2.12)

and (2.13) and the two following ground rules:

isPositive(1) ← int(1), 1 > 0 (2.15)

isPositive(−1) ← int(−1),−1 > 0 (2.16)

It is easy to see that the ground rule (2.16) is unnecessary (i.e., its body cannot

be satisfied by any set of literals due to the literal −1 > 0) and should be

removed. In contrast, the ground program of Π obtained by gringo has only

three facts: (2.12), (2.13), and

isPositive(1) ← (2.17)

We observe that the unnecessary rule (2.16) is omitted since its body cannot be

satisfied (i.e., −1 > 0), and the fact (2.17) is obtained from the rule (2.15) by

removing all literals in its body because the grounder can determine as been always

satisfied.

All the answer sets of the program produced by the ASP grounder are then

computed by an ASP solver, e.g., clasp (Gebser et al. 2007). The solutions to the

original problem can be determined by properly interpreting the different answer

sets computed, where each answer sets corresponds to one of the possible solutions

to the original problem. For readers who are interested in how to solve an answer

set program, the foundations and algorithms underlying the grounding and solving

technology used in gringo and clasp are described in detail in Gebser et al. (2012)

and Kaufmann et al. (2016).

3 ASP-DPOP

ASP-DPOP is a framework that uses logic programming to capture the structure of

DCOPs, and to emulate the computation and communication operations of DPOP.

In particular, each agent in a DCOP is represented by a separate ASP program—

effectively enabling the infusion of a knowledge representation framework in the

DCOP paradigm.

The overall communication infrastructure required by the distributed computation

of DPOP is expressed using a subset of the SICStus Prolog language (Carlsson et al.

2015), extended with multi-threading and the Linda blackboard facilities. In ASP-

DPOP, we use clasp (Gebser et al. 2007), with its companion grounder gringo, as

our ASP solver, being the current state-of-the-art for ASP. In this section, we will

describe the structure of ASP-DPOP and its implementation.

3.1 The architecture of ASP-DPOP

ASP-DPOP is an agent architecture that reflects the structure of DCOPs, where

several agents reflect the computation and communication operations of DPOP.

The internal structure of each ASP-DPOP agent, shown in Figure 3, is composed of
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Module (SM)
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Fig. 3. The structure of an ASP-DPOP agent.

two modules. The first module is the Specification Module (SM), which encloses an

ASP program that captures a corresponding agent as specified in the DCOP—i.e.,

the agent’s name, the agent’s neighbors, the description of the variables owned by

the agent, the description of the variables owned by the agent’s neighbors, and the

description of the constraints whose scope include any of the variables owned by

the agent.

The second module is the Controller Module (CM), encoded as a Prolog program.

The CM instructs the agent to perform the communication operations of DPOP,

such as cooperating with other agents to generate a pseudo-tree, waiting for UTIL

messages from child agents, sending the UTIL message to the parent agent (if

present), waiting for the VALUE message from the parent agent (if present), and

sending the VALUE messages to the child agents.

In ASP-DPOP, each DCOP is represented by a set of ASP-DPOP agents; each

agent is modeled by its knowledge bases, located at its SM and CM, and it interacts

with other agents in accordance to the rules of its CM.

3.2 ASP-DPOP implementation: Specification module (SM)

Let us describe how to capture the structure of a DCOP in the SM of an ASP-

DPOP agent using ASP. Let us consider a generic DCOP M = 〈X,D,F,A, α〉.
We represent M using a set of ASP-DPOP agents whose SMs are ASP programs

{Πai | ai ∈ A}. We will show how to generate Πai for each agent ai. In the following,

we say a and a′ in A are neighbors if there exists x and x′ in X such that α(x) = a,

α(x′) = a′, and there is a f ∈ F such that {x, x′} ⊆ scp(f). Given a constraint f ∈ F,

we say that f is owned by the agent ai if the scope of f contains some variables

owned by the agent ai.
3

For each variable xi ∈ X we define a collection L(xi) of ASP rules that includes

the following:

3 The concept of ownership of a constraint is introduced to facilitate the representation of ASP-DPOP
implementation. Intuitively, an agent should know about a constraint if the agent owns some variables
that are in the scope of such constraint. Under this perspective, a constraint may be owned by several
agents.
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• A fact of the form

variable(xi)← (3.1)

for identifying the name of the variable;

• For each d ∈ Di ∈ D, a fact of the form

value(xi, d)← (3.2)

for identifying the possible values of xi. Alternatively, if the domain Di is an

integer interval [lower bound . . . upper bound], we can use the additional facts

of the form

begin(xi, lower bound)← (3.3)

end(xi, upper bound)← (3.4)

to facilitate the description of the domain Di. In such case, the value predicates

similar to ones in (3.2) are achieved by the rule

value(X,B..E) ← variable(X), begin(X,B), end(X,E) (3.5)

Intuitively, B and E in (3.5) are variables that should be grounded with

lower bound and upper bound from (3.3)–(3.4), respectively.

For each constraint fj ∈ F, where scp(fj) = {xj1 , . . . , xjkj }, we define a collection

L(fj) of rules that includes the following:

• A fact of the form

constraint(fj)← (3.6)

for identifying the name of the constraint;

• For each variable x ∈ scp(fj), a fact of the form

scope(fj , x)← (3.7)

for identifying the scope of the constraint; and

• For each partial value assignment xfj for all variables in scp(fj), where

vj1 , . . . , vjkj are the value assignments of the variables xj1 , . . . , xjkj , respectively,

such that fj(xfj ) = u �= −∞, a fact of the form

fj(u, vj1 , . . . , vjkj )← (3.8)

For each partial value assignment xfj for all variables in scp(fj), where

vj1 , . . . , vjkj are the value assignments of the variables xj1 , . . . , xjkj , respectively,

such that fj(xfj ) = −∞, a fact of the form4

fj(#inf , vj1 , . . . , vjkj )← (3.9)

4 #inf is a special constant representing the smallest possible value in ASP language.
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Alternatively, it is also possible to envision cases where the utility of a constraint is

implicitly modeled by logic programming rules, as shown in the following example.

It is important to mention that, considering a constraint fj ∈ F:

(1) the order of variables (e.g., xj1 , . . . , xjkj ) in scp(fj), whose corresponding value

assignments (e.g., vj1 , . . . , vjkj ) that appear in facts of the forms (3.8) and (3.9),

needs to be consistent in all facts of the forms (3.8) and (3.9) that relate to the

constraint fj; and

(2) the order of the facts of the form (3.7) that are added to L(fj) to identify the

scope of the constraint fj needs to be consistent with the order of variables (e.g.,

xj1 , . . . , xjkj ) mentioned in (1).

These requirements (i.e., (1) and (2)) are critical, because they allow CM to

understand which variables belong to what values that appear in the facts of

the forms (3.8) and (3.9), when CMs read L(fj). This is done because, in SICStus

Prolog, the search rule is “search forward from the beginning of the program.”

Therefore, the order of the predicates (i.e., facts) that are added to SICStus Prolog

matters.

Example 9

Let us consider a constraint f whose scope is {x, x′}, and f specifies that the utility

of value assignments x = v, x′ = v′ is v + v′. The facts of the form (3.8) for the

constraint f can be modeled by the following rule:

f(V + V ′, V , V ′)← value(x, V ), value(x′, V ′) (3.10)

For each agent ai we define an ASP program Πai that includes the following:

• A fact of the form

agent(ai)← (3.11)

for identifying the name of the agent;

• For each variable x ∈ X that is owned by the agent ai, a fact of the form

owner(ai, x)← (3.12)

• For each agent aj who is a neighbor of the agent ai, a fact of the form

neighbor(aj)← (3.13)

• For each variable x′ ∈ X that is owned by an agent aj who is a neighbor of

the agent ai, a fact of the form

owner(aj , x
′)← (3.14)

• For each constraint fj ∈ F owned by the agent ai, the set of rules

L(fj) (3.15)
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• For each variable x ∈ X that is in the scope of some constraints owned by the

agent ai, the set of rules

L(x) (3.16)

3.3 ASP-DPOP implementation: Encoding UTIL and VALUE messages

The ASP-DPOP framework emulates the computation and communication op-

erations of DPOP, where each ASP-DPOP agent produces UTIL and VALUE

messages, and forwards them to its parent and child agents, as DPOP does. In

ASP-DPOP, UTIL and VALUE messages are encoded as ASP facts, as discussed in

this subsection.

3.3.1 UTIL messages

In DPOP, each UTIL message sent from a child agent ai to its parent agent Pi is a

matrix. In encoding a UTIL message in ASP-DPOP, we represent each cell of the

matrix of the UTIL message, whose associated utility is not −∞, as an ASP atom

of the form:

table max ai(u, vi1 , . . . , viki ) (3.17)

which indicates that the optimal aggregate utility of the value assignments xi1 =

vi1 , . . . , xiki = viki is u �= −∞, where sepi = {xi1 , . . . , xiki }. In other words, the parent

agent Pi knows that UTILPi
ai
(xi1 = vi1 , . . . , xiki = viki ) = u �= −∞ if it receives the

fact table max ai(u, vi1 , . . . , viki ). It is important to know that the encoding of a UTIL

message omits the cells whose associated utilities are −∞.

In addition to facts of the form (3.17), ai also informs Pi about variables in its

separator. Thus, the encoding of the UTIL message sent from the agent ai to the

agent Pi includes also atoms of the form:

table info(ai, ai1 , xi1 , lbi1 , ubi1 ) (3.18)

· · ·
table info(ai, aiki , xiki , lbiki ubiki ) (3.19)

Each fact table info(ai, ait , xit , lbit , ubit ) informs Pi that xit is a variable in the separator

of ai whose domain is specified by lbit (lower bound) and ubit (upper bound) and

whose owner is ait .
5 It is also critical to note that the order of the atoms of the

forms (3.18), (3.19) matters, since such order will allow the respective CM understand

which variable belongs to the values stated in facts of the form (3.17) after reading

such encoded UTIL messages.

5 For simplicity, we assume that the domains Di are integer intervals.
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Example 10

Consider again the DCOP in Example 1. The UTIL message, sent from the agent

a3 to the agent a2, in Table 1(a) is encoded as the set of the ASP atoms:

table max a3(16, 0, 0) (3.20)

table max a3(25, 0, 1) (3.21)

table max a3(25, 1, 0) (3.22)

table max a3(40, 1, 1) (3.23)

table info(a3, a1, x1, 0, 1) (3.24)

table info(a3, a2, x2, 0, 1) (3.25)

Example 11

Similarly, considering again the DCOP in Example 1, the UTIL message sent from

the agent a2 to the agent a1 in Table 1(b) is encoded as the set of ASP facts:

table max a2(33, 0) (3.26)

table max a2(45, 1) (3.27)

table info(a2, a1, x1, 0, 1) (3.28)

3.3.2 VALUE messages

In DPOP, each VALUE message sent from a parent agent Pi to its child agents

ai contains the optimal value assignment for variables owned by either the parent

agent or the pseudo-parent agents of the agent ai. Thus, in encoding a VALUE

message, we use atoms of the form:

solution(a, x, v) (3.29)

where v is the value assignment of the variable x owned by the agent a for an

optimal solution.

