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SCHEDULE

• 11:20am: Preliminaries 

• 11:40am: DCOP Algorithms

• 12:20pm: DCOP Extensions

• 12:30pm: Applications

• 12:50pm: Challenges and Open Questions

• 1:00pm: Done! Lunch? :)
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LIL’ BIT OF SHAMELESS 
PROMOTION  :)

• Tutorial materials are based on our recent JAIR survey paper: 
 
Ferdinando Fioretto, Enrico Pontelli, and William Yeoh.  
Distributed Constraint Optimization Problems and Applications: A Survey. 
Journal of Artificial Intelligence Research (JAIR), to appear, 2018. 

• Includes more models, algorithms, and applications. 

• Also available on arXiv.



PRELIMINARIES
AAAI-18 Tutorial on  

Multi-Agent Distributed Constrained Optimization
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CSP

CONSTRAINT SATISFACTION

12

• Variables

• Domains

• Constraints 

where a constraint     
denotes the possible valid joint assignments for the 
variables                          it involves 


• GOAL: Find an assignment to all variables that satisfies 
all the constraints 

ci ✓ Di1 ⇥Di2 ⇥ . . .⇥Din

X = {x1, . . . , xn}

C = {c1, . . . , cm}

xi1 , xi2 , . . . , xin

D = {D1, . . . , Dn}



AAAI-18 Tutorials                                                                                                                                                                         Fioretto, Yeoh, Zivan

CSP

CONSTRAINT SATISFACTION

13

x1

x5

x3

x1 x3 x5 Sat?

N N N X

N N E X

... X

S W N ✓

... X

W W W X

Model the problem as a  
CSP

x2

x6

x4



AAAI-18 Tutorials                                                                                                                                                                         Fioretto, Yeoh, Zivan

MAX-CSP

MAX CONSTRAINT SATISFACTION

14

x1

x5

x3

x1 x3 x5 Sat?

N N N X

N N E X

... X

S W N ✓

... X

W W W X

Model the problem as a  
Max-CSP

x2

x6

x4



AAAI-18 Tutorials                                                                                                                                                                         Fioretto, Yeoh, Zivan

MAX-CSP

MAX CONSTRAINT SATISFACTION
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• Variables

• Domains

• Constraints 

where a constraint     
denotes the possible valid joint assignments for the 
variables                          it involves 


• GOAL: Find an assignment to all variables that satisfies 
a maximum number of constraints 

ci ✓ Di1 ⇥Di2 ⇥ . . .⇥Din

X = {x1, . . . , xn}

C = {c1, . . . , cm}

xi1 , xi2 , . . . , xin

D = {D1, . . . , Dn}
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WCSP (COP)

CONSTRAINT OPTIMIZATION
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WCSP (COP)

CONSTRAINT OPTIMIZATION

18

• Variables

• Domains

• Constraints 

where a constraint     
expresses the degree of constraint violation 

• GOAL: Find an assignment that minimizes the sum of 
the costs of all the constraints

X = {x1, . . . , xn}

C = {c1, . . . , cm}
D = {D1, . . . , Dn}

ci : Di1 ⇥ . . .⇥Din ! R+ [ {1}
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WCSP (COP)

CONSTRAINT OPTIMIZATION

19

CSP Max-
CSP

• Objective: maximize 
#constraints satisfied
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WCSP (COP)

CONSTRAINT OPTIMIZATION

20

CSP Max-
CSP

• Hard constraints to  
Soft constraints


• Objective: minimize cost
COP

• Objective: maximize 
#constraints satisfied
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WCSP (COP)

CONSTRAINT OPTIMIZATION

21
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x1 x3 x5 Cost
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... ∞

W W W ∞

Imagine that each 
sensor is an 

autonomous agent.


How should this problem 
be modeled and solved 

in a decentralized 
manner?
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MULTI-AGENT SYSTEMS

22

• Agent: An entity that behaves autonomously in the pursuit of goals

• Multi-agent system: A system of multiple interacting agents


• An agent is:

• Autonomous: Is of full control of itself

• Interactive: May communicate with other agents 

• Reactive: Responds to changes in the 

environment or requests by other agents

• Proactive: Takes initiatives to achieve its goals 


a2

a1

a2

a4

? ?
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MULTI-AGENT SYSTEMS

23

Constraint	
Programming

Game	
Theory

Decision	
Theory

DCOP

Auctions;
GamesDec-MDP;

Dec-POMDP
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DCOP

DISTRIBUTED CONSTRAINT OPTIMIZATION
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DISTRIBUTED CONSTRAINT OPTIMIZATION
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DCOP

DISTRIBUTED CONSTRAINT OPTIMIZATION

27

• Agents

• Variables

• Domains

• Constraints

• Mapping of variables to agents 

• GOAL: Find an assignment that minimizes the sum of 
the costs of all the constraints

X = {x1, . . . , xn}

C = {c1, . . . , cm}
D = {D1, . . . , Dn}

A = {ai, . . . , an}
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• Hard constraints to  
Soft constraints


• Objective: minimize cost

DCOP

DISTRIBUTED CONSTRAINT OPTIMIZATION

28

CSP Max-
CSP

COP

• Objective: maximize 
#constraints satisfied



AAAI-18 Tutorials                                                                                                                                                                         Fioretto, Yeoh, Zivan

DCOP

DISTRIBUTED CONSTRAINT OPTIMIZATION

29

CSP Max-
CSP

COP

• Variables are controlled 
by agents


• Communication model

• Local agents’ knowledge

DCOP
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DCOP

DISTRIBUTED CONSTRAINT OPTIMIZATION

• Why distributed models?

• Natural mapping for multi-agent systems

• Potentially faster by exploiting parallelism

• Potentially more robust: no single point of failure, no single 

network bottleneck

• Maintains more private information
• ...

30



DCOP ALGORITHMS
AAAI-18 Tutorial on  

Multi-Agent Distributed Constrained Optimization
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DCOP ALGORITHMS

Complete

Incomplete

Partially	
Decentralized
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Decentralized
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Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous



AAAI-18 Tutorials                                                                                                                                                                         Fioretto, Yeoh, Zivan

DCOP ALGORITHMS
• Important Metrics: 

• Agent complexity

• Network loads

• Message size

Complete

Incomplete
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Decentralized
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Decentralized
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Asynchronous
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Synchronous

Synchronous

Search

Search

Search
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Inference
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Inference

Inference
Synchronous
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DCOP ALGORITHMS
• Important Metrics: 

• Agent complexity

• Network loads

• Message size 

 

• Anytime

• Quality guarantees

• Execution time vs.  

solution quality

Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous



AAAI-18 Tutorials                                                                                                                                                                         Fioretto, Yeoh, Zivan

DCOP ALGORITHMS

• Systematic process, divided in 
steps.


