
MULTI-AGENT DISTRIBUTED
CONSTRAINED OPTIMIZATION

Ferdinando Fioretto

University of Michigan

AAAI-18 Tutorial on:

William Yeoh

Washington University in St. Louis

Roie Zivan

Ben-Gurion University of the Negev

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SCHEDULE

• 11:20am: Preliminaries

• 11:40am: DCOP Algorithms

• 12:20pm: DCOP Extensions

• 12:30pm: Applications

• 12:50pm: Challenges and Open Questions

• 1:00pm: Done! Lunch? :)

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

LIL’ BIT OF SHAMELESS
PROMOTION :)

• Tutorial materials are based on our recent JAIR survey paper: 
 
Ferdinando Fioretto, Enrico Pontelli, and William Yeoh.  
Distributed Constraint Optimization Problems and Applications: A Survey. 
Journal of Artificial Intelligence Research (JAIR), to appear, 2018. 

• Includes more models, algorithms, and applications.

• Also available on arXiv.

PRELIMINARIES
AAAI-18 Tutorial on  

Multi-Agent Distributed Constrained Optimization

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

MOTIVATING DOMAIN:  
SENSOR NETWORK

5

x1

x5

x3

x2

x6

x4

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

MOTIVATING DOMAIN:  
SENSOR NETWORK

6

x1

x5

x3

x2

x6

x4

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

x1

x5

x3

x2

x6

x4

MOTIVATING DOMAIN:  
SENSOR NETWORK

7

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

MOTIVATING DOMAIN:  
SENSOR NETWORK

8

x1

x5

x3

x2

x6

x4

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

MOTIVATING DOMAIN:  
SENSOR NETWORK

9

x1

x5

x3

x2

x6

x4

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

MOTIVATING DOMAIN:  
SENSOR NETWORK

10

x1

x5

x3

x2

x6

x4

x1 x3 x5 Sat?

N N N X

N N E X

... X

S W N ✓

... X

W W W X

Model the problem as a  
CSP

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

MOTIVATING DOMAIN:  
SENSOR NETWORK

11

x1

x5

x3

x2

x6

x4

x1 x3 x5 Sat?

N N N X

N N E X

... X

S W N ✓

... X

W W W X

Model the problem as a  
CSP

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

CSP

CONSTRAINT SATISFACTION

12

• Variables

• Domains

• Constraints 

where a constraint  
denotes the possible valid joint assignments for the
variables it involves

• GOAL: Find an assignment to all variables that satisfies
all the constraints

ci ✓ Di1 ⇥Di2 ⇥ . . .⇥Din

X = {x1, . . . , xn}

C = {c1, . . . , cm}

xi1 , xi2 , . . . , xin

D = {D1, . . . , Dn}

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

CSP

CONSTRAINT SATISFACTION

13

x1

x5

x3

x1 x3 x5 Sat?

N N N X

N N E X

... X

S W N ✓

... X

W W W X

Model the problem as a  
CSP

x2

x6

x4

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

MAX-CSP

MAX CONSTRAINT SATISFACTION

14

x1

x5

x3

x1 x3 x5 Sat?

N N N X

N N E X

... X

S W N ✓

... X

W W W X

Model the problem as a  
Max-CSP

x2

x6

x4

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

MAX-CSP

MAX CONSTRAINT SATISFACTION

15

• Variables

• Domains

• Constraints 

where a constraint  
denotes the possible valid joint assignments for the
variables it involves

• GOAL: Find an assignment to all variables that satisfies
a maximum number of constraints

ci ✓ Di1 ⇥Di2 ⇥ . . .⇥Din

X = {x1, . . . , xn}

C = {c1, . . . , cm}

xi1 , xi2 , . . . , xin

D = {D1, . . . , Dn}

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

MAX-CSP

MAX CONSTRAINT SATISFACTION

16

x1

x5

x3

x1 x3 x5 Sat?

N N N X

N N E X

... X

S W N ✓

... X

W W W X

Model the problem as a  
Max-CSP

x2

x6

x4

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

WCSP (COP)

CONSTRAINT OPTIMIZATION

17

x1 x3 x5 Cost

N N N ∞

N N E ∞

... ∞

S W N 10

... ∞

W W W ∞

Model the problem as a  
COP

x1

x5

x3

x2

x6

x4

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

WCSP (COP)

CONSTRAINT OPTIMIZATION

18

• Variables

• Domains

• Constraints 

where a constraint  
expresses the degree of constraint violation 

• GOAL: Find an assignment that minimizes the sum of
the costs of all the constraints

X = {x1, . . . , xn}

C = {c1, . . . , cm}
D = {D1, . . . , Dn}

ci : Di1 ⇥ . . .⇥Din ! R+ [{1}

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

WCSP (COP)

CONSTRAINT OPTIMIZATION

19

CSP Max-
CSP

• Objective: maximize
#constraints satisfied

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

WCSP (COP)

CONSTRAINT OPTIMIZATION

20

CSP Max-
CSP

• Hard constraints to  
Soft constraints

• Objective: minimize cost
COP

• Objective: maximize
#constraints satisfied

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

WCSP (COP)

CONSTRAINT OPTIMIZATION

21

x1

x5

x3

x2

x6

x4

x1 x3 x5 Cost

N N N ∞

N N E ∞

... ∞

S E W 10

... ∞

W W W ∞

Imagine that each
sensor is an

autonomous agent.

How should this problem
be modeled and solved

in a decentralized
manner?

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

MULTI-AGENT SYSTEMS

22

• Agent: An entity that behaves autonomously in the pursuit of goals

• Multi-agent system: A system of multiple interacting agents

• An agent is:

• Autonomous: Is of full control of itself

• Interactive: May communicate with other agents

• Reactive: Responds to changes in the 

environment or requests by other agents

• Proactive: Takes initiatives to achieve its goals

a2

a1

a2

a4

? ?

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

MULTI-AGENT SYSTEMS

23

Constraint	
Programming

Game	
Theory

Decision	
Theory

DCOP

Auctions;
GamesDec-MDP;

Dec-POMDP

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DCOP

DISTRIBUTED CONSTRAINT OPTIMIZATION

24

x1

x5

x3

x2

x6

x4

x1 x3 x5 Cost

N N N ∞

N N E ∞

... ∞

S E W 10

... ∞

W W W ∞

Imagine that each
sensor is an

autonomous agent.

How should this problem
be modeled and solved

in a decentralized
manner?

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

a6

a4

a2

a5

a3

a1

DCOP

DISTRIBUTED CONSTRAINT OPTIMIZATION

25

x1

x5

x3

x2

x6

x4

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

a3

a6

a4

a2

a5

a1

DCOP

DISTRIBUTED CONSTRAINT OPTIMIZATION

26

x2

x6

x4

x1

x5

x3
c1 c2

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DCOP

DISTRIBUTED CONSTRAINT OPTIMIZATION

27

• Agents

• Variables

• Domains

• Constraints

• Mapping of variables to agents 

• GOAL: Find an assignment that minimizes the sum of
the costs of all the constraints

X = {x1, . . . , xn}

C = {c1, . . . , cm}
D = {D1, . . . , Dn}

A = {ai, . . . , an}

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

• Hard constraints to  
Soft constraints

• Objective: minimize cost

DCOP

DISTRIBUTED CONSTRAINT OPTIMIZATION

28

CSP Max-
CSP

COP

• Objective: maximize
#constraints satisfied

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DCOP

DISTRIBUTED CONSTRAINT OPTIMIZATION

29

CSP Max-
CSP

COP

• Variables are controlled
by agents

• Communication model

• Local agents’ knowledge

DCOP

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DCOP

DISTRIBUTED CONSTRAINT OPTIMIZATION

• Why distributed models?

• Natural mapping for multi-agent systems

• Potentially faster by exploiting parallelism

• Potentially more robust: no single point of failure, no single

network bottleneck

• Maintains more private information
• ...

30

DCOP ALGORITHMS
AAAI-18 Tutorial on  

Multi-Agent Distributed Constrained Optimization

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DCOP ALGORITHMS

Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DCOP ALGORITHMS
• Important Metrics: 

• Agent complexity

• Network loads

• Message size

Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DCOP ALGORITHMS
• Important Metrics: 

• Agent complexity

• Network loads

• Message size 

 

• Anytime

• Quality guarantees

• Execution time vs.  

solution quality

Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DCOP ALGORITHMS

• Systematic process, divided in
steps.