Example 12

Consider again the DCOP in Example 1. The VALUE message sent from the agent

a1 to the agent a2 is encoded as the ASP atom:

solution(a1, x1, 1) (3.30)

Similarly, the VALUE message sent from the agent a2 to the agent a3 is encoded as

the set of the ASP atoms:

solution(a1, x1, 1) (3.31)

solution(a2, x2, 0) (3.32)

3.4 ASP-DPOP implementation: Controller module (CM)

The CM in each ASP-DPOP agent ai, denoted by Cai , consists of a set of Prolog

rules for communication (sending, receiving, and interpreting messages) and a set of
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table_max_a3(16, 0, 0)
table_max_a3(25, 0, 1)
table_max_a3(25, 1, 0)
table_max_a3(40, 1, 1)
table_info(a3, a1, x1, 0, 1)
table_info(a3, a2, x2, 0, 1)

a2

solution(a1, x1, 1)
table_max_a2(33, 0)
table_max_a2(45, 1)
table_info(a2, a1, x1, 0, 1)

From agent a3

table_row_a2(U, X1)   
     x1_cons_x2(V0, X1, X2),
     V0 ! = #inf,
     table_max_a3(V1, X1, X2),
     U = V0 + V1
table_max_a2(U, X1)  
     value(x1, X1),
     table_row_a2(_,X1),
     U = #max { V : table_row_a2(V, X1) }
table_info(a2, a1, x1, 0, 1)

To agent a1

 { row(U, X2) }   
      solution(a1, x1, X1),
      table_max_a2(U, X1),
      x1_cons_x2(U0, X1, X2),
      table_max_a3(U1, X1, X2),
      U == U0 + U1

 not 1 {row(U, X2) } 1
solution(a2, x2, X2)  row(U, X2) 

From agent a1

solution(a2,x2,0)
solution(a1,x1,1)

To agent a3

Ia2

Ma3

a2

a2

Ma2 a1

Fig. 4. Phase 2 and Phase 3 of agent a2 in ASP-DPOP on DCOP in Example 1.

rules for generating an ASP program that is used for the computations of a UTIL

message and a VALUE message. In this subsection, we would like to discuss some

code fragments to show how Cai is structured.6 To begin with, we will show how Cai

uses the Linda blackboard library of Prolog to exchange the messages.

There are three types of messages exchanged through the Linda blackboard; they

are tree, util, and value messages that are used in Phase 1, Phase 2, and Phase 3,

respectively, of DPOP. For sending (resp. waiting for) a message, we use the built-in

predicate out/1 (resp. in/1) provided by the Linda library of Prolog. Every message is

formatted as message(From, To, Type, Data) where the arguments denote the agent

who sends this message, the agent who should receive this message, the type of the

message, and the data enclosed in the message, respectively. The implementation of

the communication and the three phases of DPOP are described next.

3.4.1 Sending messages

The following Prolog rule generates a message of type t ∈ {tree, util, value}, with

content d (Content), to be sent from an agent ai (From) to an agent ak (To):

% sending message
send_message(From,To,Type,Content) :-

out(message(From,To,Type,Content)).

3.4.2 Waiting for messages

The following Prolog rule instructs agent ak (a k) to wait for a message:

6 The code listed in this section is a simplified version of the actual code for Cai , showing a condensed
version of the clause bodies; however, it still gives a flavor of the implementation of Cai and should
be sufficiently explanatory for the purpose of the CM.
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% waiting for a message
wait_message(From,a_k,Type,Data):- in(message(From,a_k,Type,Data)).

where From, Type, and Data will be unified with the name of the agent who sent this

message, the type of the message, and the data enclosed in the message, respectively.

3.4.3 Creating the pseudo-tree: Phase 1

In this phase, ASP-DPOP agents cooperate with each other to construct a pseudo-

tree. For simplicity, we will show here the clauses in Cai for generating a pseudo-tree

by initiating a DFS-traversal. We assume that the agent ai is not the root of the

pseudo-tree. The agent ai waits for a tree message from an agent Parent. The content

(Data) enclosed in such a tree message is the set of visited agents—i.e., the agents

who have already started performing the DFS. Upon receiving a tree message, ai
will execute the following clauses:

% pseudo-tree generation
generate_tree(Parent, Data):-

assign_parent(Parent),
assign_pseudo_parent(Data),
append(Data, [a_i], NewData),
depth_first_search(Parent, NewData).

% performing depth first search
depth_first_search(Parent, Data):-

find_next(Data, Next_Agent),
(Next_Agent == none ->

send_message(a_i, Parent, tree, Data)
;
assign_child(Next_Agent),
send_message(a_i, Next_Agent, tree, Data),
wait_message(Next_Agent, a_i, tree, NewData),
depth_first_search(Parent, NewData)

).

Intuitively, upon receiving a tree message from the agent Parent enclosed with

data Data, the agent ai will execute the clause generate tree(Parent, Data).

Specifically:

• It executes the clause assign parent/1, where it adds to its Πai a fact of

the form parent(Parent);

• It executes the clause assign pseudo parent/1 which adds to its Πai facts

of the form pseudo parent(X), where X is a neighboring agent of ai that

appears in Data such that X �= Parent;

• It adds itself (i.e., a i) to the list of visited agents;

• It starts performing a DFS, by executing the rule depth first search/2.

In order to perform a DFS, the agent ai will execute the rule find next/2 to

select a neighboring agent that will be visited next; this selection is based on some

heuristics (i.e., the unvisited neighbor agent with the greatest number of neighbors).

If such an agent Next Agent exists (i.e., Next Agent �= none), then ai will
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• execute the rule assign child/1, used to add to its Πai a fact of the form

children(Next Agent);

• send a tree message to the agent Next Agent;

• wait for the reply message from the agent Next Agent, which will provide the

updated list NewData of visited agents;

• recursively execute the rule depth first search/2.

Otherwise, if there is no agent Next Agent (i.e., Next Agent is equal to none), then

the agent ai will reply a tree message to its agent Parent. This implies that the agent

ai has finished performing DFS at its branch.

When the agent ai is chosen to be the root of the pseudo-tree, it executes the

rule generate tree(master, [ ]) immediately without waiting for the tree message

from other agents. We note that an agent whose parent agent is master will be the

root of the pseudo-tree. It is also worth to notice that, at the end of this phase,

the information about the parent, pseudo-parents, and child agents of each agent ai
are added to Πai via facts of the forms parent/1, pseudo parent/1, and children/1,

respectively.

Lemma 1

In ASP-DPOP, Phase 1 requires a linear number of messages in n where n is the

number of agents.

Proof

We first prove that Phase 1 terminates. In fact, each agent ai in executing

depth first search/2 will perform the rule find next/2 to select a neigh-

boring agent, i.e., Next Agent, that is not in the set of visited agents to send a

tree message to. Next Agent can be seen as an unvisited neighboring agent of the

agent ai.

The agent ai then waits to receive the tree message from Next Agent enclosing an

updated set of visited agents, and again send a tree message to another unvisited

neighboring agent if it exists. We notice that the updated set of visited agents

will be expanded with at least one agent that is Next Agent since Next Agent will

add itself to the set of visited agents beyond receiving the tree message from the

agent ai.

Therefore, every agent ai will send at most |N(ai)| tree messages to its child

agents, where N(ai) is the set of the neighboring agents of the agent ai. If there

is no unvisited neighboring agent left, the agent ai will send a tree message to its

parent agent together with the most updated set of visited agents, and terminates

executing depth first search/2. Thus, it terminates performing the clause

generate tree(Parent, Data). As a consequence, we can conclude that Phase

1 terminates.

Furthermore, considering a pseudo-tree that is generated at the end of Phase 1.

We can realize that the set of visited agents which are passing among agents is

expanded with a non-root agent if and only if there is a tree message sent from

a parent agent to its child agent downward the pseudo-tree. It is worth to remind

that the agent who is selected to be the root of the pseudo-tree adds itself to the
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set of visited agents at the beginning. Thus, there are n − 1 tree messages that are

sent downward the pseudo-tree. Moreover, every agent except the root agent will

send exactly one tree message to its parent agent upward the pseudo-tree. Therefore,

there are n − 1 tree messages that are sent upward the pseudo-tree. Accordingly,

in total there are 2 × (n − 1) tree messages produced in Phase 1. This proves

Lemma 1. �

3.4.4 Computing the UTIL message: Phase 2

In the following, for simplicity, given an agent ai, we assume that ap = Pi. We will

use ap and Pi interchangeably. In this phase, each ASP-DPOP agent generates an

ASP program for computing the UTIL message that will be sent to its parent. In

more detail, each agent ai executes the following clause:

% Phase 2: UTIL Propagation Phase
perform_Phase_2(ReceivedUTILMessages):-

compute_separator(ReceivedUTILMessages, Separator),
assert(separatorlist(Separator)),
compute_related_constraints(ConstraintList),
assert(constraintlist(ConstraintList)),
generate_UTIL_ASP(Separator, ConstraintList),
solve_answer_set1(ReceivedUTILMessages, Answer),
store(Answer),
send_message(a_i, a_p, util, Answer).

In particular, each agent ai with a set of child agents Ci:

• Waits to receive all of the UTIL messages from its children and combines

them into a set of ASP facts. Let Mak be the encoding of the UTIL message

UTILai
ak

. We define a list ReceivedUTILMessages as follows.

ReceivedUTILMessages =
⋃
a∈Ci

Ma. (3.33)

When ai is a leaf (Ci = ∅), we set ReceivedUTILMessages = [ ].

• Computes its separator sepi by executing compute separator/2. This is

realized using (i) the information about its parent and pseudo-parent agents

added in Πai during Phase 1, and (ii) the information about ancestors of the

agent ai that are directly connected with descendants of the agent ai, via facts

of the form table info, contained in the UTIL messages received from its child

agents;

• Computes the set Rai (ConstraintList) of the related constraints (i.e., executing

compute related constraints/1) that is defined as (2.5).