• Each agent waits for 
particular messages before 
acting


• Consistent view of the 
search process


• Typically, increases idle-time

Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous
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DCOP ALGORITHMS

• Decision based on agents’ 
local state


• Agents’ actions do not 
depend on sequence of 
received messages


• Minimizes idle-time

• No guarantees on validity of 

local views

Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous
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DCOP ALGORITHMS

Synchronous Branch and 
Bound (SBB)

Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous



AAAI-18 Tutorials                                                                                                                                                                         Fioretto, Yeoh, Zivan

SBB

38

C

A

B

D

xi xj
Cost 
(A,B)

Cost 
(A,C)

Cost 
(B,C)

Cost 
(B,D)

5 5 5 3

8 10 4 8

20 20 3 10

3 3 3 3

{      }

{      }
{      }

{      }

Katsutoshi Hirayama, Makoto Yokoo: Distributed Partial Constraint Satisfaction Problem. CP 1997: 222-236
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SBB
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C

A

B

D

xi xj
Cost 
(A,B)

Cost 
(A,C)

Cost 
(B,C)

Cost 
(B,D)

5 5 5 3

8 10 4 8

20 20 3 10

3 3 3 3

{      }

{      }
{      }

{      }

How do we solve this distributedly?
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SBB

40

A

C

B

Complete Ordering

D

{      }

{      }

{      }

{      }

• Agents operate on a 
complete ordering 


• Agents exchange CPA 
messages containing partial 
assignments.


• When a solution is found, its 
solution cost as an UB is 
broadcasted to all agents.


• The UB is used for branch 
pruning.
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48

0

0

5

15

18 23

19

UB = 18

A

B

C

D



AAAI-18 Tutorials                                                                                                                                                                         Fioretto, Yeoh, Zivan

SBB

49

0

0

5

15

18 23

19

UB = 18

A

B

C

D



AAAI-18 Tutorials                                                                                                                                                                         Fioretto, Yeoh, Zivan

SBB
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SBB

51

0

0

5

15

18 23

19

8

16

UB = 18

A

B

C

D



AAAI-18 Tutorials                                                                                                                                                                         Fioretto, Yeoh, Zivan

SBB
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SBB
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0

0

5

15

18 23

19

8

16

26

UB = 18

...

A

B

C

D
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SBB

54

SBB
Correct 


the solution it finds is optimal
Yes

Complete

it terminates

Yes
Message Complexity


max size of a message 
O(d)

Network Load

max number of messages 

O(bd)

Runtime  O(bd)

branching factor = b
num variables = d
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0

0

5

15

18 23

19

22 27

8

16

26 19

21

31 24

0

20

43

46 51

27

30 35

A

B

C

D

Can we speed this up by parallelizing some 
computations?


Hint: Are there independent or  
conditionally independent subproblems?
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0
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8

8
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13
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0
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SBB

59

0

0

5

10

3 8

14

3 8

8

8

10 3

13

10 3

0

20

25

3 8

7

3 8

These computations are the 
same; independent of C!

A

B

C

D
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PSEUDO-TREE

60

C

A

B

D

{      }

{      }
{      }

{      }
C

B

A

D

{      }

{      }

{      } {      }
Definition: A spanning tree of the constraint 
graph such that no two nodes in sibling subtrees 
share a constraint in the constraint graph 
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DCOP ALGORITHMS

Distributed Pseudotree 
Optimization Procedure 

(DPOP)
Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous
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DPOP

• Extension of the Bucket 
Elimination (BE)


• Agents operate on a pseudo-
tree ordering


• UTIL phase: Leaves to root

• VALUE phase: Root to leaves

VALUE

UTIL
C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering

Adrian Petcu, Boi Faltings: A Scalable Method for Multiagent Constraint Optimization. IJCAI 2005: 266-271
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DPOP

UTIL
C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering

B D (B,D)
r r 3
r g 8
g r 10
g g 3
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DPOP

UTIL
C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering

B D (B,D)
r r 3
r g 8
g r 10
g g 3

B cost
r 3
g 3

MSG to B

min{3, 8} = 3

min{10, 3} = 3
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DPOP

UTIL
C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering
A B C (B,C) (A,C)

r r r 5 5 10
r r g 4 8 12
r g r 3 5 8
r g g 3 8 11
g r r 5 10 15
g r g 4 3 7
g g r 3 10 13
g g g 3 3 6
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DPOP

UTIL
C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering
A B C (B,C) (A,C)

r r r 5 5 10
r r g 4 8 12
r g r 3 5 8
r g g 3 8 11
g r r 5 10 15
g r g 4 3 7
g g r 3 10 13
g g g 3 3 6

A B
r r 10
r g 8
g r 7
g g 6

MSG to B
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DPOP

UTIL
C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering

A B (A,B) Util 
C

Util 
D

r r 5 10 3 18

r g 8 8 3 19

g r 20 7 3 30

g g 3 6 3 12
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DPOP

UTIL
C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering

A B (A,B) Util 
C

Util 
D

r r 5 10 3 18

r g 8 8 3 19

g r 20 7 3 30

g g 3 6 3 12

A cost
r 18
g 12

MSG to A
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DPOP

UTIL
C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering

A cost
r 18
g 12

optimal cost = 12
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DPOP

C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering

A cost
r 18
g 12

VALUE

•Select value for A = ‘g’

•Send MSG A = ‘g’ to  

agents B and C
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DPOP

C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering

A B (A,B) Util 
C

Util 
D

r r 5 10 3 18

r g 8 8 3 19

g r 20 7 3 30

g g 3 6 3 12

VALUE

•Select value for B = ‘g’

•Send MSG B = ‘g’ to  

agents C and D
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DPOP

C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree OrderingA B C (B,C) (A,C)

r r r 5 5 10
r r g 4 8 12
r g r 3 5 8
r g g 3 8 11
g r r 5 10 15
g r g 4 3 7
g g r 3 10 13
g g g 3 3 6

VALUE

•Select value for C = ‘g’
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DPOP

C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering

VALUE
B D (B,D)
r r 3
r g 8
g r 10
g g 3

•Select value for D = ‘g’
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DPOP

74

SBB DPOP
Correct 


the solution it finds is optimal
Yes Yes

Complete

it terminates

Yes Yes
Message Complexity


max size of a message 
O(d) O(bd)

Network Load

max number of messages 

O(bd) O(d)
Runtime  O(bd) O(bd)

branching factor = b
num variables = d
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CRITICAL OVERVIEW
Search Algorithms Inference Algorithms

increasing memory
polynomial exponential

decreasing network load

polynomialexponential
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DCOP ALGORITHMS

Distributed Local Search

Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous
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• DSA: Distributed Stochastic Algorithm 

• MGM: Maximum Gain Messages Algorithm


• Note: We now maximize utilities

LOCAL SEARCH ALGORITHMS

77

BA C

xi xj
Utility 
(A,B)

Utility 
(B,C)

5 5

0 0

0 0

8 8{      }{      } {      }

Weixiong Zhang, Guandong Wang, Zhao Xing, Lars Wittenburg: Distributed stochastic search and distributed breakout: properties, comparison and 
applications to constraint optimization problems in sensor networks. Artif. Intell. 161(1-2): 55-87 (2005)

Rajiv Maheswaran, Jonathan Pearce, Milind Tambe: Distributed Algorithms for DCOP: A Graphical-Game-Based Approach. ISCA PDCS 2004: 432-439
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LOCAL SEARCH ALGORITHMS

• DSA: Distributed Stochastic Algorithm 

• MGM: Maximum Gain Messages Algorithm


• Every agent individually decides whether to change its value or not

• Decision involves 


• knowing neighbors’ values

• calculation of utility gain by changing values

• probabilities

78

Weixiong Zhang, Guandong Wang, Zhao Xing, Lars Wittenburg: Distributed stochastic search and distributed breakout: properties, comparison and 
applications to constraint optimization problems in sensor networks. Artif. Intell. 161(1-2): 55-87 (2005)