• Each agent waits for
particular messages before
acting

• Consistent view of the
search process

• Typically, increases idle-time

Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DCOP ALGORITHMS

• Decision based on agents’
local state

• Agents’ actions do not
depend on sequence of
received messages

• Minimizes idle-time

• No guarantees on validity of

local views

Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DCOP ALGORITHMS

Synchronous Branch and
Bound (SBB)

Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

38

C

A

B

D

xi xj
Cost 
(A,B)

Cost 
(A,C)

Cost 
(B,C)

Cost 
(B,D)

5 5 5 3

8 10 4 8

20 20 3 10

3 3 3 3

{ }

{ }
{ }

{ }

Katsutoshi Hirayama, Makoto Yokoo: Distributed Partial Constraint Satisfaction Problem. CP 1997: 222-236

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

39

C

A

B

D

xi xj
Cost 
(A,B)

Cost 
(A,C)

Cost 
(B,C)

Cost 
(B,D)

5 5 5 3

8 10 4 8

20 20 3 10

3 3 3 3

{ }

{ }
{ }

{ }

How do we solve this distributedly?

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

40

A

C

B

Complete Ordering

D

{ }

{ }

{ }

{ }

• Agents operate on a
complete ordering

• Agents exchange CPA
messages containing partial
assignments.

• When a solution is found, its
solution cost as an UB is
broadcasted to all agents.

• The UB is used for branch
pruning.

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

41

A

B

C

D D

C

D D

B

C

D D

C

D D

A

B

C

D D

C

D D

A

B

C

D

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

42

0

0

UB = infinity

A

B

C

D

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

43

0

0

5

UB = infinity

A

B

C

D

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

44

0

0

5

15

UB = infinity

A

B

C

D

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

45

0

0

5

15

18

UB = 18

A

B

C

D

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

46

0

0

5

15

18 23

UB = 18

A

B

C

D

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

47

0

0

5

15

18 23

UB = 18

A

B

C

D

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

48

0

0

5

15

18 23

19

UB = 18

A

B

C

D

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

49

0

0

5

15

18 23

19

UB = 18

A

B

C

D

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

50

0

0

5

15

18 23

19

8

UB = 18

A

B

C

D

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

51

0

0

5

15

18 23

19

8

16

UB = 18

A

B

C

D

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

52

0

0

5

15

18 23

19

8

16

26

UB = 18

A

B

C

D

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

53

0

0

5

15

18 23

19

8

16

26

UB = 18

...

A

B

C

D

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

54

SBB
Correct

the solution it finds is optimal
Yes

Complete

it terminates

Yes
Message Complexity

max size of a message 
O(d)

Network Load

max number of messages 

O(bd)

Runtime  O(bd)

branching factor = b
num variables = d

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

55

0

0

5

15

18 23

19

22 27

8

16

26 19

21

31 24

0

20

45

48 51

27

30 35

A

B

C

D

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

56

0

0

5

15

18 23

19

22 27

8

16

26 19

21

31 24

0

20

43

46 51

27

30 35

A

B

C

D

Can we speed this up by parallelizing some
computations?

Hint: Are there independent or  
conditionally independent subproblems?

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

57

0

0

5

15

18 23

19

22 27

8

16

26 19

21

31 24

0

20

45

48 51

27

30 35

A

B

C

D

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

58

0

0

5

10

3 8

14

3 8

8

8

10 3

13

10 3

0

20

25

3 8

7

3 8

A

B

C

D

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SBB

59

0

0

5

10

3 8

14

3 8

8

8

10 3

13

10 3

0

20

25

3 8

7

3 8

These computations are the
same; independent of C!

A

B

C

D

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

PSEUDO-TREE

60

C

A

B

D

{ }

{ }
{ }

{ }
C

B

A

D

{ }

{ }

{ } { }
Definition: A spanning tree of the constraint
graph such that no two nodes in sibling subtrees
share a constraint in the constraint graph

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DCOP ALGORITHMS

Distributed Pseudotree
Optimization Procedure

(DPOP)
Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DPOP

• Extension of the Bucket
Elimination (BE)

• Agents operate on a pseudo-
tree ordering

• UTIL phase: Leaves to root

• VALUE phase: Root to leaves

VALUE

UTIL
C

B

A

D

{ }

{ }

{ } { }

Pseudo-tree Ordering

Adrian Petcu, Boi Faltings: A Scalable Method for Multiagent Constraint Optimization. IJCAI 2005: 266-271

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DPOP

UTIL
C

B

A

D

{ }

{ }

{ } { }

Pseudo-tree Ordering

B D (B,D)
r r 3
r g 8
g r 10
g g 3

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DPOP

UTIL
C

B

A

D

{ }

{ }

{ } { }

Pseudo-tree Ordering

B D (B,D)
r r 3
r g 8
g r 10
g g 3

B cost
r 3
g 3

MSG to B

min{3, 8} = 3

min{10, 3} = 3

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DPOP

UTIL
C

B

A

D

{ }

{ }

{ } { }

Pseudo-tree Ordering
A B C (B,C) (A,C)

r r r 5 5 10
r r g 4 8 12
r g r 3 5 8
r g g 3 8 11
g r r 5 10 15
g r g 4 3 7
g g r 3 10 13
g g g 3 3 6

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DPOP

UTIL
C

B

A

D

{ }

{ }

{ } { }

Pseudo-tree Ordering
A B C (B,C) (A,C)

r r r 5 5 10
r r g 4 8 12
r g r 3 5 8
r g g 3 8 11
g r r 5 10 15
g r g 4 3 7
g g r 3 10 13
g g g 3 3 6

A B
r r 10
r g 8
g r 7
g g 6

MSG to B

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DPOP

UTIL
C

B

A

D

{ }

{ }

{ } { }

Pseudo-tree Ordering

A B (A,B) Util
C

Util
D

r r 5 10 3 18

r g 8 8 3 19

g r 20 7 3 30

g g 3 6 3 12

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DPOP

UTIL
C

B

A

D

{ }

{ }

{ } { }

Pseudo-tree Ordering

A B (A,B) Util
C

Util
D

r r 5 10 3 18

r g 8 8 3 19

g r 20 7 3 30

g g 3 6 3 12

A cost
r 18
g 12

MSG to A

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DPOP

UTIL
C

B

A

D

{ }

{ }

{ } { }

Pseudo-tree Ordering

A cost
r 18
g 12

optimal cost = 12

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DPOP

C

B

A

D

{ }

{ }

{ } { }

Pseudo-tree Ordering

A cost
r 18
g 12

VALUE

•Select value for A = ‘g’

•Send MSG A = ‘g’ to  

agents B and C

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DPOP

C

B

A

D

{ }

{ }

{ } { }

Pseudo-tree Ordering

A B (A,B) Util
C

Util
D

r r 5 10 3 18

r g 8 8 3 19

g r 20 7 3 30

g g 3 6 3 12

VALUE

•Select value for B = ‘g’

•Send MSG B = ‘g’ to  

agents C and D

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DPOP

C

B

A

D

{ }

{ }

{ } { }

Pseudo-tree OrderingA B C (B,C) (A,C)

r r r 5 5 10
r r g 4 8 12
r g r 3 5 8
r g g 3 8 11
g r r 5 10 15
g r g 4 3 7
g g r 3 10 13
g g g 3 3 6

VALUE

•Select value for C = ‘g’

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DPOP

C

B

A

D

{ }

{ }

{ } { }

Pseudo-tree Ordering

VALUE
B D (B,D)
r r 3
r g 8
g r 10
g g 3

•Select value for D = ‘g’

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DPOP

74

SBB DPOP
Correct

the solution it finds is optimal
Yes Yes

Complete

it terminates

Yes Yes
Message Complexity

max size of a message 
O(d) O(bd)

Network Load

max number of messages 

O(bd) O(d)
Runtime  O(bd) O(bd)

branching factor = b
num variables = d

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

CRITICAL OVERVIEW
Search Algorithms Inference Algorithms

increasing memory
polynomial exponential

decreasing network load

polynomialexponential

75

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DCOP ALGORITHMS

Distributed Local Search

Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous

76

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

• DSA: Distributed Stochastic Algorithm

• MGM: Maximum Gain Messages Algorithm

• Note: We now maximize utilities

LOCAL SEARCH ALGORITHMS

77

BA C

xi xj
Utility 
(A,B)

Utility 
(B,C)

5 5

0 0

0 0

8 8{ }{ } { }

Weixiong Zhang, Guandong Wang, Zhao Xing, Lars Wittenburg: Distributed stochastic search and distributed breakout: properties, comparison and
applications to constraint optimization problems in sensor networks. Artif. Intell. 161(1-2): 55-87 (2005)

Rajiv Maheswaran, Jonathan Pearce, Milind Tambe: Distributed Algorithms for DCOP: A Graphical-Game-Based Approach. ISCA PDCS 2004: 432-439