• Generates the information for its UTIL message (i.e., executing

generate UTIL ASP/2). Specifically, generate UTIL ASP/2 first creates

a logic program, denoted by Iai , from the separator list, the constraint list, and

the information from Mak where ak ∈ Ci. It then computes the answer set of

Πai ∪ Iai ∪ (
⋃

a∈Ci
Ma) that contains the encoded UTIL message of the agent

ai. Assume that
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— sepi = {xs1 , . . . , xsk} (i.e., Separator = [xs1 , . . . , xsk ] is the separator list of ai);

— Rai = {fr1 , . . . , frk′ } and scp(frj ) = {xrj1 , . . . , xrjw } for 1 � j � k′ (i.e.,

ConstraintList = [fr1 , . . . , frk′ ]);

— Ci = {ac1
, . . . , acl} and each UTILai

act
has xct1 , . . . , xctz as its dimensions for

1 � t � l; and

— ap is the parent agent of the agent ai.

generate UTIL ASP/2 creates Iai with the following rules:

table row ai(U,Xs1 , . . . , Xsk )←
fr1 (Vr1 , Xr11

, . . . , Xr1w
),

· · ·
frk′ (Vrk′ , Xr

k′
1

, . . . , Xr
k′w

),

Vr1 != #inf, . . . , Vrk′ != #inf,
table max ac1 (Uc1 , Xc11

, . . . , Xc1z
),

· · ·
table max acl (Ucl , Xcl1

, . . . , Xclz
),

U = Vr1 + · · ·+ Vrk′ + Uc1 + · · ·+ Ucl .

(3.34)

table max ai(U,Xs1 , . . . , Xsk )←
value(xs1 , Xs1 ),

· · ·
value(xsk , Xsk ),

table row ai( , Xs1 , . . . , Xsk ),

U = #max{V : table row ai(V ,Xs1 , . . . , Xsk )}.

(3.35)

table info(ai, as1 , xs1 , lbs1 , ubs1 ).

· · ·
table info(ai, ask , xsk , lbsk , ubsk ).

(3.36)

generate UTIL ASP/2 uses the information in UTILai
act

and Πai to generate

the facts (3.36). In addition, each variable in the rules (3.34)–(3.36) corresponds

to a variable name (e.g., Xs1 corresponds to xs1 in the separator list; Xc11

corresponds to xc11
in dimensions of UTILai

ac1
; etc.). Therefore, due to the

definition of the separator of ai and sepi = {xs1 , . . . , xsk}, Xs1 , . . . , Xsk are

guaranteed to occur on the right hand side of (3.34). In other words, Iai is a

safe program.

Intuitively, the rule of the form (3.34) creates the joint table for ai—that is

similar to the result of flattening
(
⊕act∈Ci

UTILai
act

)
⊕
(
⊕f∈Rai

f
)

into a table—

given UTILai
act

and Rai . In addition, (3.35) computes the optimal utilities for

each value combination of variables in the separator list.

• Computes an answer set A of the program Πai ∪ Iai ∪
⋃

a∈Ci
Ma by executing

solve answer set1/2, and extracts from A the information for the UTIL

message (i.e., Answer) that will be sent from the agent ai to the agent ap.

• Asserts the information in Answer for later use in Phase 3 (i.e., executes

store(Answer)).

• Sends encoded UTIL
ap
ai to the parent agent ap (i.e., executes send message/4).
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Example 13

As an example, we refer to the DCOP in Example 1. Specifically, we illustrate Ia2

generated by the agent a2. ReceivedUTILMessages for the agent a2 is the set of ASP

facts given in Example 10, Separator = [x1], and ConstraintList = [x1 cons x2]. The

program Ia2
includes the following rules:

table row a2(U,X1) ← x1 cons x2(V0, X1, X2),

V0 != #inf ,

table max a3(V1, X1, X2),

U = V0 + V1.

table max a2(U,X1) ← value(x1, X1),

table row a2( , X1)

U = #max{V : table row a2(V ,X1)}.
table info(a2, a1, x1, 0, 1) ←

The relationship between the ASP-based computation and Algorithm 1 is established

in the following lemma.

Lemma 2

Let us consider a DCOP M, an agent ai ∈ A, and a pseudo-tree T . Let ai be

an agent with Ci = {ac1
, . . . , acl} and Mact

be the encoded UTILai
act

for 1 � t � l.

Furthermore, let us assume that ap is the parent of ai, sepi = {xs1 , . . . xsk}, and

Rai = {fr1 , . . . , fr′k} and scp(frj ) = {xrj1 , . . . , xrjw } for 1 � j � k′. Then, the program

Πai ∪ Iai ∪ (
⋃

a∈Ci
Ma) has a unique answer set A and

• table row ai(u, vs1 , . . . , vsk ) ∈ A iff there exists a value combination X for

variables in scp(JOINPi
ai

) such that JOINPi
ai

(X) = u where {xs1 = vs1 , . . . , xsk =

vsk} ⊆ X and u �= −∞; and

• table max ai(u, vs1 , . . . , vsk ) ∈ A iff UTILPi
ai
(xs1 = vs1 , . . . , xsk = vsk ) = u and

u �= −∞.

Proof

Since Iai is safe and Πai ∪ Iai ∪ (
⋃

a∈Ci
Ma) is a positive program, it has a unique

answer set.

By the definition of answer set, table row ai(u, vs1 , . . . , vsk ) ∈ A iff that there

exists a rule r of the form (3.34) such that table row ai(u, vs1 , . . . , vsk ) is the head

of r. It means that there exists a value assignment Y for the variables occurring in

r such that the following conditions hold:

• {xs1 = vs1 , . . . , xsk = vsk} ⊆ Y ;

• for each 1 � j � k′, there exists vrj �= #inf such that frj (vrj1 , . . . , vrjw ) = vrj and

{xrj1 = vrj1 , . . . , xrjw = vrjw } ⊆ Y ; and

• for each 1 � t � l, there exists uct such that table max act (uct , vct1 , . . . , vctz ) ∈ A

and {xct1 = vct1 , . . . , xctz = vctz } ⊆ Y . By the construction of the algorithm,

table max act(uct , vct1 , . . . , vctz ) ∈ A implies that UTILai
act

(xct1 = vct1 , . . . , xctz =

vctz ) = uct and uct �= −∞.
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The conclusion of the first item follows directly from the definitions of the UTIL

message and the ⊕ operator (Definitions 3 and 4) and the above conditions.

The second item of the lemma follows from the first item, the condition

Vr1 != #inf , . . . , Vrk′ != #inf in the rule (3.34), and Definition 5. �

Lemma 2 implies that Phase 2 of ASP-DPOP computes the same UTIL messages

as DPOP, except that UTIL messages in ASP-DPOP omit the value assignments

whose associated utilities are −∞.

3.4.5 Computing the VALUE message: Phase 3

Each ASP-DPOP agent computes the optimal value for its variables and sends an

encoded VALUE message to its children. The process is described by the following

Prolog rule:

% Phase 3: VALUE Propagation Phase
perform_Phase_3(ReceivedVALUEMessage):-

separatorlist(Separator),
constraintlist(ConstraintList),
generate_VALUE_ASP(Separator,ConstraintList),
solve_answer_set2(ReceivedVALUEMessage, Answer),
send_message_to_children(a_i, value, Answer).

In particular, the agent ai

• waits to receive the encoded VALUE message, denoted by M ′
Pi
, from its parent

agent Pi. If the agent ai does not have a parent, i.e., it is the root of the tree,

we set ReceivedVALUEMessage = [ ];

• retrieves sepi (i.e., Separator) computed in Phase 2;

• retrieves Rai (i.e., ConstraintList) computed in Phase 2;

• executes the rule generate VALUE ASP/2 to create an ASP program, de-

noted by I ′ai , from the separator list, the constraint list, and the information

from Mak where ak ∈ Ci from Phase 2. Assume that

— sepi = {xs1 , . . . , xsk} (i.e., Separator = [xs1 , . . . , xsk ] is the separator list of ai);

— Rai = {fr1 , . . . , frk′ } and scp(frj ) = {xrj1 , . . . , xrjw } for 1 � j � k′ (i.e.,

ConstraintList = [fr1 , . . . , frk′ ]);

— Ci = {ac1
, . . . , acl} and each UTILai

act
has xct1 , . . . , xctz as its dimensions for

1 � t � l; and

— the set of variables owned by the agent ai is αi = {xi1 , . . . , xiq}.
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generate VALUE ASP/2 creates the logic program I ′ai with following rules:

{row(U,Xi1 , . . . , Xiq )} ← solution(α(xs1 ), xs1 , Xs1 ),

· · ·
solution(α(xsk ), xsk , Xsk ),

table max ai(U,Xs1 , . . . Xsk ),

fr1 (Vr1 , Xr11
, . . . , Xr1w

),

· · ·
frk′ (Vrk′ , Xr

k′
1

, . . . , Xr
k′w

),

table max ac1 (Uc1 , Xc11
, . . . , Xc1z

),

· · ·
table max acl (Ucl , Xcl1

, . . . , Xclz
),

U == Vr1 + · · ·+ Vrk′ + Uc1 + · · ·+ Ucl .

(3.37)

← not 1{row(U,Xi1 , . . . , Xiq )}1. (3.38)

solution(ai, xi1 , Xi1 ) ← row(U,Xi1 , . . . , Xiq ).

· · ·
solution(ai, xiq , Xiq ) ← row(U,Xi1 , . . . , Xiq ).

(3.39)

Intuitively, the rule of the form (3.37) and the constraint of the form (3.38)

select an optimal row based on: (i) The computation as done in Phase 2 (i.e.,

using the facts of the form table max ai that are stored in Phase 2), and (ii)

(for non-root agent only) the VALUE message that is received from its parent

(i.e., facts of the form solution/3). The selected optimal row will define the

optimal value of the variables using rules of the form (3.39). Similar argument

for the safety of Iai allows us to conclude that I ′ai is also a safe program.

• Executes solve answer set2/2, that executes the ASP solver to compute

an answer set of the program Πai∪I ′ai∪M
′
Pi
∪(

⋃
a∈Ci

Ma). From that answer set,

it collects all facts of the form solution(a, x, v) and returns them as Answer—i.e.,

the encoding of the VALUE message from the agent ai to its child agents.

• Executes send message to children/3 where it sends value message with

Answer as its data to each child agent (i.e., executing the respected clauses

send message/4 multiple times).

Example 14

As an example, we refer to the DCOP in Example 1 to illustrate I ′a2
generated by

the agent a2. ReceivedUTILMessages for the agent a2 is the set of ASP facts given

in Example 10, Separator = [x1], ConstraintList = [x1 cons x2], and α2 = {x2}. The
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program I ′a2
includes following rules:

{row(U,X2)} ← solution(a1, x1, X1),

table max a2(U,X1),

x1 cons x2(U0, X1, X2),

table max a3(U1, X1, X2)

U == U0 + U1.

← not 1{row(U,X2)}1.
solution(a2, x2, X2) ← row(U,X2).

Lemma 3

Let us consider a DCOP M, and an agent ai ∈ A in a pseudo-tree T . Let ai be an

agent with Ci = {ac1
, . . . , acl} and Mact

be the encoding of UTILai
act

for 1 � t � l.