Rajiv Maheswaran, Jonathan Pearce, Milind Tambe: Distributed Algorithms for DCOP: A Graphical-Game-Based Approach. ISCA PDCS 2004: 432-439
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DSA ALGORITHM

• All agents execute the following

• Randomly choose a value

• while (termination is not met)


• if (a new value is assigned)

• send the new value to neighbors


• collect neighbors’ new values if any

• select and assign the next value based on assignment rule

79

Weixiong Zhang, Guandong Wang, Zhao Xing, Lars Wittenburg: Distributed stochastic search and distributed breakout: properties, comparison and 
applications to constraint optimization problems in sensor networks. Artif. Intell. 161(1-2): 55-87 (2005)



AAAI-18 Tutorials                                                                                                                                                                         Fioretto, Yeoh, Zivan

DSA ALGORITHM

80

BA C

xi xj
Utility 
(A,B)

Utility 
(B,C)

5 5

0 0

0 0

8 8

{      }{      } {      }
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DSA ALGORITHM
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BA C
U=0

xi xj
Utility 
(A,B)

Utility 
(B,C)

5 5

0 0

0 0

8 8

U=0

U=0, Δ=0

U=8, Δ=8

U=10, Δ=10

U=0, Δ=0

U=0, Δ=0

U=8, Δ=8
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DSA ALGORITHM

82

BA C
U=8

xi xj
Utility 
(A,B)

Utility 
(B,C)

5 5

0 0

0 0

8 8

U=0

U=0, Δ=-8

U=0, Δ=0

U=10, Δ=2

U=8, Δ=0

U=0, Δ=0

U=8, Δ=8
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DSA ALGORITHM

83

BA C
U=0

xi xj
Utility 
(A,B)

Utility 
(B,C)

5 5

0 0

0 0

8 8

U=0

U=5, Δ=5

U=0, Δ=0

U=0, Δ=0

U=16, Δ=16

U=5, Δ=5

U=0, Δ=0



AAAI-18 Tutorials                                                                                                                                                                         Fioretto, Yeoh, Zivan

DSA ALGORITHM

84

BA C
U=8

xi xj
Utility 
(A,B)

Utility 
(B,C)

5 5

0 0

0 0

8 8

U=8

U=0, Δ=-8

U=8, Δ=0

U=0, Δ=-16

U=16, Δ=0

U=0, Δ=-8

U=8, Δ=0
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DSA ALGORITHM
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BA C
U=0

xi xj
Utility 
(A,B)

Utility 
(B,C)

5 5

0 0

0 0

8 8

U=0

BA C
U=8 U=0

BA C
U=0 U=0

BA C
U=8 U=8

One possible execution trace
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MGM ALGORITHM

• All agents execute the following

• Randomly choose a value

• while (termination is not met)


• if (a new value is assigned)

• send the new value to neighbors


• collect neighbors’ new values if any

• calculate gain and send it to neighbors

• collect neighbors’ gains

• if (it has the highest gain among all neighbors)


• change value to the value that maximizes gain

86

Rajiv Maheswaran, Jonathan Pearce, Milind Tambe: Distributed Algorithms for DCOP: A Graphical-Game-Based Approach. ISCA PDCS 2004: 432-439



AAAI-18 Tutorials                                                                                                                                                                         Fioretto, Yeoh, Zivan

MGM ALGORITHM

• All agents execute the following

• Randomly choose a value

• while (termination is not met)


• if (a new value is assigned)

• send the new value to neighbors


• collect neighbors’ new values if any

• calculate gain and send it to neighbors

• collect neighbors’ gains

• if (it has the highest gain among all neighbors)


• change value to the value that maximizes gain

87

Figure 1: Sample Trajectories of MGM and DSA for a
High-Stakes Scenario

5 Algorithms with Coordination

When applying algorithms without coordination, the
evolution of the assignments will terminate at a Nash equi-
librium point within the set XNE described earlier. One
method to improve the solution quality is for agents to co-
ordinate actions with their neighbors. This allows the evo-
lution to follow a richer space of trajectories and alters the
set of terminal assignments. In this section we introduce
two 2-coordinated algorithms, where agents can coordi-
nate actions with one other agent. Let us refer to the set
of terminal states of the class of 2-coordinated algorithms
as X2E , i.e. neither a unilateral nor a bilateral modifica-
tion of values will increase sum of all constraint utilities
connected to the acting agent(s) if x 2 X2E . Clearly the
terminal states of a coordinated algorithm will depend on
what metric the coordinating agents will use to determine
if a particular joint action is acceptable or not. In a team
setting (and in our analysis), a joint action that increases
the sum of the utilities of the acting agents is considered
acceptable, even if a single agent may see a loss in utility.
This would be true in a purely selfish environment as well,
if agents could compensate each other for possible losses
in utility. An alternative choice would be to make a joint
action acceptable only if both agents see utility gains. We
consider the former notion of an acceptable joint action and
define the terminal states as follows:

X2E =
⇢
x̂ : (x̂i, x̂ j) = arg max

(xi,x j)

�
ui(xi; µ�i(x j, x̂�i j))

+u j(x j; µ� j(xi, x̂� ji))
 
, 8i, j 2 N , i , j

�

where x�i j is a tuple consisting of all values of variables ex-
cept the i-th and j-th variable, and µ�i(x j, x� ji) is a function
that converts its arguments into an appropriate vector of the
form of x�i described earlier, i.e. µ�i takes values from the
variables indexed by { j}[ �N \{i[ j} to a vector composed
of the variables indexed by N�i.

Proposition 3 For a given DCOP (X, E,U) and its equiv-
alent game (X, E, u), we have X2E ✓ XNE.

Proof. We show this by proving the contrapositive.
Suppose x < XNE . Then, there exists a variable i such
that ui(x̂i; x�i) > ui(xi; x�i) for some x̂i , xi. This further
implies that there exists some variable j 2 Ni, for which
Ui j(x̂i, x j) > Ui j(xi, x j). We then have ui(x̂i; µ�i(x j, x�i j)) >
ui(xi; µ�i(x j, x�i j)) and u j(x j; µ� j(x̂i, x� ji)) >
u j(x j; µ� j(xi, x�i j)) which implies that x < X2E . ⌅
Essentially, we are saying that a unilateral move which

improves the utility of a single agent must improve the con-
straint utility of at least one link which further implies that
the local utility of another agent must also increase given
that the rest of its context remains the same. The interest-
ing phenomenon is that our definition of X2E above is suf-
ficient to capture unilateral and bilateral deviations within
the context of bilateral deviations. This is due to the under-
lying DCOP structure and not true for a general game.
It has been proposed that coordinated actions be

achieved by forming coalitions among variables. In [2],
each coalition was represented by a manager who made
the assignment decisions for all variables within the coali-
tion. These methods inherently undermine the distributed
nature of the decision-making by essentially replacing mul-
tiple variables with a single variable in the graph. It is not
possible in all situations for this to occur because utility
function information and the ability to communicate with
the necessary neighbors may not be transferable (due to
infeasibility or preference). We introduce two algorithms
that allow for coordination while maintaining the underly-
ing distributed decision making process and the same con-
straint graph: MGM-2 (Maximum Gain Message-2) and
SCA-2 (Stochastic Coordination Algorithm-2).
Both MGM-2 and SCA-2 begin a round with agents

broadcasting their current values. The first step in both al-
gorithms is to decide which subset of agents are allowed to
make o↵ers. We resolve this by randomization, as each
agent generates a random number uniformly from [0, 1]
and becomes an o↵erer if the random number is below a
threshold q. If an agent is an o↵erer, it cannot accept of-
fers from other agents. All agents who are not o↵erers are
receivers. Each o↵erer will choose a neighbor at random
(uniformly) and send it an o↵er message consisting of all
coordinated moves between the o↵erer and receiver that
will yield a gain in local utility to the o↵erer under the cur-
rent context. The o↵er message will contain both the sug-
gested values for each player and the o↵erer’s local utility
gain for each value pair. Each receiver will then calculate
the global utility gain for each value pair in the o↵er mes-
sage by adding the o↵erer’s local utility gain to its own
utility change under the new context and subtracting the
di↵erence in the link between the two so it is not counted
twice. If the maximum global gain over all o↵ered value
pairs is positive, the receiver will send an accept message