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

LOCAL SEARCH ALGORITHMS

• DSA: Distributed Stochastic Algorithm

• MGM: Maximum Gain Messages Algorithm

• Every agent individually decides whether to change its value or not

• Decision involves

• knowing neighbors’ values

• calculation of utility gain by changing values

• probabilities

78

Weixiong Zhang, Guandong Wang, Zhao Xing, Lars Wittenburg: Distributed stochastic search and distributed breakout: properties, comparison and
applications to constraint optimization problems in sensor networks. Artif. Intell. 161(1-2): 55-87 (2005)

Rajiv Maheswaran, Jonathan Pearce, Milind Tambe: Distributed Algorithms for DCOP: A Graphical-Game-Based Approach. ISCA PDCS 2004: 432-439

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DSA ALGORITHM

• All agents execute the following

• Randomly choose a value

• while (termination is not met)

• if (a new value is assigned)

• send the new value to neighbors

• collect neighbors’ new values if any

• select and assign the next value based on assignment rule

79

Weixiong Zhang, Guandong Wang, Zhao Xing, Lars Wittenburg: Distributed stochastic search and distributed breakout: properties, comparison and
applications to constraint optimization problems in sensor networks. Artif. Intell. 161(1-2): 55-87 (2005)

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DSA ALGORITHM

80

BA C

xi xj
Utility 
(A,B)

Utility 
(B,C)

5 5

0 0

0 0

8 8

{ }{ } { }

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DSA ALGORITHM

81

BA C
U=0

xi xj
Utility 
(A,B)

Utility 
(B,C)

5 5

0 0

0 0

8 8

U=0

U=0, Δ=0

U=8, Δ=8

U=10, Δ=10

U=0, Δ=0

U=0, Δ=0

U=8, Δ=8

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DSA ALGORITHM

82

BA C
U=8

xi xj
Utility 
(A,B)

Utility 
(B,C)

5 5

0 0

0 0

8 8

U=0

U=0, Δ=-8

U=0, Δ=0

U=10, Δ=2

U=8, Δ=0

U=0, Δ=0

U=8, Δ=8

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DSA ALGORITHM

83

BA C
U=0

xi xj
Utility 
(A,B)

Utility 
(B,C)

5 5

0 0

0 0

8 8

U=0

U=5, Δ=5

U=0, Δ=0

U=0, Δ=0

U=16, Δ=16

U=5, Δ=5

U=0, Δ=0

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DSA ALGORITHM

84

BA C
U=8

xi xj
Utility 
(A,B)

Utility 
(B,C)

5 5

0 0

0 0

8 8

U=8

U=0, Δ=-8

U=8, Δ=0

U=0, Δ=-16

U=16, Δ=0

U=0, Δ=-8

U=8, Δ=0

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DSA ALGORITHM

85

BA C
U=0

xi xj
Utility 
(A,B)

Utility 
(B,C)

5 5

0 0

0 0

8 8

U=0

BA C
U=8 U=0

BA C
U=0 U=0

BA C
U=8 U=8

One possible execution trace

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

MGM ALGORITHM

• All agents execute the following

• Randomly choose a value

• while (termination is not met)

• if (a new value is assigned)

• send the new value to neighbors

• collect neighbors’ new values if any

• calculate gain and send it to neighbors

• collect neighbors’ gains

• if (it has the highest gain among all neighbors)

• change value to the value that maximizes gain

86

Rajiv Maheswaran, Jonathan Pearce, Milind Tambe: Distributed Algorithms for DCOP: A Graphical-Game-Based Approach. ISCA PDCS 2004: 432-439

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

MGM ALGORITHM

• All agents execute the following

• Randomly choose a value

• while (termination is not met)

• if (a new value is assigned)

• send the new value to neighbors

• collect neighbors’ new values if any

• calculate gain and send it to neighbors

• collect neighbors’ gains

• if (it has the highest gain among all neighbors)

• change value to the value that maximizes gain

87

Figure 1: Sample Trajectories of MGM and DSA for a
High-Stakes Scenario

5 Algorithms with Coordination

When applying algorithms without coordination, the
evolution of the assignments will terminate at a Nash equi-
librium point within the set XNE described earlier. One
method to improve the solution quality is for agents to co-
ordinate actions with their neighbors. This allows the evo-
lution to follow a richer space of trajectories and alters the
set of terminal assignments. In this section we introduce
two 2-coordinated algorithms, where agents can coordi-
nate actions with one other agent. Let us refer to the set
of terminal states of the class of 2-coordinated algorithms
as X2E , i.e. neither a unilateral nor a bilateral modifica-
tion of values will increase sum of all constraint utilities
connected to the acting agent(s) if x 2 X2E . Clearly the
terminal states of a coordinated algorithm will depend on
what metric the coordinating agents will use to determine
if a particular joint action is acceptable or not. In a team
setting (and in our analysis), a joint action that increases
the sum of the utilities of the acting agents is considered
acceptable, even if a single agent may see a loss in utility.
This would be true in a purely selfish environment as well,
if agents could compensate each other for possible losses
in utility. An alternative choice would be to make a joint
action acceptable only if both agents see utility gains. We
consider the former notion of an acceptable joint action and
define the terminal states as follows:

X2E =
⇢
x̂ : (x̂i, x̂ j) = arg max

(xi,x j)

�
ui(xi; µ�i(x j, x̂�i j))

+u j(x j; µ� j(xi, x̂� ji))

, 8i, j 2 N , i , j

�

where x�i j is a tuple consisting of all values of variables ex-
cept the i-th and j-th variable, and µ�i(x j, x� ji) is a function
that converts its arguments into an appropriate vector of the
form of x�i described earlier, i.e. µ�i takes values from the
variables indexed by { j}[�N \{i[j} to a vector composed
of the variables indexed by N�i.

Proposition 3 For a given DCOP (X, E,U) and its equiv-
alent game (X, E, u), we have X2E ✓ XNE.

Proof. We show this by proving the contrapositive.
Suppose x < XNE . Then, there exists a variable i such
that ui(x̂i; x�i) > ui(xi; x�i) for some x̂i , xi. This further
implies that there exists some variable j 2 Ni, for which
Ui j(x̂i, x j) > Ui j(xi, x j). We then have ui(x̂i; µ�i(x j, x�i j)) >
ui(xi; µ�i(x j, x�i j)) and u j(x j; µ� j(x̂i, x� ji)) >
u j(x j; µ� j(xi, x�i j)) which implies that x < X2E . ⌅
Essentially, we are saying that a unilateral move which

improves the utility of a single agent must improve the con-
straint utility of at least one link which further implies that
the local utility of another agent must also increase given
that the rest of its context remains the same. The interest-
ing phenomenon is that our definition of X2E above is suf-
ficient to capture unilateral and bilateral deviations within
the context of bilateral deviations. This is due to the under-
lying DCOP structure and not true for a general game.
It has been proposed that coordinated actions be

achieved by forming coalitions among variables. In [2],
each coalition was represented by a manager who made
the assignment decisions for all variables within the coali-
tion. These methods inherently undermine the distributed
nature of the decision-making by essentially replacing mul-
tiple variables with a single variable in the graph. It is not
possible in all situations for this to occur because utility
function information and the ability to communicate with
the necessary neighbors may not be transferable (due to
infeasibility or preference). We introduce two algorithms
that allow for coordination while maintaining the underly-
ing distributed decision making process and the same con-
straint graph: MGM-2 (Maximum Gain Message-2) and
SCA-2 (Stochastic Coordination Algorithm-2).
Both MGM-2 and SCA-2 begin a round with agents

broadcasting their current values. The first step in both al-
gorithms is to decide which subset of agents are allowed to
make o↵ers. We resolve this by randomization, as each
agent generates a random number uniformly from [0, 1]
and becomes an o↵erer if the random number is below a
threshold q. If an agent is an o↵erer, it cannot accept of-
fers from other agents. All agents who are not o↵erers are
receivers. Each o↵erer will choose a neighbor at random
(uniformly) and send it an o↵er message consisting of all
coordinated moves between the o↵erer and receiver that
will yield a gain in local utility to the o↵erer under the cur-
rent context. The o↵er message will contain both the sug-
gested values for each player and the o↵erer’s local utility
gain for each value pair. Each receiver will then calculate
the global utility gain for each value pair in the o↵er mes-
sage by adding the o↵erer’s local utility gain to its own
utility change under the new context and subtracting the
di↵erence in the link between the two so it is not counted
twice. If the maximum global gain over all o↵ered value
pairs is positive, the receiver will send an accept message