Furthermore, assume that Pi is the parent agent of the agent ai, sepi = {xs1 , . . . xsk},
Rai = {fr1 , . . . , fr′k} where scp(frj ) = {xrj1 , . . . , xrjw } for 1 � j � k′, αi = {xi1 , . . . , xiq},
and M ′

Pi
encodes VALUE ai

Pi
. Let Q = Πai ∪ I ′ai ∪M ′

Pi
∪ (

⋃
a∈Ci

Ma)). Then,

• for each answer set A of Q, the assignment xij = vij , where solution(ai, xij , vij )

∈ A for 1 � j � q belongs to a solution of M; and

• if xi1 = vi1 , . . . , xiq = viq is a value assignment for variables in αi that belongs

to a solution of M, which contains VALUEai
Pi
, then Q has an answer set A

containing {solution(ai, xij , vij ) | 1 � j � q} ∪M ′
i .

Proof

Based on the construction of I ′ai , it is possible to see that there exists at least

one rule of the form (3.37) in Q. Observe that if the agent ai is the root of the

pseudo-tree T . Then, M ′
Pi

= ∅ and the rule (3.37) does not contain the atom of the

form solution(a, x, v). Since the program is safe and positive, we have that Q is

consistent.

Because of the rule (3.38), each answer set A of Q contains exactly one atom of the

form row(u, vi1 , . . . , viq ). Also, from the rule (3.37), we have that if row(u, vi1 , . . . , viq ) ∈
A, then there exists some table max ai(u, vs1 , . . . , vsk ) ∈ A, which indicates that u is

the optimal utility corresponding to the assignment xsi = vsi for 1 � i � k (Lemma 2).

From the correctness of DPOP, this means that row(u, vi1 , . . . , viq ) encodes an optimal

value assignment for variables owned by the agent ai. This proves the first item.

Assume that xi1 = vi1 , . . . , xiq = viq is a value assignment for variables in αi that

belongs to a solution ofM, which contains VALUEai
Pi

. Then, by the completeness of

DPOP and Lemma 2, this implies that there exists some table max ai(u, vs1 , . . . , vsk )

such that VALUEai
Pi

contains xsi = vsi for 1 � i � k. As such, there must exist the

values for frj (.) and table max act (.) such that there is a rule of the form (3.37)

whose head is row(u, vi1 , . . . , viq ). This means that Q has an answer set containing

row(u, vi1 , . . . , viq ), which proves the second item of the lemma. �
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3.4.6 ASP-DPOP

In this section, we will show the clause for ASP-DPOP agents to perform Phase 1,

Phase 2, and Phase 3 consecutively. For simplicity, we omit the fragment of code of

ASP-DPOP agents that allow them to cooperate with each other to select one agent

as the root of the pseudo-tree—since it depends on the scores that are assigned to

agents, according to a heuristic function.

Let us remind that if an agent ak is the root of the pseudo-tree, a fact of the form

parent(master, a k) will be added to Πak . After an agent is selected as the root of

the pseudo-tree, each agent will execute the clause start. Considering an agent ai,

the clause start of the agent ai is described as follows:

% Perform Phase 1, Phase 2, and Phase 3
start:-

(parent(master, a_i) ->
generate_tree(master, [])
;
wait_message(Parent, a_i, tree, Data),
generate_tree(Parent, Data)

),
(children(_) ->

get_UTILMessages_from_all_children(ReceivedUTILMessages),
perform_Phase_2(ReceivedUTILMessages)
;
perform_Phase_2([])

),
(parent(master, a_i) ->

perform_Phase_3([])
;
wait_message(Parent, a_i, value, ReceivedVALUEMessage),
perform_Phase_3(ReceivedVALUEMessage)

).

In particular, each agent ai:

• Checks whether ai is the root of the pseudo-tree; this is realized by checking

whether the fact of the form parent(master, a i) is in Πai :

— If the agent ai is the root of the pseudo-tree, it will execute

generate tree(master, [ ]) that is defined in Section 3.4.3; otherwise,

— If the agent ai is not the root of the pseudo-tree, it will execute

wait message(Parent, a i, tree, Data). Upon receiving the tree message

from the agent Parent who is later assigned as its parent agent, the agent ai
will execute generate tree(Parent, Data) that is defined in Section 3.4.3.

• Checks whether the agent ai is (resp. is not) a leaf of the pseudo-tree (i.e.,

this is realized by checking whether the fact of the form children/1 is not

(resp. is) in Πai , respectively):

— If the agent ai is not a leaf of the pseudo-tree, it executes

get UTILMessages from all children(ReceivedUTILMessages).

Intuitively, the clause get UTILMessages from all children/1 it-

eratively executes wait message(From, a i, util, Data) until the agent ai
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receives all util messages from all of its child agents. The contents (i.e., Data)

of all util messages are combined into ReceivedUTILMessages. Then,

the agent ai executes perform Phase 2(ReceivedUTILMessages)
that is defined in Section 3.4.4; otherwise,

— If the agent ai is a leaf of the pseudo-tree, it executes

perform Phase 2([]) that is defined in Section 3.4.4.

• Checks whether the agent ai is the root of the pseudo-tree or not:

— If the agent ai is the root of the pseudo-tree, it executes

perform Phase 3([]) that is defined in Section 3.4.5; otherwise,

— If the agent ai is not the root of the pseudo-tree, it executes wait message
(Parent, a i, value,ReceivedVALUEMessage) to wait for value message

from its parent agent. Then, the agent ai executes

perform Phase 3(ReceivedVALUEMessage) that is defined in Sec-

tion 3.4.5.

4 Theoretical analysis

In this section, we present some theoretical properties of ASP-DPOP including its

soundness, completeness, and complexity.

4.1 Soundness and completeness

The soundness and completeness of ASP-DPOP follow from Lemmas (2) and (3)

and the soundness and completeness of DPOP.

Proposition 1

ASP-DPOP is sound and complete in solving DCOPs.

Proof

Let us summarize how ASP-DPOP solves a DCOP M:

• In Phase 1, each ASP-DPOP agent runs distributed DFS to generate a pseudo-

tree. At the end of this phase, the information about the parent, pseudo-parents,

and child agents of each agent ai are added to Πai via facts of the forms

parent/1, pseudo parent/1 and children/1, respectively;

• In Phase 2, each ASP-DPOP agent ai: (i) waits to receive the encoding of UTIL

messages from all of its child agents (for non-leaf agents only), and (ii) generates

the ASP program Iai to compute its encoded UTIL message as an answer set of

Πai ∪ Iai ∪ ReceivedUTILMessages;

• In Phase 3, each ASP-DPOP agent ai: (i) waits to receive the encoded VALUE

message from its parent agent (for non-root agent only), and (ii) generates the

ASP program I ′ai to compute its encoded VALUE message as an answer set of

Πai ∪ I ′ai ∪M ′
Pi
∪ ReceivedUTILMessages;

The soundness and completeness of ASP-DPOP follow from the soundness and

completeness of DPOP and the following observations:
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• Phase 1 of ASP-DPOP generates a possible pseudo-tree of M.

• Assuming that ASP-DPOP and DPOP use the same pseudo-tree T , then

− Phase 2 of ASP-DPOP computes the same UTIL messages as DPOP

except that they omit the value assignments whose associated utilities are

−∞ (Lemma 2). However, for DPOP, ignoring those value assignments in

UTIL message will not affect DCOP solution since such value assignments are

not included in any solution (i.e., otherwise the total utility is −∞).

− Phase 3 of ASP-DPOP computes all possible solutions (VALUE messages)

as DPOP (Lemma 3).

�

4.2 Complexity

Given d = max1�i�n |Di| and w∗ = max1�i�n |sepi|, where n is the number of agents,7

we have the following properties:

Property 1

The number of messages required by ASP-DPOP is bounded by O(n).

Proof

In ASP-DPOP, one can observe that: (1) Phase 1 requires a linear number of

messages in n (Lemma 1); (2) Phase 2 requires (n − 1) UTIL messages; and (3)

Phase 3 requires (n− 1) VALUE messages. Thus, the number of messages required

by ASP-DPOP is bounded by O(n). �

Property 2

The size of messages required by ASP-DPOP is bounded by O(dw
∗
).

Proof

In ASP-DPOP,

• Phase 1 produces messages whose size is linear in n. This is because the tree

message is of the form send message(a i, Next Agent, tree, Data) where the content

(Data) that dominates the size of the tree message is the set of visited agents

whose size is linear in n;

• Phase 2 produces encoded UTIL messages; each message consists of: (i) a fact

of the form table max ai for each cell in the corresponding UTIL message in

DPOP where its associated optimal utility is not −∞, and (ii) |sepi| facts of the

form table info. Therefore, the size of encoded UTIL messages is bounded

by O(dw
∗
) as the bounded size of UTIL messages in DPOP (Petcu and Faltings

2005a); and

• Phase 3 produces encoded VALUE messages; each message consists of a

fact of the form solution/3 for each value assignment of a variable in the

corresponding VALUE message in DPOP. Therefore, Phase 3 produces encoded

VALUE messages whose sizes are bounded by O(|X|) = O(n) as we assume each

agent owns exactly one variable.

7 w∗ is also known as the induced width of a pseudo-tree (Dechter 2003).
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Thus, the size of messages required by ASP-DPOP is bounded

by O(dw
∗
) �

Property 3

The memory requirements in ASP-DPOP are exponential and bounded by O(dw
∗
).

Proof

In ASP-DPOP:

• In Phase 1, the memory requirements are bounded by O(n) because it needs to

keep track of the set of visited agents and the set of its neighboring agents;

• In Phase 2, the memory requirements are bounded by O(dw
∗
) since, in computing

the answer set of P = Πai ∪ Iai ∪ ReceivedUTILMessages, the ASP solver needs

to ground all the rules of the forms (3.34) and (3.35), and these dominate the

number of other facts or ground instances of other rules in P ;

• In Phase 3, the memory requirements are bounded by O(dw
∗
) since, in computing

the answer set of P ′ = Πai ∪ I ′ai ∪M ′
Pi
∪ ReceivedUTILMessages, the ASP solver

needs to ground all rules of the form (3.37), where the number of facts of the form

table max ai is bounded by O(dw
∗
) (see Property 2). Moreover, the number of

such ground instances dominates the number of other facts and ground instances

of other rules in P ′.

Thus, the memory requirement in ASP-DPOP is exponential and bounded

by O(dw
∗
). �

5 Experimental results

The goal of this section is to provide an experimental evaluation of ASP-DPOP.

In particular, we compare ASP-DPOP against the original DPOP as well as other

three implementations of complete DCOP solvers: AFB, Hard Constraint-DPOP

(H-DPOP), and Open-DPOP (ODPOP). AFB (Gershman et al. 2009) is a complete

search-based algorithm to solve DCOPs. H-DPOP (Kumar et al. 2008) is a complete

DCOP solver that, in addition, propagates hard constraints to prune the search

space. ODPOP (Petcu and Faltings 2006) is an optimization algorithm for DCOPs,

which combines some advantages of both search-based algorithms and dynamic-

programming-based algorithms. For completeness of the paper, in this section, we

will first provide some background about these three solvers, discuss about FRODO

platform (Léauté et al. 2009)—a publicly available implementation of DPOP, AFB,

and ODPOP—and then provide some experimental results.