Great if you need an anytime algorithm

Rajiv Maheswaran, Jonathan Pearce, Milind Tambe: Distributed Algorithms for DCOP: A Graphical-Game-Based Approach. ISCA PDCS 2004: 432-439
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PROSUMER ENERGY TRADING
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Designing a Marketplace for the Trading and Distribution of Energy in the Smart Grid. AAMAS 2015: 1285-1293
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• Prosumers: capable of both generating and consuming resources


• Each prosumer can sell or buy a given amount of power to 
another prosumer


• Line capacity and flow constraints are required to be satisfied


• Each offer has a desired utility


• Goal: Find a buy/selling assignment that maximizes the actors’ 
rewards and is feasible with the operating power constraints

90

PROSUMER ENERGY TRADING
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PROSUMER ENERGY TRADING

91

a b U
0 0 0.3
0 -1 0
-2 1 0.2

a c U
0 0 0.1
0 1 0.2
-2 1 0.2

b c U
0 0 0
-1 1 0.2
1 1 0.3

fab fac

fbc

a

b c

Designing a Marketplace for the Trading and Distribution of Energy in the Smart Grid. AAMAS 2015: 1285-1293
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• What if Alice cannot disclose the costs associated her action?


• What if we want to describe the scenario in which 


• Bob desires to gain 0.2 for selling1 KW of power to Carl


• Car desires to gain 0.1 for buying 1 KW of power from Bob? 

92

PROSUMER ENERGY TRADING
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ASYMMETRIC DCOP
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Constraint	
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DCOP
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• Asymmetric DCOPs are DCOPs where:

• A joint assignment may produce different costs for the agents 

participating in a constraint

ASYMMETRIC DCOP

94

A B Cost
r g 3
r g 2
g r 10
g g 0
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• Asymmetric DCOPs are DCOPs where:

• A joint assignment may produce different costs for the agents 

participating in a constraint

ASYMMETRIC DCOP

95

A B Cost A Cost B
r g 2 1
r g 0 2
g r 3 7
g g 0 0
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PROSUMER ENERGY TRADING
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a

b c

a c U
0 0 0.1
0 1 0.1
-2 1 0.2

a b U
0 0 0.2
0 -1 0
-2 1 0.2

fac(a)fab(a)

a b U
0 0 0.1
0 -1 0.1
-2 1 0

fab(b)
a c U
0 0 1
0 1 0
-2 1 0

fac(c)

a c U
0 0 0
-1 1 0.1
-2 1 0.2

fbc(c)

a c U
0 0 0
-1 1 0.2
-2 1 0.1

fbc(b)



AAAI-18 Tutorials                                                                                                                                                                         Fioretto, Yeoh, Zivan

• Why asymmetric DCOPs?

• …

ASYMMETRIC DCOP

97
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• Why asymmetric DCOPs?

• Models richer forms of cooperation

• Privacy: Agents do not need to reveal the costs associated to 

their action

• Resource allocation problems: 


• Different costs for using the same resource 

• Different preferences

ASYMMETRIC DCOP

98



AAAI-18 Tutorials                                                                                                                                                                         Fioretto, Yeoh, Zivan

• What if a new prosumer would like 
to join the market?


• What if a prosumer would like to 
modify her preferences?

99

PROSUMER ENERGY TRADING
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DYNAMIC DCOP
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• A Dynamic DCOP is sequence P1, P2, …, Pk of k DCOPs
• The agent knowledge about the environment is confined within 

each time step

• Each DCOP is solved sequentially

DYNAMIC DCOP

101

t1 t2 t3 t4 …



AAAI-18 Tutorials                                                                                                                                                                         Fioretto, Yeoh, Zivan

• Why dynamic DCOPs? 

• …

DYNAMIC DCOP

102
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• Why dynamic DCOPs? 

• MAS commonly exhibit dynamic environments

• The capture scenarios with:


• Moving agents, change of constraints, change of preferences

• Additional information become available during problem 

solving

• Application domains: Sensor networks, cloud computing, 

smart home automation, …

DYNAMIC DCOP

103
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DCOP APPLICATIONS

• Scheduling Problems

• Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling. AAMAS 2004


• Radio Frequency Allocation Problems

• Improving DPOP with Branch Consistency for Solving Distributed Constraint Optimization Problems. CP 2014


• Sensor Networks

• Preprocessing techniques for accelerating the DCOP algorithm ADOPT. AAMAS 2005


• Home Automation

• A Multiagent System Approach to Scheduling Devices in Smart Homes. AAMAS 2017, IJCAI 2016


• Traffic Light Synchronization

• Evaluating the performance of DCOP algorithms in a real world, dynamic problem. AAMAS 2008


• Disaster Evacuation

• Disaster Evacuation Support. AAAI 2007; JAIR 2017


• Combinatorial Auction Winner Determination 

• H-DPOP: Using Hard Constraints for Search Space Pruning in DCOP.  AAAI 2008
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MEETING SCHEDULING

• Meeting 1: Alice, Bob, Carl

• Meeting 2: Bob, Carl

•  …  

• Alice is only free in the mornings from 9am-noon

• Bob prefers to not meet during lunch (noon-1pm) 

• Carl does not wake up until 11am and loves late evening meetings

• …

106

Rajiv T. Maheswaran, Milind Tambe, Emma Bowring, Jonathan P. Pearce, Pradeep Varakantham: Taking DCOP to the Real World: Efficient Complete Solutions for 
Distributed Multi-Event Scheduling. AAMAS 2004: 310-317
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MEETING SCHEDULING

107

Rajiv T. Maheswaran, Milind Tambe, Emma Bowring, Jonathan P. Pearce, Pradeep Varakantham: Taking DCOP to the Real World: Efficient Complete Solutions for 
Distributed Multi-Event Scheduling. AAMAS 2004: 310-317

• Values: time slots to 
hold the meetings


• All agents participating 
in a meeting must meet 
at the same time


• All meetings of an agent 
must occur at different 
times

=

≠
b1 b2

c1 c2a1

= = =

≠

A

B

C
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TRAFFIC FLOW CONTROL
• Given a set of traffic lights in adjacent intersections


• How coordinate them to create green waves?