Great if you need an anytime algorithm

Rajiv Maheswaran, Jonathan Pearce, Milind Tambe: Distributed Algorithms for DCOP: A Graphical-Game-Based Approach. ISCA PDCS 2004: 432-439

DCOP EXTENSIONS
AAAI-18 Tutorial on  

Multi-Agent Distributed Constrained Optimization

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

PROSUMER ENERGY TRADING

89

Designing a Marketplace for the Trading and Distribution of Energy in the Smart Grid. AAMAS 2015: 1285-1293

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

• Prosumers: capable of both generating and consuming resources

• Each prosumer can sell or buy a given amount of power to
another prosumer

• Line capacity and flow constraints are required to be satisfied

• Each offer has a desired utility

• Goal: Find a buy/selling assignment that maximizes the actors’
rewards and is feasible with the operating power constraints

90

PROSUMER ENERGY TRADING

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

PROSUMER ENERGY TRADING

91

a b U
0 0 0.3
0 -1 0
-2 1 0.2

a c U
0 0 0.1
0 1 0.2
-2 1 0.2

b c U
0 0 0
-1 1 0.2
1 1 0.3

fab fac

fbc

a

b c

Designing a Marketplace for the Trading and Distribution of Energy in the Smart Grid. AAMAS 2015: 1285-1293

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

• What if Alice cannot disclose the costs associated her action?

• What if we want to describe the scenario in which

• Bob desires to gain 0.2 for selling1 KW of power to Carl

• Car desires to gain 0.1 for buying 1 KW of power from Bob?

92

PROSUMER ENERGY TRADING

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

ASYMMETRIC DCOP

93

Constraint	
Programming

Game	
Theory

Decision	
Theory

DCOP

Auctions;
GamesDec-MDP;

Dec-POMDP

Asymmetric  
costs/rewards

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

• Asymmetric DCOPs are DCOPs where:

• A joint assignment may produce different costs for the agents

participating in a constraint

ASYMMETRIC DCOP

94

A B Cost
r g 3
r g 2
g r 10
g g 0

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

• Asymmetric DCOPs are DCOPs where:

• A joint assignment may produce different costs for the agents

participating in a constraint

ASYMMETRIC DCOP

95

A B Cost A Cost B
r g 2 1
r g 0 2
g r 3 7
g g 0 0

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

PROSUMER ENERGY TRADING

96

a

b c

a c U
0 0 0.1
0 1 0.1
-2 1 0.2

a b U
0 0 0.2
0 -1 0
-2 1 0.2

fac(a)fab(a)

a b U
0 0 0.1
0 -1 0.1
-2 1 0

fab(b)
a c U
0 0 1
0 1 0
-2 1 0

fac(c)

a c U
0 0 0
-1 1 0.1
-2 1 0.2

fbc(c)

a c U
0 0 0
-1 1 0.2
-2 1 0.1

fbc(b)

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

• Why asymmetric DCOPs?

• …

ASYMMETRIC DCOP

97

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

• Why asymmetric DCOPs?

• Models richer forms of cooperation

• Privacy: Agents do not need to reveal the costs associated to

their action

• Resource allocation problems:

• Different costs for using the same resource

• Different preferences

ASYMMETRIC DCOP

98

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

• What if a new prosumer would like
to join the market?

• What if a prosumer would like to
modify her preferences?

99

PROSUMER ENERGY TRADING

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DYNAMIC DCOP

100

Constraint	
Programming

Game	
Theory

Decision	
Theory

DCOP

Auctions;
GamesDec-MDP;

Dec-POMDP

Dynamic  
environment

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

• A Dynamic DCOP is sequence P1, P2, …, Pk of k DCOPs
• The agent knowledge about the environment is confined within

each time step

• Each DCOP is solved sequentially

DYNAMIC DCOP

101

t1 t2 t3 t4 …

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

• Why dynamic DCOPs?

• …

DYNAMIC DCOP

102

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

• Why dynamic DCOPs?

• MAS commonly exhibit dynamic environments

• The capture scenarios with:

• Moving agents, change of constraints, change of preferences

• Additional information become available during problem

solving

• Application domains: Sensor networks, cloud computing,

smart home automation, …

DYNAMIC DCOP

103

APPLICATIONS
AAAI-18 Tutorial on  

Multi-Agent Distributed Constrained Optimization

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DCOP APPLICATIONS

• Scheduling Problems

• Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling. AAMAS 2004

• Radio Frequency Allocation Problems

• Improving DPOP with Branch Consistency for Solving Distributed Constraint Optimization Problems. CP 2014

• Sensor Networks

• Preprocessing techniques for accelerating the DCOP algorithm ADOPT. AAMAS 2005

• Home Automation

• A Multiagent System Approach to Scheduling Devices in Smart Homes. AAMAS 2017, IJCAI 2016

• Traffic Light Synchronization

• Evaluating the performance of DCOP algorithms in a real world, dynamic problem. AAMAS 2008

• Disaster Evacuation

• Disaster Evacuation Support. AAAI 2007; JAIR 2017

• Combinatorial Auction Winner Determination

• H-DPOP: Using Hard Constraints for Search Space Pruning in DCOP. AAAI 2008

105

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

MEETING SCHEDULING

• Meeting 1: Alice, Bob, Carl

• Meeting 2: Bob, Carl

• …  

• Alice is only free in the mornings from 9am-noon

• Bob prefers to not meet during lunch (noon-1pm)

• Carl does not wake up until 11am and loves late evening meetings

• …

106

Rajiv T. Maheswaran, Milind Tambe, Emma Bowring, Jonathan P. Pearce, Pradeep Varakantham: Taking DCOP to the Real World: Efficient Complete Solutions for
Distributed Multi-Event Scheduling. AAMAS 2004: 310-317

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

MEETING SCHEDULING

107

Rajiv T. Maheswaran, Milind Tambe, Emma Bowring, Jonathan P. Pearce, Pradeep Varakantham: Taking DCOP to the Real World: Efficient Complete Solutions for
Distributed Multi-Event Scheduling. AAMAS 2004: 310-317

• Values: time slots to
hold the meetings

• All agents participating
in a meeting must meet
at the same time

• All meetings of an agent
must occur at different
times

=

≠
b1 b2

c1 c2a1

= = =

≠

A

B

C

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

TRAFFIC FLOW CONTROL
• Given a set of traffic lights in adjacent intersections

• How coordinate them to create green waves?

108

de Oliveira, D., Bazzan, A. L., & Lesser, V.. Using cooperative mediation to coordinate traffic lights: a case study. AAMAS 2005: 371-378

Junges, R., & Bazzan, A. L. Evaluating the performance of DCOP algorithms in a real world, dynamic problem. AAMAS 2008: 463-470

N/S

W/E

N/S

W/E

N/S

W/E

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

TRAFFIC FLOW CONTROL

109

de Oliveira, D., Bazzan, A. L., & Lesser, V.. Using cooperative mediation to coordinate traffic lights: a case study. AAMAS 2005: 371-378

Junges, R., & Bazzan, A. L. Evaluating the performance of DCOP algorithms in a real world, dynamic problem. AAMAS 2008: 463-470

TRAFFIC FLOW CONTROL
• Agents: Each traffic light

• Values: Flow traffic direction

x1 x2 x3

N/S

W/E

N/S

W/E

N/S

W/E

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

TRAFFIC FLOW CONTROL

110

de Oliveira, D., Bazzan, A. L., & Lesser, V.. Using cooperative mediation to coordinate traffic lights: a case study. AAMAS 2005: 371-378

Junges, R., & Bazzan, A. L. Evaluating the performance of DCOP algorithms in a real world, dynamic problem. AAMAS 2008: 463-470

TRAFFIC FLOW CONTROL
• Agents: Each traffic light

• Values: Flow traffic direction

• Conflict if 2 neighboring signals choose different directions

N/S

W/E

N/S

W/E

N/S

W/E

x1 x2 x3

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

TRAFFIC FLOW CONTROL

111

de Oliveira, D., Bazzan, A. L., & Lesser, V.. Using cooperative mediation to coordinate traffic lights: a case study. AAMAS 2005: 371-378

Junges, R., & Bazzan, A. L. Evaluating the performance of DCOP algorithms in a real world, dynamic problem. AAMAS 2008: 463-470

TRAFFIC FLOW CONTROL
• Cost functions model the number of incoming vehicles  

• Maximize the traffic flow

N/S

W/E

N/S

W/E

N/S

W/E

x1 x2 x3

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SMART DEVICES

112

AAAI-18 Tutorials Fioretto, Yeoh, Zivan113

HOME ASSISTANTS

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SMART HOMES  
DEVICE SCHEDULING

Ferdinando Fioretto, William Yeoh, Enrico Pontelli. "A Multiagent System Approach to Scheduling Devices in Smart Homes". AAMAS, 2017.