5.1 Background on AFB

The AFB algorithm (Gershman et al. 2009), to the best of our knowledge, is the

most recent complete search-based algorithm to solve DCOPs. AFB makes use of a

Branch and Bound scheme to identify a complete value assignment that minimizes

the aggregate utility of all constraints. To do so, agents expand a partial value

assignment as long as the lower bound on its aggregate utility does not exceed the
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global bound, which is the aggregate utility of the best complete value assignment

found so far.

In AFB, the state of the search process is represented by a data structure called

Current Partial Assignment (CPA). The CPA starts empty at some initializing agent,

which records the value assignment of its own variable and sends the CPA to the

next agent. The aggregate utility of a CPA is the accumulated utility of constraints

involving the value assignment it contains. Each agent, upon receiving a CPA, adds

a value assignment of its own variable such that the CPA’s aggregate utility will not

exceed the global upper bound. If it cannot find such an assignment, it backtracks

by sending the CPA to the last assigning agent, requesting that agent to revise its

value assignment.

Agents in AFB process and communicate CPAs asynchronously. An agent that

succeeds to expand the value assignment of the received CPA sends forward copies of

the updated CPA, requesting all unassigned agents to compute lower bound estimates

of the aggregate utility of the current CPA. The assigning agent will receive these

estimates asynchronously over time, and use them to update the lower bound of the

CPA. Using these bounds, the assigning agent can detect if any expansion of this

partial value assignment in the current CPA will cause it to exceed the global upper

bound, and in such cases it will backtrack. Additionally, a time stamp mechanism

for forward checking is used by agents to determine the most updated CPA and to

discard obsolete CPAs.

5.2 Background on H-DPOP

In H-DPOP (Kumar et al. 2008), the authors consider how to leverage the hard

constraints that may exist in the problem in a dynamic programming framework, so

that only feasible partial assignments are computed, transmitted, and stored (Kumar

et al. 2008). To this end, they encode combinations of assignments using Constrained

Decision Diagrams (CDDs). Basically, CDDs eliminate all inconsistent assignments

and only include utilities corresponding to value combinations that are consistent.

The resulting algorithm, H-DPOP, a hybrid algorithm that is based on DPOP, uses

CDDs to rule out infeasible assignments, and thus compactly represents UTIL

messages.

A CDD G = 〈Γ, G〉 encodes the consistent assignments for a set of constraints

Γ in a rooted direct acyclic graph G = (V , E) by means of constraint propagation.

A node in G is called a CDD node. The terminal nodes are either true or false

implying consistent or inconsistent assignment, respectively. By default, a CDD

represents consistent assignments omitting the false terminal.

The H-DPOP algorithm leverages the pruning power of hard constraints by using

CDDs to effectively reduce the message size. As in DPOP, H-DPOP has three

phases: the pseudo-tree construction, the bottom-up UTIL propagation, and top-

down VALUE propagation. The pseudo-tree construction and VALUE propagation

phases are identical to ones of DPOP. In the UTIL propagation phase, the UTIL

message, instead of being a multidimensional matrix, is a CDDMessage.
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Definition 6

A CDDMessage M
j
i sent by an agent ai to agent aj is a tuple 〈�u,G〉 where �u is

a vector of utilities, and G is a CDD defined over variables in sepi. The set of

constraints for G is Γ = {fj | scp(fj) ⊆ sepi}.

In the UTIL propagation phase, H-DPOP defines different JOIN and PROJECTION

operations. Observe that, based on Definition 6, an H-DPOP agent ai can access a

constraint whose scope is a subset of its separator, but that is not owned by ai itself.

For example, considering the DCOP in Example 1, in H-DPOP, the UTIL message

sent from the agent a3 to the agent a2 will have information about the constraint

x1 cons x2 that is not owned by the agent a3 since scp(x1 cons x2) = {x1, x2} ⊆ sep3.

This might be undesirable in situations where the distribution of the computation

is tied to privacy of information.

5.3 Background on ODPOP

ODPOP (Petcu and Faltings 2006) is an optimization algorithm for DCOP, which

combines some advantages of both search-based algorithms and

dynamic-programming-based algorithms. ODPOP always uses linear size messages,

which is similar to search, and typically generates as few messages as DPOP. It does

not always incur the worst complexity, which is the same with the complexity of

DPOP, and on average it saves a significant amount of computation and information

exchange. This is achieved because agents in ODPOP use a best-first order for value

exploration and an optimality criterion that allows them to prove optimality without

exploring all value assignments for variables in their separator. ODPOP also has

three phases as DPOP:

Phase 1 (DFS traversal) is the same with Phase 1 in DPOP to construct a pseudo-tree.

Phase 2 (ASK/GOOD) is an iterative, bottom-up utility propagation process where

each agent repeatedly sends ASK messages to its child agents, asking for valuations

(GOODs), until it is able to compute the suggested optimal value assignment (GOOD)

for variables in its separator. It then sends that GOOD, together with the respective

utility that is obtained in the subtree rooted at this agent, as a GOOD message

to its parent agent. This phase finishes when the root received enough GOODs to

determine the optimal value assignment for its variables.

In more detail, in Phase 2, any child agent delivers to its parent agent a sequence of

GOOD messages, each of which explores a different value assignment for variables

in its separator, together with the corresponding utility. In addition, ODPOP uses

a method to propagate GOODs so that every agent always reports its GOODs in

order of non-increasing utility, provided that all of their child agents also follow

this order. We can see that DPOP agents receive all GOODs that are grouped in

single messages (i.e., UTIL messages). In contrast, ODPOP agents send GOODs on

demand (i.e., when it receives an ASK message) individually and asynchronously as

long as GOODs have non-increasing utilities.

As a consequence, each ODPOP agent ai can determine when it has received

enough GOODs from its child agents in order to be able to determine a GOOD

https://doi.org/10.1017/S147106841700014X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841700014X


Solving distributed constraint optimization problems 665

to send to its parent agent Pi. At that time, ai will not send ASK message any

more since any additional received GOODs will not affect the GOOD that was

determined. If ai later receives more ASK message from Pi for having next GOOD,

ai will continue to request more GOODs from its child agents until it can determine

the next GOOD to report to Pi.

Since GOODs are always reported in order of non-increasing utility, the first

GOOD that is generated at the root agent is the optimal value assignment for its

variable. As a consequence, the root agent will be able to generate this solution

without having to consider all value assignments for its variables.

Phase 3 (VALUE propagation) is similar to Phase 3 in DPOP. The root agent initiates

the top-down VALUE propagation by sending a VALUE message to its child agents,

informing them about its optimal value assignment for its variables. Subsequently,

each agent ai′ , upon receiving a VALUE message, will determine its optimal value

assignment for its variables based on the computation (in Phase 2) of the first

GOOD message generated whose associated value assignment is consistent with the

one in the received VALUE message.

5.4 Discussion on FRODO platform

In our experiment, we will compare the performance of ASP-DPOP against DPOP,

AFB, and ODPOP; in particular, we use the implementation of the latter three

systems that is publicly available in the FRODO platform (Léauté et al. 2009).

It is important to observe that, at the implementation level, all DCOP solvers

that are implemented within FRODO follow the simplifying assumption that each

agent owns exactly one variable. This assumption is common practice in the DCOP

literature (Modi et al. 2005; Petcu and Faltings 2005a; Gershman et al. 2009; Ottens

et al. 2012). However, agents in DCOP problems used in our experiments own

multiple variables. We will discuss in this subsection the pre-processing technique

(i.e., decomposition, also known as virtual agents) that FRODO uses to transform

a general DCOP with multiple variables per agent into a new DCOP with one

variable per agent.

FRODO creates a virtual agent for each variable in a DCOP. A distinct variable

is assigned to each virtual agent, so that this formulation satisfies the simplifying

assumption. We say that a virtual agent a′i belongs to a real agent ai in DCOP if the

virtual agent a′i owns a variable that is owned by the real agent ai. In FRODO, the

solving algorithm is executed on each virtual agent, while intra-agent messages (i.e.,

messages are passed between virtual agents that belong to the same real agent) are

only simulated and discounted in the calculation of computation cost (e.g., number

of messages and messages’ size).

Let M be a DCOP with multiple variables per agent, and M ′ be a new DCOP

with one variable per agent that is constructed from M. Let us assume that we apply

DPOP to solve both M and M ′, using the same heuristics to construct the pseudo-

trees. We can observe that each node in the pseudo-tree used to solve M ′ represents

a virtual agent, while each node in a pseudo-tree of ASP-DPOP represents a real

agent. It is possible to see that the number of inter-agent messages (i.e., messages
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that are passed between virtual agents that belong to different real agents) produced

in solving M ′ may be greater than the number of UTIL messages produced in

solving M, depending on their respective pseudo-trees. Therefore, to minimize the

total number of inter-agent messages, FRODO constructs pseudo-trees where virtual

agents that belong to the same real agent stay as close as possible to each other.

It is important to summarize that, to handle a general DCOP with multiple

variables per agent, FRODO first transforms it into a new DCOP with one variable

per agent (introducing virtual agents), and then executes the resolution algorithms on

each agent of the new DCOP. To the best of our knowledge, there is not any formal

discussion about the relationship between pseudo-trees whose nodes represent real

agents and pseudo-trees whose nodes represent virtual agents. However, it is believed

that given a pseudo-tree T ′ whose nodes represent virtual agents, there always exists

a pseudo-tree T whose nodes represent real agents such that T is compatible with

T ′. Intuitively, by compatible we mean that it is possible to construct T from T ′ as

follows:

• If the root of T ′ is a node representing the virtual agent a′i that belongs to a

real agent ai, the root of T is the node representing ai; and

• If there is at least one tree edge (resp. back edge) connecting two nodes that

represent virtual agents a′i1 and a′i2 in T ′, there is a tree edge (resp. back edge)

connecting the two nodes that represent real agents ai1 and ai2 in T such that

a′i1 and a′i2 belong to ai1 and ai2 , respectively.

It is worth to notice that, in our experiments, we ensure that all algorithms use the

same heuristics to construct their pseudo-trees. We also observe that all pseudo-

trees that are constructed using ASP-DPOP are compatible with the corresponding

pseudo-trees that are constructed using FRODO.

5.5 Experimental results

We implement two versions of the ASP-DPOP algorithm—one that uses ground

programs, which we call “ASP-DPOP (facts),” and one that uses non-ground

programs, which we call “ASP-DPOP (rules).” In addition, as the observation made

about H-DPOP in Section 5.2, we also implemented a variant of H-DPOP, called

PH-DPOP, which stands for Privacy-based H-DPOP that restricts the amount of

information that each agent can access to the amount common in most DCOP

algorithms, including DPOP and ASP-DPOP. Specifically, agents in PH-DPOP

can only access their own constraints and, unlike H-DPOP, cannot access their

neighboring agents’ constraints.