108

de Oliveira, D., Bazzan, A. L., & Lesser, V.. Using cooperative mediation to coordinate traffic lights: a case study.  AAMAS 2005: 371-378

Junges, R., & Bazzan, A. L.  Evaluating the performance of DCOP algorithms in a real world, dynamic problem.  AAMAS 2008: 463-470
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TRAFFIC FLOW CONTROL

109

de Oliveira, D., Bazzan, A. L., & Lesser, V.. Using cooperative mediation to coordinate traffic lights: a case study.  AAMAS 2005: 371-378

Junges, R., & Bazzan, A. L.  Evaluating the performance of DCOP algorithms in a real world, dynamic problem.  AAMAS 2008: 463-470


TRAFFIC FLOW CONTROL
• Agents: Each traffic light

• Values: Flow traffic direction


x1 x2 x3
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TRAFFIC FLOW CONTROL

110

de Oliveira, D., Bazzan, A. L., & Lesser, V.. Using cooperative mediation to coordinate traffic lights: a case study.  AAMAS 2005: 371-378

Junges, R., & Bazzan, A. L.  Evaluating the performance of DCOP algorithms in a real world, dynamic problem.  AAMAS 2008: 463-470


TRAFFIC FLOW CONTROL
• Agents: Each traffic light

• Values: Flow traffic direction

• Conflict if 2 neighboring signals choose different directions
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W/E

N/S

W/E

N/S

W/E
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TRAFFIC FLOW CONTROL

111

de Oliveira, D., Bazzan, A. L., & Lesser, V.. Using cooperative mediation to coordinate traffic lights: a case study.  AAMAS 2005: 371-378

Junges, R., & Bazzan, A. L.  Evaluating the performance of DCOP algorithms in a real world, dynamic problem.  AAMAS 2008: 463-470


TRAFFIC FLOW CONTROL
• Cost functions model the number of incoming vehicles  

• Maximize the traffic flow
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N/S
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SMART DEVICES

112
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SMART HOMES  
DEVICE SCHEDULING

Ferdinando Fioretto, William Yeoh, Enrico Pontelli. "A Multiagent System Approach to Scheduling Devices in Smart Homes". AAMAS, 2017. 

0.3  0.2  3.0  3.4  3.5  6.4  5.8  0.0

 a2 x3 x4

 a3 x5 x6

 a1 x1 x2 x1

x2

x3

x4

x5

x6

for i < j

xi xj Costs
0 0 20
0 1 8
1 0 10
1 1 3

(a) Constraint Graph (b) Constraint Cost Table

Figure 1: Example DCOP

A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�
t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi

�
t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi

�
t
zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H

↵c · C
t
i + ↵u · U

t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:

1  szj  T � �zj 8hi 2 H, zj 2 Zi (5)
X

t2T

�
t
zj = �zj 8hi 2 H, zj 2 Zi (6)

X

hi2H

P
t
i  `

t
8t 2 T (7)

 a2 x3 x4

 a3 x5 x6

 a1 x1 x2 x1

x2

x3

x4

x5

x6

for i < j

xi xj Costs
0 0 20
0 1 8
1 0 10
1 1 3

(a) Constraint Graph (b) Constraint Cost Table

Figure 1: Example DCOP

A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�
t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi

�
t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi

�
t
zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H

↵c · C
t
i + ↵u · U

t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:

1  szj  T � �zj 8hi 2 H, zj 2 Zi (5)
X

t2T

�
t
zj = �zj 8hi 2 H, zj 2 Zi (6)

X

hi2H

P
t
i  `

t
8t 2 T (7)T
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Ui
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battery charge

sensor

cleanliness

sensor

thermostat

A smart home has:

• Smart devices (roomba, HVAC) 

that it can control

• Sensors (cleanliness, 

temperature) 

• A set of locations
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Smart device:

• A set of actions it can 

perform (clean, charge)

• Power consumption 

associated to each action.

 
Scheduling Rules:
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Example 2 The scheduling rule (1) describes an ASR
defining a goal state where the living room floor is at least
75% clean (i.e., at least 75% of the floor is cleaned by a
vacuum cleaning robot) by 1800 hrs:

living room cleanliness � 75 before 1800 (1)

and scheduling rules (2) and (3) describe PSRs stating that
the battery charge of the vacuum cleaning robot zv needs to
be between 0 and 100 % of its full charge at all the times:

zv battery charge � 0 always (2)
zv battery charge  100 always (3)

For a home hi, we denote with R
[ta!tb]
p a scheduling rule

over a state property p2PH [PZ , and time interval [ta, tb].
Each scheduling rule indicates a goal state (either a desired
state of a home if it is an ASR or a required state of a de-
vice or a home if it is a PSR) at a location `Rp

2 Li [Zi

of a particular state property p that must hold over the time
interval [ta, tb] ✓ T. Each rule is associated with a set of
actuators �p ✓ Ai that can be used to reach the goal state.
Additionally, a rule is associated with a sensor sp 2 Si ca-
pable of sensing the state property p. Finally, in a PSRs the
device can also sense its own internal states. More formally,

�p={z2Ai | `z =`Rp
^ 9a 2 Az : p2�

H

z
(a)} (4)

�p={z2Ai | z=`Rp
_`z =`Rp

^9a2Az : p2�
H

z
(a)} (5)

where the former defines ASR and the latter defines a PSR.
The ASR of Equation (1) is illustrated in Figure 2 by dot-

ted red lines on the graph. The PSRs are not shown as they
must hold for all time steps.

Feasibility of Schedules
To ensure that a goal state can be achieved across the de-
sired time window, the system has a predictive model of the
various state properties.

Definition 2 (Predictive Model) A predictive model �p for
a state property p (of either the home or a device) is a func-
tion �p : ⌦p ⇥ "z2�p

Az [ {?} ! ⌦p [ {?}, where ?
denotes an infeasible state and ? + (·) = ?.

In other words, the model describes the transition of state
property p from state !p 2 ⌦p at time step t to time step
t + 1 when it is affected by a set of actuators �p running
joint actions ⇠

t

�p
:

�t+1
p

(!p, ⇠
t

�p
) = !p + �p(!p, ⇠

t

�p
) (6)

where �p(!p, ⇠
t

�p
) is a function describing the effect of the

actuators’ joint action ⇠
t

�p
on state property p.

Example 3 Consider the battery charge state property of
the vacuum cleaning robot zv . Assume it has 65% charge
at time step t and its action is ⇠

t

zv
at that time step. Thus:

�t+1
battery charge

(65, ⇠
t

zv
)=65 + �battery charge(65, ⇠

t

zv
) (7)

�battery charge(!, ⇠
t

zv
) =

8
>><

>>:

min(20, 100�!) if ⇠
t

zv
=charge ^ !<100

�25 if ⇠
t

zv
= run ^ ! > 25

0 if ⇠
t

zv
=stop

? otherwise

(8)

In other words, at each time step, the charge of the battery
will increase by 20% if it is charging until it is fully charged,
decrease by 25% if it is running until it has less than 25%
charge, and no change if it is stopped.

Example 4 Consider the cleanliness state property of a
room, where the only actuator that can affect that state is
a vacuum cleaning robot zv (i.e., �cleanliness = {zv}). As-
sume the room is 0% clean at time step t and the action of
robot zv is ⇠

t

zv
at that time step. Thus:

�t+1
cleanliness

(0, ⇠
t

zv
) = 0 + �cleanliness(0, ⇠

t

zv
) (9)

�cleanliness(!, ⇠
t

zv
)=

⇢
min(15, 100�!) if ⇠

t

zv
= run

0 otherwise
(10)

In other words, at each time step, the cleanliness of the room
will increase by 15% if the robot is running until it is fully
cleaned and no change otherwise.

Using the predictive model, one can recursively call it to
predict the trajectory of a state property p for future time
steps given a schedule of actions of relevant actuators �p.