0.3 0.2 3.0 3.4 3.5 6.4 5.8 0.0

 a2 x3 x4

 a3 x5 x6

 a1 x1 x2 x1

x2

x3

x4

x5

x6

for i < j

xi xj Costs
0 0 20
0 1 8
1 0 10
1 1 3

(a) Constraint Graph (b) Constraint Cost Table

Figure 1: Example DCOP

A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�
t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi

�
t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi

�
t
zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H

↵c · C
t
i + ↵u · U

t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:

1  szj  T � �zj 8hi 2 H, zj 2 Zi (5)
X

t2T

�
t
zj = �zj 8hi 2 H, zj 2 Zi (6)

X

hi2H

P
t
i  `

t
8t 2 T (7)

 a2 x3 x4

 a3 x5 x6

 a1 x1 x2 x1

x2

x3

x4

x5

x6

for i < j

xi xj Costs
0 0 20
0 1 8
1 0 10
1 1 3

(a) Constraint Graph (b) Constraint Cost Table

Figure 1: Example DCOP

A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�
t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi

�
t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi

�
t
zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H

↵c · C
t
i + ↵u · U

t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:

1  szj  T � �zj 8hi 2 H, zj 2 Zi (5)
X

t2T

�
t
zj = �zj 8hi 2 H, zj 2 Zi (6)

X

hi2H

P
t
i  `

t
8t 2 T (7)T

Ci

Ui

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SMART HOMES  
DEVICE SCHEDULING

battery charge

sensor

cleanliness

sensor

thermostat

A smart home has:

• Smart devices (roomba, HVAC)

that it can control

• Sensors (cleanliness,

temperature)

• A set of locations

115

Ferdinando Fioretto, William Yeoh, Enrico Pontelli. "A Multiagent System Approach to Scheduling Devices in Smart Homes". AAMAS, 2017.

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SMART HOMES  
DEVICE SCHEDULING

Smart device:

• A set of actions it can

perform (clean, charge)

• Power consumption

associated to each action.

 
Scheduling Rules:

116

Example 2 The scheduling rule (1) describes an ASR
defining a goal state where the living room floor is at least
75% clean (i.e., at least 75% of the floor is cleaned by a
vacuum cleaning robot) by 1800 hrs:

living room cleanliness � 75 before 1800 (1)

and scheduling rules (2) and (3) describe PSRs stating that
the battery charge of the vacuum cleaning robot zv needs to
be between 0 and 100 % of its full charge at all the times:

zv battery charge � 0 always (2)
zv battery charge  100 always (3)

For a home hi, we denote with R
[ta!tb]
p a scheduling rule

over a state property p2PH [PZ , and time interval [ta, tb].
Each scheduling rule indicates a goal state (either a desired
state of a home if it is an ASR or a required state of a de-
vice or a home if it is a PSR) at a location `Rp

2 Li [Zi

of a particular state property p that must hold over the time
interval [ta, tb] ✓ T. Each rule is associated with a set of
actuators �p ✓ Ai that can be used to reach the goal state.
Additionally, a rule is associated with a sensor sp 2 Si ca-
pable of sensing the state property p. Finally, in a PSRs the
device can also sense its own internal states. More formally,

�p={z2Ai | `z =`Rp
^ 9a 2 Az : p2�

H

z
(a)} (4)

�p={z2Ai | z=`Rp
_`z =`Rp

^9a2Az : p2�
H

z
(a)} (5)

where the former defines ASR and the latter defines a PSR.
The ASR of Equation (1) is illustrated in Figure 2 by dot-

ted red lines on the graph. The PSRs are not shown as they
must hold for all time steps.

Feasibility of Schedules
To ensure that a goal state can be achieved across the de-
sired time window, the system has a predictive model of the
various state properties.

Definition 2 (Predictive Model) A predictive model �p for
a state property p (of either the home or a device) is a func-
tion �p : ⌦p ⇥ "z2�p

Az [{?} ! ⌦p [{?}, where ?
denotes an infeasible state and ? + (·) = ?.

In other words, the model describes the transition of state
property p from state !p 2 ⌦p at time step t to time step
t + 1 when it is affected by a set of actuators �p running
joint actions ⇠

t

�p
:

�t+1
p

(!p, ⇠
t

�p
) = !p + �p(!p, ⇠

t

�p
) (6)

where �p(!p, ⇠
t

�p
) is a function describing the effect of the

actuators’ joint action ⇠
t

�p
on state property p.

Example 3 Consider the battery charge state property of
the vacuum cleaning robot zv . Assume it has 65% charge
at time step t and its action is ⇠

t

zv
at that time step. Thus:

�t+1
battery charge

(65, ⇠
t

zv
)=65 + �battery charge(65, ⇠

t

zv
) (7)

�battery charge(!, ⇠
t

zv
) =

8
>><

>>:

min(20, 100�!) if ⇠
t

zv
=charge ^ !<100

�25 if ⇠
t

zv
= run ^ ! > 25

0 if ⇠
t

zv
=stop

? otherwise

(8)

In other words, at each time step, the charge of the battery
will increase by 20% if it is charging until it is fully charged,
decrease by 25% if it is running until it has less than 25%
charge, and no change if it is stopped.

Example 4 Consider the cleanliness state property of a
room, where the only actuator that can affect that state is
a vacuum cleaning robot zv (i.e., �cleanliness = {zv}). As-
sume the room is 0% clean at time step t and the action of
robot zv is ⇠

t

zv
at that time step. Thus:

�t+1
cleanliness

(0, ⇠
t

zv
) = 0 + �cleanliness(0, ⇠

t

zv
) (9)

�cleanliness(!, ⇠
t

zv
)=

⇢
min(15, 100�!) if ⇠

t

zv
= run

0 otherwise
(10)

In other words, at each time step, the cleanliness of the room
will increase by 15% if the robot is running until it is fully
cleaned and no change otherwise.

Using the predictive model, one can recursively call it to
predict the trajectory of a state property p for future time
steps given a schedule of actions of relevant actuators �p.

Definition 3 (Predicted State Trajectory) Given a state
property p, its current state !p at time step ta, and a sched-
ule ⇠

[ta!tb]
�p

of relevant actuators �p, the predicted state tra-

jectory ⇡p(!p, ⇠
[ta!tb]
�p

) of that state property is defined as:

⇡p(!p, ⇠
[ta!tb]
�p

) =

�tb

p
(�tb�1

p
(. . . (�ta

p
(!p, ⇠

ta

�p
), . . .), ⇠

tb�1

�p
), ⇠tb

�p
) (11)

One can verify if a schedule satisfies a scheduling rule
by checking if its predicted state trajectories are within the
set of feasible state trajectories of that rule. Note that each
active and passive scheduling rule defines a set of feasible
state trajectories. For example, the active scheduling rule of
Equation (1) allows all possible state trajectories as long as
the state at time step 1800 is no smaller than 75. We use
Rp[t] ✓ ⌦p to denote the set of states that are feasible ac-
cording to rule Rp of state property p at time step t.

More formally, a schedule ⇠
[ta!tb]
�p

satisfies a scheduling

rule R
[ta!tb]
p (written as ⇠

[ta!tb]
�p

|= R
[ta!tb]
p) iff:

8t 2 [ta, tb] : ⇡p(!
ta

p
, ⇠

[ta!t]
�p

) 2 Rp[t] (12)

where !
ta

p
is the state of state property p at time step ta.

Definition 4 (Feasible Schedule) A schedule is feasible if it
satisfies all the passive and active scheduling rules of each
home in the SHDS problem.

The predicted state trajectories of the battery charge and
cleanliness state properties following Equations (7) and (9)
are shown in the second and third rows of Figure 2. These

Ferdinando Fioretto, William Yeoh, Enrico Pontelli. "A Multiagent System Approach to Scheduling Devices in Smart Homes". AAMAS, 2017.