In our experiments, we compare both versions of ASP-DPOP against DPOP (Petcu

and Faltings 2005a), H-DPOP (Kumar et al. 2008), PH-DPOP, AFB (Gershman

et al. 2009), and ODPOP (Petcu and Faltings 2006). We use a publicly-available

implementation of DPOP, AFB, and ODPOP (Léauté et al. 2009) and an imple-

mentation of H-DPOP provided by the authors. We ensure that all algorithms

use the same heuristics to construct their pseudo-trees for fair comparison. We

measure the runtime of the algorithms using the simulated runtime metric (Sultanik
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et al. 2007). All experiments are performed on a Quadcore 3.4 GHz machine with

16GB of memory. If an algorithm fails to solve a problem, it is due to memory

limitations; other types of failures are specifically stated. We conduct our experiments

on random graphs (Erdös and Rényi 1959), where we systematically modify the

domain-independent parameters, and on comprehensive optimization problems in

power networks (Gupta et al. 2013).

Random graphs: We create an n-node network, whose constraint density p1 produces

�n · (n− 1) · p1� edges in total (Erdös and Rényi 1959). In our experiments, we vary

the number of variables |X|, the domain size |Di|, the constraint density p1, and the

constraint tightness p2. For each experiment, we vary only one parameter and fix

the rest to their “default” values: |A| = 5, |X| = 15, |Di| = 6, p1 = 0.6, p2 = 0.6. The

timeout is set to 5× 106ms. Table 2 shows the percentage of instances solved (out of

50 instances) and the average simulated runtime (in ms) for the solved instances. We

do not show the results for ASP-DPOP (rules), as the utilities in the utility table are

randomly generated, leading to no differences w.r.t. ASP-DPOP (facts). We make

the following observations:

• ASP-DPOP is able to solve more problems than DPOP and is faster than

DPOP when the problem becomes more complex (i.e., increasing |X|, |Di|, p1,

or p2). The reason is that ASP-DPOP is able to prune a significant portion

of the search space thanks to hard constraints. ASP-DPOP does not need

to explicitly represent the rows in the UTIL table that are infeasible, unlike

DPOP. The size of the search space pruned increases as the complexity of the

instance grows, resulting in a larger difference between the runtime of DPOP

and ASP-DPOP.

• H-DPOP is able to solve more problems and solve them faster than DPOP, PH-

DPOP, and ASP-DPOP. The reason is that agents in H-DPOP utilize more

information about the neighbors’ constraints to prune values. In contrast,

agents in ASP-DPOP and PH-DPOP only utilize information about their own

constraints to prune values and agents in DPOP do not prune any values.

• ASP-DPOP is able to solve more problems and solve them faster than PH-

DPOP. The reason is that agents in PH-DPOP, like agents in H-DPOP, use

constraint decision diagram (CDD) to represent their utility tables, and it is

expensive to maintain and perform join and project operations on this data

structure. In contrast, agents in ASP-DPOP are able to capitalize on highly

efficient ASP solvers to maintain and perform operations on efficient data

structures thanks to their highly optimized grounding techniques and use of

portfolios of heuristics.

• AFB is able to solve more problems and solve them faster than every other

algorithm. We attribute this observation mainly to the relatively small number

of variables in this experiment—i.e., the maximum number of variables in this

experiment is 25 (see the first table in Table 2).

• ASP-DPOP is able to solve more problems and solve them faster than ODPOP

when the problem becomes more complex (i.e., increasing |X|, |Di|, p1, or p2).

The reason is that ODPOP does not prune the search space based on hard
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Table 2. Experimental results on random graphs

DPOP H-DPOP PH-DPOP AFB ODPOP ASP-DPOP

|X| Solved Time Solved Time Solved Time Solved Time Solved Time Solved Time

5 100% 36 100% 28 100% 31 100% 20 100% 31 100% 779

10 100% 204 100% 73 100% 381 100% 35 100% 164 100% 1,080

15 86% 39,701 100% 148 98% 67,161 100% 53 100% 3,927 100% 1,450

20 0% – 100% 188 0% – 100% 73 74%∗ 242,807 100% 1,777

25 0% – 100% 295 0% – 100% 119 0% – 100% 1,608

DPOP H-DPOP PH-DPOP AFB ODPOP ASP-DPOP

p1 Solved Time Solved Time Solved Time Solved Time Solved Time Solved Time

0.4 100% 1,856 100% 119 100% 2,117 100% 46 100% 1,819 100% 1,984

0.5 100% 13,519 100% 120 100% 19,321 100% 50 100% 2,680 100% 1,409

0.6 94% 42,010 100% 144 100% 54,214 100% 51 100% 3,378 100% 1,308

0.7 56% 66,311 100% 165 88% 131,535 100% 54 100% 8,063 100% 1,096

0.8 20% 137,025 100% 164 62% 247,335 100% 60 100% 36,748 100% 1,073
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Table 2. Continued

DPOP H-DPOP PH-DPOP AFB ODPOP ASP-DPOP

|Di| Solved Time Solved Time Solved Time Solved Time Solved Time Solved Time

4 100% 782 100% 87 100% 1,512 100% 46 100% 285 100% 1,037

6 90% 28,363 100% 142 98% 42,275 100% 50 100% 4,173 100% 1,283

8 14% 37,357 100% 194 52% 262,590 100% 60 98% 71,512 100% 8,769

10 0% – 100% 320 8% 354,340 100% 70 78%† 227,641 100% 29,598

12 0% – 100% 486 0% – 100% 82 30%‡ 343,756 100% 60,190

DPOP H-DPOP PH-DPOP AFB ODPOP ASP-DPOP

p2 Solved Time Solved Time Solved Time Solved Time Solved Time Solved Time

0.3 90% 38,114 100% 464 76% 189,431 100% 103 84%§ 221,515 18% 120,114

0.4 86% 48,632 100% 265 84% 107,986 100% 71 94%‖ 109,961 86% 50,268

0.5 94% 38,043 100% 161 96% 71,181 100% 57 100% 14,790 92% 4,722

0.6 90% 31,513 100% 144 98% 68,307 100% 52 100% 13,519 100% 1,410

0.7 90% 39,352 100% 128 100% 49,377 100% 48 100% 1,730 100% 1,059

0.8 92% 40,526 100% 112 100% 62,651 100% 57 100% 1,137 100% 1,026

∗ODPOP cannot solve 13 instances (out of 50 instances) in this experiment in which there are 12 instances unsolved due to timeout and 1 instance

unsolved due to memory limitation. †ODPOP cannot solve 11 instances (out of 50 instances) in this experiment in which there are 10 instances

unsolved due to timeout and 1 instance unsolved due to memory limitation. ‡ODPOP cannot solve 35 instances (out of 50 instances) in this experiment

in which there are 29 instances unsolved due to timeout and 6 instance unsolved due to memory limitation. §ODPOP cannot solve 8 instances (out of

50 instances) in this experiment due to timeout. ‖ODPOP cannot solve 3 instances (out of 50 instances) in this experiment due to timeout.
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Table 3. Additional experimental results on random graphs

AFB ASP-DPOP

|X| Solved Time Solved Time

150 100% 31,156 100% 37,862

200 100% 117,913 100% 115,966

250 0%∗ – 100% 298,361

∗AFB cannot solve any instance (out of 50 instances) in this experiment due to timeout.

constraints, unlike ASP-DPOP. On one hand, ODPOP intuitively sends each

row of UTIL messages per time on demand and uses optimality criteria to

prove optimality without exploring all value assignments for the respective

variables. However, these techniques are not as efficient as pruning the search

space in ASP-DPOP when the problem becomes more complex. Thus, ODPOP

reaches a timeout in most of its unsolvable problems. It is also worth to observe

that there are some problems that ODPOP cannot solve due to memory

limitations. We attribute this to the fact that ODPOP maintains in its search

space infeasible value assignments that result in a utility equal to −∞, and

thus the search space of ODPOP is not as optimized as that of ASP-DPOP.

Additional experiment results on random graphs: We claimed earlier that AFB is able

to solve more problems and solve them faster than every other algorithm, mainly

due to the relative small number of variables in the experiments reported in Table 2.

To directly confirm such claim, we extended our experiments on random graphs, by

increasing the number of variables (i.e., |X| � 150) and keeping the other parameters

to their “default” values (i.e., |A| = 5, |Di| = 6, p1 = 0.6, p2 = 0.6).8 The timeout

is also set to 5 × 106 ms. Table 3 shows the percentage of instances solved (out of

50 instances) and the average simulated runtime (in ms) for the solved instances.

The runtime results for DPOP, H-DPOP, PH-DPOP, and ODPOP are not included

in Table 3 because they run out of memory in solving all of the problems in this

domain.9 We observe that ASP-DPOP is able to solve more problems than AFB

(i.e., when |X| = 250) and solve them faster than AFB when |X| � 200. We attribute

this observation mainly to the large number of variables in this experiment. We

also notice that AFB can scale up to solve problems of up to |X| = 200 (such

scalability will not be seen in the experiment on power network problems described

below). The main reason is that the problems in our experiment on random graphs

are “purely hard” with the default values p1 = 0.6 and p2 = 0.6. This means that

the size of the set of complete feasible value assignments, which are complete value

assignments that do not result in a utility of +∞, is small (about less than 5 in all of

the problems in this domain). AFB backtracks much earlier before it can achieves

8 We thank one of the reviewers for his/her suggestion to have this additional experiment on random
graphs.

9 It is worth to note that H-DPOP runs out of memory while constructing its CDDs in solving all of
the problems in this domain.
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Fig. 5. Runtime results on power network problems. (a) 13 bus topology. (b) 34 bus

topology. (c) 37 bus topology.

a complete feasible value assignment. As a result, AFB can solve problems with the

number of variables up to 200 before it exceeds the time out threshold.

Power network problems: A customer-driven microgrid (CDMG), one possible in-

stantiation of the smart grid problem, has recently been shown to subsume sev-

eral classical power system sub-problems (e.g., load shedding, demand response,

restoration) (Jain et al. 2012). In this domain, each agent represents a node with

consumption, generation, and transmission preferences, and a global cost function.

Constraints include the power balance and no power loss principles, the generation

and consumption limits, and the capacity of the power line between nodes. The

objective is to minimize a global cost function. CDMG optimization problems are

well suited to be modeled with DCOPs due to their distributed nature. Moreover,

as some of the constraints in CDMGs (e.g., the power balance principle) can be

described in the functional form, they can be exploited by ASP-DPOP (rules). For

this reason, both “ASP-DPOP (facts)” and “ASP-DPOP (rules)” are used in this

domain.