Definition 3 (Predicted State Trajectory) Given a state
property p, its current state !p at time step ta, and a sched-
ule ⇠

[ta!tb]
�p

of relevant actuators �p, the predicted state tra-

jectory ⇡p(!p, ⇠
[ta!tb]
�p

) of that state property is defined as:

⇡p(!p, ⇠
[ta!tb]
�p

) =

�tb

p
(�tb�1

p
( . . . (�ta

p
(!p, ⇠

ta

�p
), . . .), ⇠

tb�1

�p
), ⇠tb

�p
) (11)

One can verify if a schedule satisfies a scheduling rule
by checking if its predicted state trajectories are within the
set of feasible state trajectories of that rule. Note that each
active and passive scheduling rule defines a set of feasible
state trajectories. For example, the active scheduling rule of
Equation (1) allows all possible state trajectories as long as
the state at time step 1800 is no smaller than 75. We use
Rp[t] ✓ ⌦p to denote the set of states that are feasible ac-
cording to rule Rp of state property p at time step t.

More formally, a schedule ⇠
[ta!tb]
�p

satisfies a scheduling

rule R
[ta!tb]
p (written as ⇠

[ta!tb]
�p

|= R
[ta!tb]
p ) iff:

8t 2 [ta, tb] : ⇡p(!
ta

p
, ⇠

[ta!t]
�p

) 2 Rp[t] (12)

where !
ta

p
is the state of state property p at time step ta.

Definition 4 (Feasible Schedule) A schedule is feasible if it
satisfies all the passive and active scheduling rules of each
home in the SHDS problem.

The predicted state trajectories of the battery charge and
cleanliness state properties following Equations (7) and (9)
are shown in the second and third rows of Figure 2. These
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Example 2 The scheduling rule (1) describes an ASR
defining a goal state where the living room floor is at least
75% clean (i.e., at least 75% of the floor is cleaned by a
vacuum cleaning robot) by 1800 hrs:

living room cleanliness � 75 before 1800 (1)

and scheduling rules (2) and (3) describe PSRs stating that
the battery charge of the vacuum cleaning robot zv needs to
be between 0 and 100 % of its full charge at all the times:

zv battery charge � 0 always (2)
zv battery charge  100 always (3)

For a home hi, we denote with R
[ta!tb]
p a scheduling rule

over a state property p2PH [PZ , and time interval [ta, tb].
Each scheduling rule indicates a goal state (either a desired
state of a home if it is an ASR or a required state of a de-
vice or a home if it is a PSR) at a location `Rp

2 Li [Zi

of a particular state property p that must hold over the time
interval [ta, tb] ✓ T. Each rule is associated with a set of
actuators �p ✓ Ai that can be used to reach the goal state.
Additionally, a rule is associated with a sensor sp 2 Si ca-
pable of sensing the state property p. Finally, in a PSRs the
device can also sense its own internal states. More formally,

�p={z2Ai | `z =`Rp
^ 9a 2 Az : p2�

H

z
(a)} (4)

�p={z2Ai | z=`Rp
_`z =`Rp

^9a2Az : p2�
H

z
(a)} (5)

where the former defines ASR and the latter defines a PSR.
The ASR of Equation (1) is illustrated in Figure 2 by dot-

ted red lines on the graph. The PSRs are not shown as they
must hold for all time steps.

Feasibility of Schedules
To ensure that a goal state can be achieved across the de-
sired time window, the system has a predictive model of the
various state properties.

Definition 2 (Predictive Model) A predictive model �p for
a state property p (of either the home or a device) is a func-
tion �p : ⌦p ⇥ "z2�p

Az [ {?} ! ⌦p [ {?}, where ?
denotes an infeasible state and ? + (·) = ?.

In other words, the model describes the transition of state
property p from state !p 2 ⌦p at time step t to time step
t + 1 when it is affected by a set of actuators �p running
joint actions ⇠

t

�p
:

�t+1
p

(!p, ⇠
t

�p
) = !p + �p(!p, ⇠

t

�p
) (6)

where �p(!p, ⇠
t

�p
) is a function describing the effect of the

actuators’ joint action ⇠
t

�p
on state property p.

Example 3 Consider the battery charge state property of
the vacuum cleaning robot zv . Assume it has 65% charge
at time step t and its action is ⇠

t

zv
at that time step. Thus:

�t+1
battery charge

(65, ⇠
t

zv
)=65 + �battery charge(65, ⇠

t

zv
) (7)

�battery charge(!, ⇠
t

zv
) =

8
>><

>>:

min(20, 100�!) if ⇠
t

zv
=charge ^ !<100

�25 if ⇠
t

zv
= run ^ ! > 25

0 if ⇠
t

zv
=stop

? otherwise

(8)

In other words, at each time step, the charge of the battery
will increase by 20% if it is charging until it is fully charged,
decrease by 25% if it is running until it has less than 25%
charge, and no change if it is stopped.

Example 4 Consider the cleanliness state property of a
room, where the only actuator that can affect that state is
a vacuum cleaning robot zv (i.e., �cleanliness = {zv}). As-
sume the room is 0% clean at time step t and the action of
robot zv is ⇠

t

zv
at that time step. Thus:

�t+1
cleanliness

(0, ⇠
t

zv
) = 0 + �cleanliness(0, ⇠

t

zv
) (9)

�cleanliness(!, ⇠
t

zv
)=

⇢
min(15, 100�!) if ⇠

t

zv
= run

0 otherwise
(10)

In other words, at each time step, the cleanliness of the room
will increase by 15% if the robot is running until it is fully
cleaned and no change otherwise.

Using the predictive model, one can recursively call it to
predict the trajectory of a state property p for future time
steps given a schedule of actions of relevant actuators �p.

Definition 3 (Predicted State Trajectory) Given a state
property p, its current state !p at time step ta, and a sched-
ule ⇠

[ta!tb]
�p

of relevant actuators �p, the predicted state tra-

jectory ⇡p(!p, ⇠
[ta!tb]
�p

) of that state property is defined as:

⇡p(!p, ⇠
[ta!tb]
�p

) =

�tb

p
(�tb�1

p
( . . . (�ta

p
(!p, ⇠

ta

�p
), . . .), ⇠

tb�1

�p
), ⇠tb

�p
) (11)

One can verify if a schedule satisfies a scheduling rule
by checking if its predicted state trajectories are within the
set of feasible state trajectories of that rule. Note that each
active and passive scheduling rule defines a set of feasible
state trajectories. For example, the active scheduling rule of
Equation (1) allows all possible state trajectories as long as
the state at time step 1800 is no smaller than 75. We use
Rp[t] ✓ ⌦p to denote the set of states that are feasible ac-
cording to rule Rp of state property p at time step t.

More formally, a schedule ⇠
[ta!tb]
�p

satisfies a scheduling

rule R
[ta!tb]
p (written as ⇠

[ta!tb]
�p

|= R
[ta!tb]
p ) iff:

8t 2 [ta, tb] : ⇡p(!
ta

p
, ⇠

[ta!t]
�p

) 2 Rp[t] (12)

where !
ta

p
is the state of state property p at time step ta.

Definition 4 (Feasible Schedule) A schedule is feasible if it
satisfies all the passive and active scheduling rules of each
home in the SHDS problem.