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SMART HOMES  
DEVICE SCHEDULING

117

Example 2 The scheduling rule (1) describes an ASR
defining a goal state where the living room floor is at least
75% clean (i.e., at least 75% of the floor is cleaned by a
vacuum cleaning robot) by 1800 hrs:

living room cleanliness � 75 before 1800 (1)

and scheduling rules (2) and (3) describe PSRs stating that
the battery charge of the vacuum cleaning robot zv needs to
be between 0 and 100 % of its full charge at all the times:

zv battery charge � 0 always (2)
zv battery charge  100 always (3)

For a home hi, we denote with R
[ta!tb]
p a scheduling rule

over a state property p2PH [PZ , and time interval [ta, tb].
Each scheduling rule indicates a goal state (either a desired
state of a home if it is an ASR or a required state of a de-
vice or a home if it is a PSR) at a location `Rp

2 Li [Zi

of a particular state property p that must hold over the time
interval [ta, tb] ✓ T. Each rule is associated with a set of
actuators �p ✓ Ai that can be used to reach the goal state.
Additionally, a rule is associated with a sensor sp 2 Si ca-
pable of sensing the state property p. Finally, in a PSRs the
device can also sense its own internal states. More formally,

�p={z2Ai | `z =`Rp
^ 9a 2 Az : p2�

H

z
(a)} (4)

�p={z2Ai | z=`Rp
_`z =`Rp

^9a2Az : p2�
H

z
(a)} (5)

where the former defines ASR and the latter defines a PSR.
The ASR of Equation (1) is illustrated in Figure 2 by dot-

ted red lines on the graph. The PSRs are not shown as they
must hold for all time steps.

Feasibility of Schedules
To ensure that a goal state can be achieved across the de-
sired time window, the system has a predictive model of the
various state properties.

Definition 2 (Predictive Model) A predictive model �p for
a state property p (of either the home or a device) is a func-
tion �p : ⌦p ⇥ "z2�p

Az [{?} ! ⌦p [{?}, where ?
denotes an infeasible state and ? + (·) = ?.

In other words, the model describes the transition of state
property p from state !p 2 ⌦p at time step t to time step
t + 1 when it is affected by a set of actuators �p running
joint actions ⇠

t

�p
:

�t+1
p

(!p, ⇠
t

�p
) = !p + �p(!p, ⇠

t

�p
) (6)

where �p(!p, ⇠
t

�p
) is a function describing the effect of the

actuators’ joint action ⇠
t

�p
on state property p.

Example 3 Consider the battery charge state property of
the vacuum cleaning robot zv . Assume it has 65% charge
at time step t and its action is ⇠

t

zv
at that time step. Thus:

�t+1
battery charge

(65, ⇠
t

zv
)=65 + �battery charge(65, ⇠

t

zv
) (7)

�battery charge(!, ⇠
t

zv
) =

8
>><

>>:

min(20, 100�!) if ⇠
t

zv
=charge ^ !<100

�25 if ⇠
t

zv
= run ^ ! > 25

0 if ⇠
t

zv
=stop

? otherwise

(8)

In other words, at each time step, the charge of the battery
will increase by 20% if it is charging until it is fully charged,
decrease by 25% if it is running until it has less than 25%
charge, and no change if it is stopped.

Example 4 Consider the cleanliness state property of a
room, where the only actuator that can affect that state is
a vacuum cleaning robot zv (i.e., �cleanliness = {zv}). As-
sume the room is 0% clean at time step t and the action of
robot zv is ⇠

t

zv
at that time step. Thus:

�t+1
cleanliness

(0, ⇠
t

zv
) = 0 + �cleanliness(0, ⇠

t

zv
) (9)

�cleanliness(!, ⇠
t

zv
)=

⇢
min(15, 100�!) if ⇠

t

zv
= run

0 otherwise
(10)

In other words, at each time step, the cleanliness of the room
will increase by 15% if the robot is running until it is fully
cleaned and no change otherwise.

Using the predictive model, one can recursively call it to
predict the trajectory of a state property p for future time
steps given a schedule of actions of relevant actuators �p.

Definition 3 (Predicted State Trajectory) Given a state
property p, its current state !p at time step ta, and a sched-
ule ⇠

[ta!tb]
�p

of relevant actuators �p, the predicted state tra-

jectory ⇡p(!p, ⇠
[ta!tb]
�p

) of that state property is defined as:

⇡p(!p, ⇠
[ta!tb]
�p

) =

�tb

p
(�tb�1

p
(. . . (�ta

p
(!p, ⇠

ta

�p
), . . .), ⇠

tb�1

�p
), ⇠tb

�p
) (11)

One can verify if a schedule satisfies a scheduling rule
by checking if its predicted state trajectories are within the
set of feasible state trajectories of that rule. Note that each
active and passive scheduling rule defines a set of feasible
state trajectories. For example, the active scheduling rule of
Equation (1) allows all possible state trajectories as long as
the state at time step 1800 is no smaller than 75. We use
Rp[t] ✓ ⌦p to denote the set of states that are feasible ac-
cording to rule Rp of state property p at time step t.

More formally, a schedule ⇠
[ta!tb]
�p

satisfies a scheduling

rule R
[ta!tb]
p (written as ⇠

[ta!tb]
�p

|= R
[ta!tb]
p) iff:

8t 2 [ta, tb] : ⇡p(!
ta

p
, ⇠

[ta!t]
�p

) 2 Rp[t] (12)

where !
ta

p
is the state of state property p at time step ta.

Definition 4 (Feasible Schedule) A schedule is feasible if it
satisfies all the passive and active scheduling rules of each
home in the SHDS problem.

The predicted state trajectories of the battery charge and
cleanliness state properties following Equations (7) and (9)
are shown in the second and third rows of Figure 2. These

Ferdinando Fioretto, William Yeoh, Enrico Pontelli. "A Multiagent System Approach to Scheduling Devices in Smart Homes". AAMAS, 2017.

1400 1500 1600 1700 1800

0

15

30

45

60

75

C
le

an
lin

es
s

(%
)

0

15

30

45

60

75

B
attery C

harge (%
)

Time

Goal

Deadline

40

15

R

15

30

R

35

30

C

55

30

C

30

45

R

5

60

R

25

60

C

0

75

R

65

0

S Device Schedule

Cleanliness (%)

Battery Charge (%)

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SMART HOMES  
DEVICE SCHEDULING

118

Example 2 The scheduling rule (1) describes an ASR
defining a goal state where the living room floor is at least
75% clean (i.e., at least 75% of the floor is cleaned by a
vacuum cleaning robot) by 1800 hrs:

living room cleanliness � 75 before 1800 (1)

and scheduling rules (2) and (3) describe PSRs stating that
the battery charge of the vacuum cleaning robot zv needs to
be between 0 and 100 % of its full charge at all the times:

zv battery charge � 0 always (2)
zv battery charge  100 always (3)

For a home hi, we denote with R
[ta!tb]
p a scheduling rule

over a state property p2PH [PZ , and time interval [ta, tb].
Each scheduling rule indicates a goal state (either a desired
state of a home if it is an ASR or a required state of a de-
vice or a home if it is a PSR) at a location `Rp

2 Li [Zi

of a particular state property p that must hold over the time
interval [ta, tb] ✓ T. Each rule is associated with a set of
actuators �p ✓ Ai that can be used to reach the goal state.
Additionally, a rule is associated with a sensor sp 2 Si ca-
pable of sensing the state property p. Finally, in a PSRs the
device can also sense its own internal states. More formally,

�p={z2Ai | `z =`Rp
^ 9a 2 Az : p2�

H

z
(a)} (4)

�p={z2Ai | z=`Rp
_`z =`Rp

^9a2Az : p2�
H

z
(a)} (5)

where the former defines ASR and the latter defines a PSR.
The ASR of Equation (1) is illustrated in Figure 2 by dot-

ted red lines on the graph. The PSRs are not shown as they
must hold for all time steps.

Feasibility of Schedules
To ensure that a goal state can be achieved across the de-
sired time window, the system has a predictive model of the
various state properties.

Definition 2 (Predictive Model) A predictive model �p for
a state property p (of either the home or a device) is a func-
tion �p : ⌦p ⇥ "z2�p

Az [{?} ! ⌦p [{?}, where ?
denotes an infeasible state and ? + (·) = ?.

In other words, the model describes the transition of state
property p from state !p 2 ⌦p at time step t to time step
t + 1 when it is affected by a set of actuators �p running
joint actions ⇠

t

�p
:

�t+1
p

(!p, ⇠
t

�p
) = !p + �p(!p, ⇠

t

�p
) (6)

where �p(!p, ⇠
t

�p
) is a function describing the effect of the

actuators’ joint action ⇠
t

�p
on state property p.