We use three network topologies defined using the IEEE standards (IEEE

Distribution Test Feeders 2014) and vary the domain size of the generation, load,

and transmission variables of each agent from 5 to 31. The timeout is set to 106 ms.

Figure 5 summarizes the runtime results. As the utilities are generated following

predefined rules (Gupta et al. 2013), we also show the results for ASP-DPOP (rules).

Furthermore, we omit results for PH-DPOP because they have identical runtime—
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Table 4. Message size results on power network problems

13 bus topology 34 bus topology

|Di| 5 7 9 11 5 7 9 11

H-DPOP 6,742 30,604 97,284 248,270 1,437 4,685 11,617 24,303

DPOP 3,125 16,807 59,049 161,051 625 2,401 6,561 14,641

ODPOP 6 6 6 6 5 5 5 5

ASP-DPOP 10 14 18 22 10 14 18 22

37 bus topology

|Di| 5 7 9 11@

H-DPOP 6,742 30,604 97,284 248,270

DPOP 3,125 16,807 59,049 161,051

ODPOP 6 6 6 6

ASP-DPOP 10 14 18 22

(a) Largest UTIL message size

13 bus topology 34 bus topology

|Di| 5 7 9 11 5 7 9 11

H-DPOP 19,936 79,322 236,186 579,790 20,810 57,554 130,050 256,330

DPOP 9,325 43,687 143,433 375,859 9,185 29,575 73,341 153,923

ODPOP 391 1,430 6,281 11,979 2,197 4,122 12,124 12,870

ASP-DPOP 120 168 216 264 330 462 594 726

37 bus topology

|Di| 5 7 9 11

H-DPOP 38,689 133,847 363,413 836,167

DPOP 17,665 71,953 215,793 531,025

ODPOP 1,896 5,572 18,981 28,285

ASP-DPOP 360 504 648 792

(b) Total UTIL message size

the amount of information used to prune the search space is identical for both

algorithms in this domain. We also measure the size of UTIL messages, where

we use the number of values in the message as units, and the intra-agent UTIL

messages (i.e., messages are passed between virtual agents that belong to the same

real agent) are accounted for fair comparison. Table 4 tabulates the results. We

did not measure the size of VALUE messages since they are significantly smaller

than UTIL messages. It is also worth to report that the number of UTIL messages

that FRODO produces (discounting all intra-agent UTIL messages) is equal to

the number of UTIL messages that ASP-DPOP produced in all power network

problems in our experiments.

The results in Figure 5 are consistent with those shown earlier (except for AFB)—

ASP-DPOP is slower than DPOP and ODPOP when the domain size is small, but

it is able to solve more problems than DPOP and ODPOP. We observe that, in
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Figure 5(b), DPOP is consistently faster than ASP-DPOP and is able to solve the

same number of problems as ASP-DPOP. It is because the highest constraint arity

in 34 bus topology is 5, while it is 6 in 13 and 37 bus topologies. Unlike in random

graphs, H-DPOP is slower than the other algorithms in these problems. The reason

is that the constraint arity in these problems is larger and the expensive operations

on CDDs grow exponentially with the arity. We also observe that ASP-DPOP (rules)

is faster than ASP-DPOP (facts). The reason is that the former is able to exploit

the interdependencies between constraints to prune the search space. Additionally,

ASP-DPOP (rules) can solve more problems than ASP-DPOP (facts). The reason is

that the former requires less memory since it prunes a larger search space and, thus,

ground fewer facts.

The runtime results for AFB are not included in Figure 5, since AFB exceeds the

timeout in solving all of the problems in this domain; this contrasts to the results

shown earlier for random graphs. The main reason is that the number of variables

in the power network problems is large (i.e., |X| are 50, 134, and 146 in 13, 34, and

37 bus topologies, respectively in Fig. 5).

Finally, both versions of ASP-DPOP require smaller messages than both H-DPOP

and DPOP. The reason for the former is that the CDD data structure of H-DPOP is

significantly more complex than that of ASP-DPOP. The reason for the latter is that

ASP-DPOP prunes portions of the search space while DPOP did not. In addition,

since ASP-DPOP does not transform DCOP problems with multiple variables per

agent to corresponding ones with one variable per agent, ASP-DPOP is able to

exploit significantly more the interdependencies between constraints to prune the

search space. Moreover, we can see that the largest UTIL message sizes in ODPOP

are smaller than those of ASP-DPOP, but the total UTIL message sizes in ODPOP

are larger than those of ASP-DPOP. The reason is that ODPOP sends only linear

size message, but it needs to send many messages on demand.

5.6 Discussions on ASP-DPOP

ASP-DPOP has been shown to be competitive with other algorithms in solving

DCOPs in our experimental results. The benefits of using ASP-DPOP are accom-

plished by having ASP as its foundation. We will illustrate here the two main

advantages of making use of ASP within ASP-DPOP:

(1) The use of the highly expressive ASP language to encode constraints in DCOPs.

(2) The ability to harness the highly optimized ASP grounder and solver to prune

the search space based on hard constraints.

In the rest of this section, we further discuss these advantages and relate them to

the observations drawn from the experiments. These considerations are followed by

a discussion of how ASP-DPOP alleviates the simplifying assumption of having a

single variable per agent. Finally, at the end of this section, we analyze the privacy

loss of ASP-DPOP.

The first advantage of using ASP within ASP-DPOP comes from the ability to

use a very expressive logic language to encode the constraints in a DCOP. ASP-
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DPOP can represent constraint utilities as an implicit function instead of explicitly

enumerating them. Thus, ASP-DPOP is particularly suitable to encode DCOPs

whose constraint utilities are large and evaluated via implicit functions of the

variables in their scopes (e.g., power network problems, smart grid problems). This

can be seen clearly via Example 15.

Example 15

Let us consider a constraint f representing the power loss principle in a power

network problem, where scp(f) = {x1→2, x2→1} in which the domains of the variables

x1→2 and x2→1 are D1→2 = [0, 2] and D2→1 = [−2, 0], respectively. Intuitively, the

variable xi→j , where i, j ∈ {1, 2}, i �= j, indicates the amount of power that node i

transfers to (receives from) node j if xi→j � 0 (resp. xi→j < 0). For example, x1→2 = 1

means that the node 1 transfers 1 unit of power to the node 2, and x2→1 = −1

specifies that the node 2 receives 1 unit of power from the node 1. By the power

loss principle, if there is no loss, the amount of power transferred from one node

is equal to the amount of power received in the other node (i.e., xi→j + xj→i = 0).

However, if there is loss (i.e., xi→j + xj→i �= 0), we assume that the cost (utility) of

the power transmission is evaluated to be two times greater than the power unit

loss. Formally, the utility of the constraint f is given implicitly as a function:

f(x1→2, x2→1) = 2× |x1→2 + x2→1|. (5.1)

x1→2x2→1Utilities

2 −2 0

2 −1 2

2 0 4

1 −2 2

1 −1 0

1 0 2

0 −2 4

0 −1 2

0 0 0

(a) Explicit representation

as a utility table

value(x1→2, 0..2)← (5.2)

value(x2→1,−2..0)← (5.3)

f(2 ∗ |V1 + V2|, V1, V2) ← value(x1→2, V1),

value(x2→1, V2). (5.4)

(b) Implicit representation as an answer set program

Fig. 6. Different encodings of constraint f in Example 15.

Figure 6(a) enumerates all the utilities of the constraint f explicitly in a utility

table, and Figure 6(b) presents an answer set program that models implicitly those

utilities. We can see that while the utility table has nine rows (i.e., the domain sizes

of x1→2 and x2→1 are 3), the answer set program consists of only two facts and

one rule. If the domain sizes of x1→2 and x2→1 are 1, 000 (e.g., D1→2 = [0, 999] and

D1→2 = [−999, 0]), the utility table would have 1, 0002 rows whereas the answer

set program modeling implicitly such the same utilities still has two facts and one

rule that are similar to ones in Figure 6(b)—i.e., it only updates the two facts (5.2)
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and (5.3) as follows:

value(x1→2, 0 .. 999) ← (5.5)

value(x2→1,−999 .. 0) ← (5.6)

As a consequence, using ASP within ASP-DPOP to encode DCOPs makes programs

much more concise and compact. The encoding is declarative and can be easily

extended and modified. Moreover, such encoding does not depend on the implemen-

tation of the algorithms (e.g., DPOP or H-DPOP), making programs more flexible

and understandable. Specifically, if we change the algorithm to solve a DCOP, the

CM needs to be changed following the new algorithm, yet the SM remains the same.

In contrast, using imperative programming techniques, the “ad-hoc” implementation

that is employed within each local solver might require different encodings of

DCOPs for different used algorithms and different propagators for different types of

constraints. For example, H-DPOP implementation needs a different data structure

from DPOP implementation to deal with hard constraints.

The second advantage of using ASP as the foundation of ASP-DPOP is to

harness the highly optimized ASP grounders and solvers to prune the search space,

especially in the handling of hard constraints. As an example, consider the power

network problem whose objective is to minimize a global cost function.10 A DCOP

that encodes such type of power network problems can be formulated in terms of

cost-as-utility minimization rather than reward-as-utility maximization. Thus, in this

formulation, the value assignments resulting in an infinite utility (i.e., +∞) should

not be included in any DCOP solution; such value assignments are redundant and

should be pruned. Example 16 shows how effectively an ASP grounder can prune

the search space.

Example 16

Consider a simple power network problem, where the aggregated cost needs to be

minimized. The problem has two nodes (nodes 1 and 2). Let us assume that agent a1

and agent a2, which are the node 1 and the node 2, own the variables x1→2 and x2→1,

respectively. These are described in Example 15. The problem has one constraint f

representing the power loss principle, analogously to what described in Example 15.

The only difference is that we do not allow losses in power transfers (i.e., if there

is a loss, the corresponding cost is +∞). Thus, the utility (cost) of the constraint f

now is evaluated as

f(x1→2, x2→1) =

{
2× x1→2 if x1→2 + x2→1 = 0

+∞ otherwise
(5.7)

Figure 7 presents the ASP program11 to compute the UTIL message sent from the

agent 2 to the agent 1, assuming that the agent 1 is the root of the respective pseudo-

tree (i.e., the separator set of the agent 2 is sep2 = {x1→2}). It is important to observe

10 The previous formalization of ASP-DPOP focuses on maximizing the cost function; the switch to
minimization problems requires trivial changes to the design of ASP-DPOP.