The predicted state trajectories of the battery charge and
cleanliness state properties following Equations (7) and (9)
are shown in the second and third rows of Figure 2. These
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Example 2 The scheduling rule (1) describes an ASR
defining a goal state where the living room floor is at least
75% clean (i.e., at least 75% of the floor is cleaned by a
vacuum cleaning robot) by 1800 hrs:

living room cleanliness � 75 before 1800 (1)

and scheduling rules (2) and (3) describe PSRs stating that
the battery charge of the vacuum cleaning robot zv needs to
be between 0 and 100 % of its full charge at all the times:

zv battery charge � 0 always (2)
zv battery charge  100 always (3)

For a home hi, we denote with R
[ta!tb]
p a scheduling rule

over a state property p2PH [PZ , and time interval [ta, tb].
Each scheduling rule indicates a goal state (either a desired
state of a home if it is an ASR or a required state of a de-
vice or a home if it is a PSR) at a location `Rp

2 Li [Zi

of a particular state property p that must hold over the time
interval [ta, tb] ✓ T. Each rule is associated with a set of
actuators �p ✓ Ai that can be used to reach the goal state.
Additionally, a rule is associated with a sensor sp 2 Si ca-
pable of sensing the state property p. Finally, in a PSRs the
device can also sense its own internal states. More formally,

�p={z2Ai | `z =`Rp
^ 9a 2 Az : p2�

H

z
(a)} (4)

�p={z2Ai | z=`Rp
_`z =`Rp

^9a2Az : p2�
H

z
(a)} (5)

where the former defines ASR and the latter defines a PSR.
The ASR of Equation (1) is illustrated in Figure 2 by dot-

ted red lines on the graph. The PSRs are not shown as they
must hold for all time steps.

Feasibility of Schedules
To ensure that a goal state can be achieved across the de-
sired time window, the system has a predictive model of the
various state properties.

Definition 2 (Predictive Model) A predictive model �p for
a state property p (of either the home or a device) is a func-
tion �p : ⌦p ⇥ "z2�p

Az [ {?} ! ⌦p [ {?}, where ?
denotes an infeasible state and ? + (·) = ?.

In other words, the model describes the transition of state
property p from state !p 2 ⌦p at time step t to time step
t + 1 when it is affected by a set of actuators �p running
joint actions ⇠

t

�p
:

�t+1
p

(!p, ⇠
t

�p
) = !p + �p(!p, ⇠

t

�p
) (6)

where �p(!p, ⇠
t

�p
) is a function describing the effect of the

actuators’ joint action ⇠
t

�p
on state property p.

Example 3 Consider the battery charge state property of
the vacuum cleaning robot zv . Assume it has 65% charge
at time step t and its action is ⇠

t

zv
at that time step. Thus:

�t+1
battery charge

(65, ⇠
t

zv
)=65 + �battery charge(65, ⇠

t

zv
) (7)

�battery charge(!, ⇠
t

zv
) =

8
>><

>>:

min(20, 100�!) if ⇠
t

zv
=charge ^ !<100

�25 if ⇠
t

zv
= run ^ ! > 25

0 if ⇠
t

zv
=stop

? otherwise

(8)

In other words, at each time step, the charge of the battery
will increase by 20% if it is charging until it is fully charged,
decrease by 25% if it is running until it has less than 25%
charge, and no change if it is stopped.

Example 4 Consider the cleanliness state property of a
room, where the only actuator that can affect that state is
a vacuum cleaning robot zv (i.e., �cleanliness = {zv}). As-
sume the room is 0% clean at time step t and the action of
robot zv is ⇠

t

zv
at that time step. Thus:

�t+1
cleanliness

(0, ⇠
t

zv
) = 0 + �cleanliness(0, ⇠

t

zv
) (9)

�cleanliness(!, ⇠
t

zv
)=

⇢
min(15, 100�!) if ⇠

t

zv
= run

0 otherwise
(10)

In other words, at each time step, the cleanliness of the room
will increase by 15% if the robot is running until it is fully
cleaned and no change otherwise.

Using the predictive model, one can recursively call it to
predict the trajectory of a state property p for future time
steps given a schedule of actions of relevant actuators �p.

Definition 3 (Predicted State Trajectory) Given a state
property p, its current state !p at time step ta, and a sched-
ule ⇠

[ta!tb]
�p

of relevant actuators �p, the predicted state tra-

jectory ⇡p(!p, ⇠
[ta!tb]
�p

) of that state property is defined as:

⇡p(!p, ⇠
[ta!tb]
�p

) =

�tb

p
(�tb�1

p
( . . . (�ta

p
(!p, ⇠

ta

�p
), . . .), ⇠

tb�1

�p
), ⇠tb

�p
) (11)

One can verify if a schedule satisfies a scheduling rule
by checking if its predicted state trajectories are within the
set of feasible state trajectories of that rule. Note that each
active and passive scheduling rule defines a set of feasible
state trajectories. For example, the active scheduling rule of
Equation (1) allows all possible state trajectories as long as
the state at time step 1800 is no smaller than 75. We use
Rp[t] ✓ ⌦p to denote the set of states that are feasible ac-
cording to rule Rp of state property p at time step t.

More formally, a schedule ⇠
[ta!tb]
�p

satisfies a scheduling

rule R
[ta!tb]
p (written as ⇠

[ta!tb]
�p

|= R
[ta!tb]
p ) iff:

8t 2 [ta, tb] : ⇡p(!
ta

p
, ⇠

[ta!t]
�p

) 2 Rp[t] (12)

where !
ta

p
is the state of state property p at time step ta.

Definition 4 (Feasible Schedule) A schedule is feasible if it
satisfies all the passive and active scheduling rules of each
home in the SHDS problem.

The predicted state trajectories of the battery charge and
cleanliness state properties following Equations (7) and (9)
are shown in the second and third rows of Figure 2. These
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in exact multiples of time intervals), respectively, of device
2 Zi.
The energy consumption of each device

lution approaches in Section 6. An SBDS problem is com-
of smart buildings hi

are able to communicate with one another and whose energy

How to schedule smart devices to satisfy 
the user preferences while  
1) minimizing energy costs and  
2) reducing peaks in load demand?

Assumptions: Each home have communication and 
controllable load capabilities.

Ferdinando Fioretto, William Yeoh, Enrico Pontelli. "A Multiagent System Approach to Scheduling Devices in Smart Homes". AAMAS, 2017. 
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Figure 1: Example DCOP

A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�
t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi

�
t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi

�
t
zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H

↵c · C
t
i + ↵u · U

t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:

1  szj  T � �zj 8hi 2 H, zj 2 Zi (5)
X

t2T

�
t
zj = �zj 8hi 2 H, zj 2 Zi (6)

X

hi2H

P
t
i  `

t
8t 2 T (7)
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Figure 1: Example DCOP

A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�
t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi

�
t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi

�
t
zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H

↵c · C
t
i + ↵u · U

t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:

1  szj  T � �zj 8hi 2 H, zj 2 Zi (5)
X

t2T

�
t
zj = �zj 8hi 2 H, zj 2 Zi (6)

X

hi2H

P
t
i  `

t
8t 2 T (7)T

Ci

Ui

Agents
Variables
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A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�
t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi

�
t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi

�
t
zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H

↵c · C
t
i + ↵u · U

t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:
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A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:
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t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi
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t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi
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t
zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T
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hi2H