Example 3 Consider the battery charge state property of
the vacuum cleaning robot zv . Assume it has 65% charge
at time step t and its action is ⇠

t

zv
at that time step. Thus:

�t+1
battery charge

(65, ⇠
t

zv
)=65 + �battery charge(65, ⇠

t

zv
) (7)

�battery charge(!, ⇠
t

zv
) =

8
>><

>>:

min(20, 100�!) if ⇠
t

zv
=charge ^ !<100

�25 if ⇠
t

zv
= run ^ ! > 25

0 if ⇠
t

zv
=stop

? otherwise

(8)

In other words, at each time step, the charge of the battery
will increase by 20% if it is charging until it is fully charged,
decrease by 25% if it is running until it has less than 25%
charge, and no change if it is stopped.

Example 4 Consider the cleanliness state property of a
room, where the only actuator that can affect that state is
a vacuum cleaning robot zv (i.e., �cleanliness = {zv}). As-
sume the room is 0% clean at time step t and the action of
robot zv is ⇠

t

zv
at that time step. Thus:

�t+1
cleanliness

(0, ⇠
t

zv
) = 0 + �cleanliness(0, ⇠

t

zv
) (9)

�cleanliness(!, ⇠
t

zv
)=

⇢
min(15, 100�!) if ⇠

t

zv
= run

0 otherwise
(10)

In other words, at each time step, the cleanliness of the room
will increase by 15% if the robot is running until it is fully
cleaned and no change otherwise.

Using the predictive model, one can recursively call it to
predict the trajectory of a state property p for future time
steps given a schedule of actions of relevant actuators �p.

Definition 3 (Predicted State Trajectory) Given a state
property p, its current state !p at time step ta, and a sched-
ule ⇠

[ta!tb]
�p

of relevant actuators �p, the predicted state tra-

jectory ⇡p(!p, ⇠
[ta!tb]
�p

) of that state property is defined as:

⇡p(!p, ⇠
[ta!tb]
�p

) =

�tb

p
(�tb�1

p
(. . . (�ta

p
(!p, ⇠

ta

�p
), . . .), ⇠

tb�1

�p
), ⇠tb

�p
) (11)

One can verify if a schedule satisfies a scheduling rule
by checking if its predicted state trajectories are within the
set of feasible state trajectories of that rule. Note that each
active and passive scheduling rule defines a set of feasible
state trajectories. For example, the active scheduling rule of
Equation (1) allows all possible state trajectories as long as
the state at time step 1800 is no smaller than 75. We use
Rp[t] ✓ ⌦p to denote the set of states that are feasible ac-
cording to rule Rp of state property p at time step t.

More formally, a schedule ⇠
[ta!tb]
�p

satisfies a scheduling

rule R
[ta!tb]
p (written as ⇠

[ta!tb]
�p

|= R
[ta!tb]
p) iff:

8t 2 [ta, tb] : ⇡p(!
ta

p
, ⇠

[ta!t]
�p

) 2 Rp[t] (12)

where !
ta

p
is the state of state property p at time step ta.

Definition 4 (Feasible Schedule) A schedule is feasible if it
satisfies all the passive and active scheduling rules of each
home in the SHDS problem.

The predicted state trajectories of the battery charge and
cleanliness state properties following Equations (7) and (9)
are shown in the second and third rows of Figure 2. These

Ferdinando Fioretto, William Yeoh, Enrico Pontelli. "A Multiagent System Approach to Scheduling Devices in Smart Homes". AAMAS, 2017.

1400 1500 1600 1700 1800

0

15

30

45

60

75

C
le

an
lin

es
s

(%
)

0

15

30

45

60

75

B
attery C

harge (%
)

Time

Goal

Deadline

40

15

R

15

30

R

35

30

C

55

30

C

30

45

R

5

60

R

25

60

C

0

75

R

65

0

S Device Schedule

Cleanliness (%)

Battery Charge (%)

$ $ $ $

8:00

…

…9:00 10:00 11:00

real-time energy price schema

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SMART HOMES  
DEVICE SCHEDULING

in exact multiples of time intervals), respectively, of device
2 Zi.
The energy consumption of each device

lution approaches in Section 6. An SBDS problem is com-
of smart buildings hi

are able to communicate with one another and whose energy

How to schedule smart devices to satisfy
the user preferences while  
1) minimizing energy costs and  
2) reducing peaks in load demand?

Assumptions: Each home have communication and
controllable load capabilities.

Ferdinando Fioretto, William Yeoh, Enrico Pontelli. "A Multiagent System Approach to Scheduling Devices in Smart Homes". AAMAS, 2017.

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SMART HOMES  
DEVICE SCHEDULING

0.3 0.2 3.0 3.4 3.5 6.4 5.8 0.0

 a2 x3 x4

 a3 x5 x6

 a1 x1 x2 x1

x2

x3

x4

x5

x6

for i < j

xi xj Costs
0 0 20
0 1 8
1 0 10
1 1 3

(a) Constraint Graph (b) Constraint Cost Table

Figure 1: Example DCOP

A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�
t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi

�
t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi

�
t
zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H

↵c · C
t
i + ↵u · U

t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:

1  szj  T � �zj 8hi 2 H, zj 2 Zi (5)
X

t2T

�
t
zj = �zj 8hi 2 H, zj 2 Zi (6)

X

hi2H

P
t
i  `

t
8t 2 T (7)

 a2 x3 x4

 a3 x5 x6

 a1 x1 x2 x1

x2

x3

x4

x5

x6

for i < j

xi xj Costs
0 0 20
0 1 8
1 0 10
1 1 3

(a) Constraint Graph (b) Constraint Cost Table

Figure 1: Example DCOP

A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�
t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi

�
t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi

�
t
zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H

↵c · C
t
i + ↵u · U

t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:

1  szj  T � �zj 8hi 2 H, zj 2 Zi (5)
X

t2T

�
t
zj = �zj 8hi 2 H, zj 2 Zi (6)

X

hi2H

P
t
i  `

t
8t 2 T (7)T

Ci

Ui

Agents
Variables

Ferdinando Fioretto, William Yeoh, Enrico Pontelli. "A Multiagent System Approach to Scheduling Devices in Smart Homes". AAMAS, 2017.

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SMART HOMES  
DEVICE SCHEDULING

0.3 0.2 3.0 3.4 3.5 6.4 5.8 0.0

 a2 x3 x4

 a3 x5 x6

 a1 x1 x2 x1

x2

x3

x4

x5

x6

for i < j

xi xj Costs
0 0 20
0 1 8
1 0 10
1 1 3

(a) Constraint Graph (b) Constraint Cost Table

Figure 1: Example DCOP

A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�
t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi

�
t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi

�
t
zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H

↵c · C
t
i + ↵u · U

t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:

1  szj  T � �zj 8hi 2 H, zj 2 Zi (5)
X

t2T

�
t
zj = �zj 8hi 2 H, zj 2 Zi (6)

X

hi2H

P
t
i  `

t
8t 2 T (7)

 a2 x3 x4

 a3 x5 x6

 a1 x1 x2 x1

x2

x3

x4

x5

x6

for i < j

xi xj Costs
0 0 20
0 1 8
1 0 10
1 1 3

(a) Constraint Graph (b) Constraint Cost Table

Figure 1: Example DCOP

A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�
t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi

�
t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi

�
t
zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H

↵c · C
t
i + ↵u · U

t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:

1  szj  T � �zj 8hi 2 H, zj 2 Zi (5)
X

t2T

�
t
zj = �zj 8hi 2 H, zj 2 Zi (6)

X

hi2H

P
t
i  `

t
8t 2 T (7)T

Ci

Ui

Environmental 
variables

Domains

Action State property Power (kW/h)

run cleanliness,
battery charge

0.0

charge battery charge 0.26

stop 0.0
Example 2 The scheduling rule (1) describes an ASR
defining a goal state where the living room floor is at least
75% clean (i.e., at least 75% of the floor is cleaned by a
vacuum cleaning robot) by 1800 hrs:

living room cleanliness � 75 before 1800 (1)

and scheduling rules (2) and (3) describe PSRs stating that
the battery charge of the vacuum cleaning robot zv needs to
be between 0 and 100 % of its full charge at all the times:

zv battery charge � 0 always (2)
zv battery charge  100 always (3)

For a home hi, we denote with R
[ta!tb]
p a scheduling rule

over a state property p2PH [PZ , and time interval [ta, tb].
Each scheduling rule indicates a goal state (either a desired
state of a home if it is an ASR or a required state of a de-
vice or a home if it is a PSR) at a location `Rp

2 Li [Zi

of a particular state property p that must hold over the time
interval [ta, tb] ✓ T. Each rule is associated with a set of
actuators �p ✓ Ai that can be used to reach the goal state.
Additionally, a rule is associated with a sensor sp 2 Si ca-
pable of sensing the state property p. Finally, in a PSRs the
device can also sense its own internal states. More formally,

�p={z2Ai | `z =`Rp
^ 9a 2 Az : p2�

H

z
(a)} (4)

�p={z2Ai | z=`Rp
_`z =`Rp

^9a2Az : p2�
H

z
(a)} (5)

where the former defines ASR and the latter defines a PSR.
The ASR of Equation (1) is illustrated in Figure 2 by dot-

ted red lines on the graph. The PSRs are not shown as they
must hold for all time steps.