11 #sup is a special constant representing the largest possible value in the ASP language.
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that, since the objective is to minimize a global cost function, the ASP in Figure 7

is produced differently from the one that is generated by generate UTIL ASP/2
described in 3.4.4. Specifically, the differences are the following:

• The predicates of the form table min ai are used instead of ones of the form

table max ai;

• U = #min{...} rather than U = #max{...} in (3.35) (i.e., computing the

minimal utilities for each value combination of variables in the separator

list); and

• The conditions Vr1 != #sup, . . . , Vrk′ != #sup are used instead of

Vr1 != #inf, . . . , Vrk′ != #inf in (3.34) (i.e., atoms of the form

table row ai(u, vs1 , . . . , vsk ) where u = #sup (i.e., the respective utilities are

+∞) are not produced).

As a consequence, the encoded UTIL messages consist of facts of the forms

table min ai (instead of table max ai) and table info.

f(4, 2,−2) ← (5.8)

f(2, 1,−1) ← (5.9)

f(0, 0, 0) ← (5.10)

f(#sup, 0,−2) ← (5.11)

f(#sup, 1,−2) ← (5.12)

f(#sup, 0,−1) ← (5.13)

f(#sup, 2,−1) ← (5.14)

f(#sup, 1, 0) ← (5.15)

f(#sup, 2, 0) ← (5.16)

value(x1→2, 0 .. 2) ← (5.17)

value(x2→1,−2 .. 0) ← (5.18)

table row a2(U,X1→2) ← f(V0, X1→2, X2→1),

V0 != #sup,

U = V0. (5.19)

table min a2(U,X1→2) ← value(x1→2, X1→2), (5.20)

table row a2( , X1→2),

U = #min{V : table row a2(V ,X1→2)}.

Fig. 7. ASP to compute UTIL message in example 16.

The nine facts (5.8)–(5.16) enumerate all utilities of the constraint f in which

the six facts (5.11)–(5.16) are redundant since their corresponding utilities are +∞.

With DPOP, the total size of the search space for computing its UTIL message is 9,

which corresponds to the nine facts (5.8)–(5.16), since DPOP does not do pruning.

However, with ASP-DPOP, the corresponding total size of the search space is 3 since

gringo, due to the condition V0 ! = #sup, grounds the rule (5.19) into only three
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facts:

table row a2(4, 2) ← (5.21)

table row a2(2, 1) ← (5.22)

table row a2(0, 0) ← (5.23)

and an ASP solver will use these facts to generate the predicates table min a2

based on the rule (5.20). The different between the sizes of the search spaces of

ASP-DPOP and DPOP are greater as the domain sizes of variables increase. For

example, if the domain sizes of x1→2 and x2→1 are 1, 000, the total search space of

DPOP is 1, 0002, while the total search space of ASP-DPOP is just 1, 000.

As a consequence, and as clear from our experiments, ASP-DPOP is able to prune

a significant portion of the search space, thanks to hard constraints, whereas DPOP

does not. Moreover, as seen in Example 16, the size of the search space pruned

increases as the complexity of the instance grows (i.e., increasing |X|, |Di|, p1, or p2).

Thus, ASP-DPOP is able to solve more problems than DPOP and is faster than

DPOP when the problem becomes more complex.

The pruning power of the ASP grounders and solvers enables also the generation

of smaller UTIL messages in ASP-DPOP than those generated by DPOP. Let us

consider a UTIL message M sent from an agent ai to an agent aj . A value assignment

of variables in sepi is admissible if its corresponding optimal sum of utilities in the

subtree rooted at ai is different than −∞.12 In DPOP, M consists of a utility, which

is optimal, for each value assignment of variables in sepi (including both admissible

and inadmissible value assignments). However, M in ASP-DPOP consists of a utility,

which is optimal and different from −∞, for only each admissible value assignment

of variables in sepi. This is because such inadmissible value assignments will not be

included in any DCOP solution (i.e., otherwise the global cost is −∞).

We will not discuss in-depth technically what algorithms and computations are

implemented within modern ASP grounders to optimize the grounding process,

since they are beyond the scope of this paper. Readers who are interested in such

algorithms and computations can find further information in Gebser et al. (2012)

and Kaufmann et al. (2016). It is important to notice that such computations (e.g.,

for removing unnecessary rules and for omitting rules whose bodies cannot be

satisfied) consume memory, take time, and are not trivial. Therefore, for DCOP

problems with low constraint tightness, the runtime and memory that are used for

those computations will dominate the runtime and memory that are saved from

pruning the search space (e.g., see the row p2 = 0.3 in Table 2). This also explains

why ASP-DPOP is slower than DPOP when the problem becomes less complex

(i.e., decreasing |X|, |Di|, p1, or p2). Specifically, from the trend while decreasing p2

in Table 2, ASP-DPOP will not be able to compete with DPOP for cases where

p2 � 0.3.

The fact that ASP-DPOP solves DCOP problems with multiple variables per agent

directly, without transforming them to problems with one variable per agent, deserves

12 Or +∞ for minimization problems.
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some discussions. It is easy to see that ASP-DPOP agents need to consider more

variables and thus more constraints. As a result, there are more interdependencies

between constraints for ASP-DPOP to exploit. If the constraint tightness is high,

the size of the search space pruned increases significantly. This can be seen in

our power network experiment. On the other hand, dealing with more variables

and more constraints also increases the search space. Therefore, if the constraint

tightness does not provide sufficient pruning, the portion of the search space pruned

does not properly balance the increase in the size of the search space; this may

lead ASP-DPOP to require more memory than DPOP in solving such problems.

This situation can be seen in experimental results on random graphs (i.e., decreasing

p2). Solving DCOPs with multiple variables per agent without transforming them

to problems with a single variable per agent was also investigated in Fioretto et al.

(2016).

Maintaining privacy is a fundamental motivation for the use of DCOP. A detailed

analysis of privacy loss in DCOP for some existing DCOP algorithms, including

DPOP, can be found in Greenstadt et al. (2006). For ASP-DPOP, it is not difficult to

realize that DPOP and ASP-DPOP have the same privacy loss. The reason is that

the content of UTIL messages (resp. VALUE messages) in DPOP—that are given

under the tabular form (which are similar to those given under multi-dimensional

matrix form)—is identical to the content of the UTIL messages (resp. VALUE

messages) in ASP-DPOP—that are given in facts form. In fact, anything that is

inferred from the fact form (in UTIL and VALUE messages of ASP-DPOP) can be

inferred from the tabular form (in the respective messages of DPOP), and vice versa

anything is inferred from tabular form can be inferred from fact form as well.

6 Related work

The use of declarative programs, specifically logic programs, for reasoning in multi-

agent domains is not new. Starting with some seminal papers (Kowalski and Sadri

1999), various authors have explored the use of several different flavors of logic

programming, such as normal logic programs and abductive logic programs, to

address cooperation between agents (Sadri and Toni 2003; Kakas et al. 2004; De

Vos et al. 2005; Gelfond and Watson 2007). Some proposals have also explored

the combination between constraint programming, logic programming, and formal-

ization of multi-agent domains (Vlahavas 2002; Dovier et al. 2010a, 2010b, 2013).

Logic programming has been used in modeling multi-agent scenarios involving

agents knowledge about other’s knowledge (Baral et al. 2010), computing models in

the logics of knowledge (Pontelli et al. 2010), multi-agent planning (Son et al. 2009)

and formalizing negotiation (Sakama et al. 2011). ASP-DPOP is similar to the last

two applications in that (i) it can be viewed as a collection of agent programs; (ii) it

computes solutions using an ASP solver; and (iii) it uses message passing for agent

communication. A key difference is that ASP-DPOP solves multi-agent problems

formulated as constraint-based models, while the other applications solve problems

formulated as decision-theoretic and game-theoretic models.
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Researchers have also developed a framework that integrates declarative tech-

niques with off-the-shelf constraint solvers to partition large constraint optimization

problems into smaller subproblems and solve them in parallel (Liu et al. 2012).

In contrast, DCOPs are problems that are naturally distributed and cannot be

arbitrarily partitioned.

ASP-DPOP is able to exploit problem structure by propagating hard constraints

and using them to prune the search space efficiently. This reduces the memory

requirement of the algorithm and improves the scalability of the system. Existing

DCOP algorithms that also propagate hard and soft constraints to prune the search

space include H-DPOP that propagates exclusively hard constraints (Kumar et al.

2008), BrC-DPOP that propagates branch consistency (Fioretto et al. 2014), and

variants of BnB-ADOPT (Yeoh et al. 2010; Gutierrez et al. 2011; Gutierrez and

Meseguer 2012b) that maintains soft-arc consistency (Bessiere et al. 2012; Gutierrez

and Meseguer 2012a; Gutierrez et al. 2013). A key difference is that these algorithms

require algorithm developers to explicitly implement the ability to reason about the

hard and soft constraints and propagate them efficiently. In contrast, ASP-DPOP

capitalizes on general purpose ASP solvers to do so.

7 Conclusions and Future work

In this paper, we explored the benefits of using logic programming techniques as a

platform to provide complete solutions of DCOPs. Our proposed logic programming-

based algorithm, ASP-DPOP, is able to solve more problems and solve them

faster than DPOP, its imperative programming counterpart. Aside from the ease

of modeling, each agent in ASP-DPOP also capitalizes on highly efficient ASP

solvers to automatically exploit problem structure (e.g., prune the search space using

hard constraints). Experimental results show that ASP-DPOP is faster and can scale

to larger problems than a version of H-DPOP (i.e., PH-DPOP) that maintains the

level of privacy similar to that of ASP-DPOP. These results highlight the strengths

of a declarative programming paradigm, where explicit model-specific pruning rules

are not necessary. In conclusion, we believe that this work contributes to the

DCOP community, where we show that the declarative programming paradigm is

a promising new direction of research for DCOP researchers, as well as the ASP

community, where we demonstrate the applicability of ASP to solve a wide array of

multi-agent problems that can be modeled as DCOPs.

In future work, we will explore two directions to deepen the use of logic

programming in solving DCOPs:

• Logic programming under different semantics: We will consider the advantages

of other logic programming paradigms in solving DCOPs. One possibility is to

use Constraint Logic Programming (CLP) (Jaffar and Maher 1994) instead of

ASP. Since CLP is a merger of two declarative paradigms—constraint solving

and logic programming—it seems well-suited to solve DCOPs. A preliminary

investigation (Le et al. 2014) has shown that this technique can dramatically

decrease run time.
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• Different representation of messages: We observe that the messages used in

DPOP, and even ASP-DPOP, are represented explicitly—i.e., they are multi-

dimensional matrices in DPOP and facts in ASP-DPOP. One of the reasons

for this is that each agent performs the inference process for its subtree,

enumerates explicitly all the results, and sends them to other agents. We are

interested in investigating algorithms where agents coordinate with others via

messages that are logic programs (e.g., ASP or CLP clauses). Specifically, in

such an algorithm, each agent does the inference partially, for some specific

interesting value assignment, and without enumerating all results. The rest of

the computation will be encoded as logic programs and passed to other agents.

Some agent who performs the complete inference process will propagate the

search space based on the rules in the received messages as logic programs.

We believe this will reduce the search space and the run time.
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