↵c · C
t
i + ↵u · U

t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:
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Action State property Power (kW/h)

run cleanliness, 
battery charge

0.0

charge battery charge 0.26

stop 0.0
Example 2 The scheduling rule (1) describes an ASR
defining a goal state where the living room floor is at least
75% clean (i.e., at least 75% of the floor is cleaned by a
vacuum cleaning robot) by 1800 hrs:

living room cleanliness � 75 before 1800 (1)

and scheduling rules (2) and (3) describe PSRs stating that
the battery charge of the vacuum cleaning robot zv needs to
be between 0 and 100 % of its full charge at all the times:

zv battery charge � 0 always (2)
zv battery charge  100 always (3)

For a home hi, we denote with R
[ta!tb]
p a scheduling rule

over a state property p2PH [PZ , and time interval [ta, tb].
Each scheduling rule indicates a goal state (either a desired
state of a home if it is an ASR or a required state of a de-
vice or a home if it is a PSR) at a location `Rp

2 Li [Zi

of a particular state property p that must hold over the time
interval [ta, tb] ✓ T. Each rule is associated with a set of
actuators �p ✓ Ai that can be used to reach the goal state.
Additionally, a rule is associated with a sensor sp 2 Si ca-
pable of sensing the state property p. Finally, in a PSRs the
device can also sense its own internal states. More formally,

�p={z2Ai | `z =`Rp
^ 9a 2 Az : p2�

H

z
(a)} (4)

�p={z2Ai | z=`Rp
_`z =`Rp

^9a2Az : p2�
H

z
(a)} (5)

where the former defines ASR and the latter defines a PSR.
The ASR of Equation (1) is illustrated in Figure 2 by dot-

ted red lines on the graph. The PSRs are not shown as they
must hold for all time steps.

Feasibility of Schedules
To ensure that a goal state can be achieved across the de-
sired time window, the system has a predictive model of the
various state properties.

Definition 2 (Predictive Model) A predictive model �p for
a state property p (of either the home or a device) is a func-
tion �p : ⌦p ⇥ "z2�p

Az [ {?} ! ⌦p [ {?}, where ?
denotes an infeasible state and ? + (·) = ?.

In other words, the model describes the transition of state
property p from state !p 2 ⌦p at time step t to time step
t + 1 when it is affected by a set of actuators �p running
joint actions ⇠

t

�p
:

�t+1
p

(!p, ⇠
t

�p
) = !p + �p(!p, ⇠

t

�p
) (6)

where �p(!p, ⇠
t

�p
) is a function describing the effect of the

actuators’ joint action ⇠
t

�p
on state property p.

Example 3 Consider the battery charge state property of
the vacuum cleaning robot zv . Assume it has 65% charge
at time step t and its action is ⇠

t

zv
at that time step. Thus:

�t+1
battery charge

(65, ⇠
t

zv
)=65 + �battery charge(65, ⇠

t

zv
) (7)

�battery charge(!, ⇠
t

zv
) =

8
>><

>>:

min(20, 100�!) if ⇠
t

zv
=charge ^ !<100

�25 if ⇠
t

zv
= run ^ ! > 25

0 if ⇠
t

zv
=stop

? otherwise

(8)

In other words, at each time step, the charge of the battery
will increase by 20% if it is charging until it is fully charged,
decrease by 25% if it is running until it has less than 25%
charge, and no change if it is stopped.

Example 4 Consider the cleanliness state property of a
room, where the only actuator that can affect that state is
a vacuum cleaning robot zv (i.e., �cleanliness = {zv}). As-
sume the room is 0% clean at time step t and the action of
robot zv is ⇠

t

zv
at that time step. Thus:

�t+1
cleanliness

(0, ⇠
t

zv
) = 0 + �cleanliness(0, ⇠

t

zv
) (9)

�cleanliness(!, ⇠
t

zv
)=

⇢
min(15, 100�!) if ⇠

t

zv
= run

0 otherwise
(10)

In other words, at each time step, the cleanliness of the room
will increase by 15% if the robot is running until it is fully
cleaned and no change otherwise.

Using the predictive model, one can recursively call it to
predict the trajectory of a state property p for future time
steps given a schedule of actions of relevant actuators �p.

Definition 3 (Predicted State Trajectory) Given a state
property p, its current state !p at time step ta, and a sched-
ule ⇠

[ta!tb]
�p

of relevant actuators �p, the predicted state tra-

jectory ⇡p(!p, ⇠
[ta!tb]
�p

) of that state property is defined as:

⇡p(!p, ⇠
[ta!tb]
�p

) =

�tb

p
(�tb�1

p
( . . . (�ta

p
(!p, ⇠

ta

�p
), . . .), ⇠

tb�1

�p
), ⇠tb

�p
) (11)

One can verify if a schedule satisfies a scheduling rule
by checking if its predicted state trajectories are within the
set of feasible state trajectories of that rule. Note that each
active and passive scheduling rule defines a set of feasible
state trajectories. For example, the active scheduling rule of
Equation (1) allows all possible state trajectories as long as
the state at time step 1800 is no smaller than 75. We use
Rp[t] ✓ ⌦p to denote the set of states that are feasible ac-
cording to rule Rp of state property p at time step t.

More formally, a schedule ⇠
[ta!tb]
�p

satisfies a scheduling

rule R
[ta!tb]
p (written as ⇠

[ta!tb]
�p

|= R
[ta!tb]
p ) iff:

8t 2 [ta, tb] : ⇡p(!
ta

p
, ⇠

[ta!t]
�p

) 2 Rp[t] (12)

where !
ta

p
is the state of state property p at time step ta.

Definition 4 (Feasible Schedule) A schedule is feasible if it
satisfies all the passive and active scheduling rules of each
home in the SHDS problem.

The predicted state trajectories of the battery charge and
cleanliness state properties following Equations (7) and (9)
are shown in the second and third rows of Figure 2. These

Hard constraints
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Figure 1: Example DCOP

A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�
t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi

�
t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi

�
t
zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H

↵c · C
t
i + ↵u · U

t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:

1  szj  T � �zj 8hi 2 H, zj 2 Zi (5)
X

t2T

�
t
zj = �zj 8hi 2 H, zj 2 Zi (6)

X

hi2H

P
t
i  `

t
8t 2 T (7)
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costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all
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x⇤ = argminx FP(x).
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interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:
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t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X
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is the aggregate power consumed by building hi at time step
t. The discomfort value µ
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zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:
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t
i =
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zj2Zi
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zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H

↵c · C
t
i + ↵u · U

t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:

1  szj  T � �zj 8hi 2 H, zj 2 Zi (5)
X

t2T

�
t
zj = �zj 8hi 2 H, zj 2 Zi (6)
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t
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• Decentralized decision making difficult due to:


• Large number of interacting entities

• Can we use decomposition techniques 

to reduce the amount of interactions?

• Can we create hierarchical models to 

increase parallelism and efficiency? 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Efficient Problem Decompositions and GPU Parallelization (AAMAS 2014)

• Agents subproblems are solved using Sampling algorithms.
• We use GPGPUs to parallelize the sampling operations.
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DYNAMIC ENVIRONMENT

• Interaction in a dynamic environment is required to be robust to 
several changes 

• How do agents respond to dynamic changes?

• Can we study adaptive algorithms so that the MAS interaction is 

resilient and adaptive to changes in the communication layer, the 
underlying constraint graph, etc.?
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AGENT PREFERENCES

• How to model, learn, and update agent preferences?

• Agent’s preferences are assumed to be available. This is not 

always feasible. How to efficiently elicit agents’ preferences?

• When full elicitation is not possible, how to adaptively learn the 

preference of an agent?
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