Feasibility of Schedules
To ensure that a goal state can be achieved across the de-
sired time window, the system has a predictive model of the
various state properties.

Definition 2 (Predictive Model) A predictive model �p for
a state property p (of either the home or a device) is a func-
tion �p : ⌦p ⇥ "z2�p

Az [{?} ! ⌦p [{?}, where ?
denotes an infeasible state and ? + (·) = ?.

In other words, the model describes the transition of state
property p from state !p 2 ⌦p at time step t to time step
t + 1 when it is affected by a set of actuators �p running
joint actions ⇠

t

�p
:

�t+1
p

(!p, ⇠
t

�p
) = !p + �p(!p, ⇠

t

�p
) (6)

where �p(!p, ⇠
t

�p
) is a function describing the effect of the

actuators’ joint action ⇠
t

�p
on state property p.

Example 3 Consider the battery charge state property of
the vacuum cleaning robot zv . Assume it has 65% charge
at time step t and its action is ⇠

t

zv
at that time step. Thus:

�t+1
battery charge

(65, ⇠
t

zv
)=65 + �battery charge(65, ⇠

t

zv
) (7)

�battery charge(!, ⇠
t

zv
) =

8
>><

>>:

min(20, 100�!) if ⇠
t

zv
=charge ^ !<100

�25 if ⇠
t

zv
= run ^ ! > 25

0 if ⇠
t

zv
=stop

? otherwise

(8)

In other words, at each time step, the charge of the battery
will increase by 20% if it is charging until it is fully charged,
decrease by 25% if it is running until it has less than 25%
charge, and no change if it is stopped.

Example 4 Consider the cleanliness state property of a
room, where the only actuator that can affect that state is
a vacuum cleaning robot zv (i.e., �cleanliness = {zv}). As-
sume the room is 0% clean at time step t and the action of
robot zv is ⇠

t

zv
at that time step. Thus:

�t+1
cleanliness

(0, ⇠
t

zv
) = 0 + �cleanliness(0, ⇠

t

zv
) (9)

�cleanliness(!, ⇠
t

zv
)=

⇢
min(15, 100�!) if ⇠

t

zv
= run

0 otherwise
(10)

In other words, at each time step, the cleanliness of the room
will increase by 15% if the robot is running until it is fully
cleaned and no change otherwise.

Using the predictive model, one can recursively call it to
predict the trajectory of a state property p for future time
steps given a schedule of actions of relevant actuators �p.

Definition 3 (Predicted State Trajectory) Given a state
property p, its current state !p at time step ta, and a sched-
ule ⇠

[ta!tb]
�p

of relevant actuators �p, the predicted state tra-

jectory ⇡p(!p, ⇠
[ta!tb]
�p

) of that state property is defined as:

⇡p(!p, ⇠
[ta!tb]
�p

) =

�tb

p
(�tb�1

p
(. . . (�ta

p
(!p, ⇠

ta

�p
), . . .), ⇠

tb�1

�p
), ⇠tb

�p
) (11)

One can verify if a schedule satisfies a scheduling rule
by checking if its predicted state trajectories are within the
set of feasible state trajectories of that rule. Note that each
active and passive scheduling rule defines a set of feasible
state trajectories. For example, the active scheduling rule of
Equation (1) allows all possible state trajectories as long as
the state at time step 1800 is no smaller than 75. We use
Rp[t] ✓ ⌦p to denote the set of states that are feasible ac-
cording to rule Rp of state property p at time step t.

More formally, a schedule ⇠
[ta!tb]
�p

satisfies a scheduling

rule R
[ta!tb]
p (written as ⇠

[ta!tb]
�p

|= R
[ta!tb]
p) iff:

8t 2 [ta, tb] : ⇡p(!
ta

p
, ⇠

[ta!t]
�p

) 2 Rp[t] (12)

where !
ta

p
is the state of state property p at time step ta.

Definition 4 (Feasible Schedule) A schedule is feasible if it
satisfies all the passive and active scheduling rules of each
home in the SHDS problem.

The predicted state trajectories of the battery charge and
cleanliness state properties following Equations (7) and (9)
are shown in the second and third rows of Figure 2. These

Hard constraints

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

SMART HOMES  
DEVICE SCHEDULING

0.3 0.2 3.0 3.4 3.5 6.4 5.8 0.0

 a2 x3 x4

 a3 x5 x6

 a1 x1 x2 x1

x2

x3

x4

x5

x6

for i < j

xi xj Costs
0 0 20
0 1 8
1 0 10
1 1 3

(a) Constraint Graph (b) Constraint Cost Table

Figure 1: Example DCOP

A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�
t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi

�
t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi

�
t
zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H

↵c · C
t
i + ↵u · U

t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:

1  szj  T � �zj 8hi 2 H, zj 2 Zi (5)
X

t2T

�
t
zj = �zj 8hi 2 H, zj 2 Zi (6)

X

hi2H

P
t
i  `

t
8t 2 T (7)

 a2 x3 x4

 a3 x5 x6

 a1 x1 x2 x1

x2

x3

x4

x5

x6

for i < j

xi xj Costs
0 0 20
0 1 8
1 0 10
1 1 3

(a) Constraint Graph (b) Constraint Cost Table

Figure 1: Example DCOP

A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�
t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi

�
t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi

�
t
zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H

↵c · C
t
i + ↵u · U

t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:

1  szj  T � �zj 8hi 2 H, zj 2 Zi (5)
X

t2T

�
t
zj = �zj 8hi 2 H, zj 2 Zi (6)

X

hi2H

P
t
i  `

t
8t 2 T (7)T

Ci

Ui

Objective  
(soft constraints) Objective (soft constraints)

Ferdinando Fioretto, William Yeoh, Enrico Pontelli. "A Multiagent System Approach to Scheduling Devices in Smart Homes". AAMAS, 2017.

$ $ $ $

8:00

…

…9:00 10:00 11:00

real-time energy price schema

CHALLENGES AND OPEN
QUESTIONS

AAAI-18 Tutorial on  
Multi-Agent Distributed Constrained Optimization

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

MAS DECISION MAKING
• Decentralized decision making difficult due to:

• Large number of interacting entities 

124

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

MAS DECISION MAKING

125

• Bistaffa, Farinelli, Bombieri. "Optimising memory management for belief propagation in junction trees using GPGPUs “, ICPADS 2014

• Ferdinando Fioretto, William Yeoh, Enrico Pontelli. "Multi-Variable Agent Decomposition for DCOPs". In Proceedings of the AAAI Conference on Artificial

Intelligence (AAAI), 2016.

• Ferdinando Fioretto, Hong Xu, Sven Koenig, TK Satish Kumar. "Constraint Composite Graph-Based Lifted Message Passing for Distributed Constraint

Optimization Problems". In International Symposium on Artificial Intelligence and Mathematics (ISAIM), 2018.

• Ferdinando Fioretto, Enrico Pontelli, William Yeoh, Rina Dechter. "Accelerating Exact and Approximate Inference for (Distributed) Discrete Optimization with

GPUs". In Constraints, 2018.

• Decentralized decision making difficult due to:

• Large number of interacting entities

• Can we use decomposition techniques

to reduce the amount of interactions?

• Can we create hierarchical models to

increase parallelism and efficiency? 
 

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

MAS DECISION MAKING
• Decentralized decision making difficult due to:

• Large number of interacting entities

• Can we use decomposition techniques

to reduce the amount of interactions?

• Can we create hierarchical models to

increase parallelism and efficiency? 
 

126

• Bistaffa, Farinelli, Bombieri. "Optimising memory management for belief propagation in junction trees using GPGPUs “, ICPADS 2014

• Ferdinando Fioretto, William Yeoh, Enrico Pontelli. "Multi-Variable Agent Decomposition for DCOPs". In Proceedings of the AAAI Conference on Artificial

Intelligence (AAAI), 2016.

• Ferdinando Fioretto, Hong Xu, Sven Koenig, TK Satish Kumar. "Constraint Composite Graph-Based Lifted Message Passing for Distributed Constraint

Optimization Problems". In International Symposium on Artificial Intelligence and Mathematics (ISAIM), 2018.

• Ferdinando Fioretto, Enrico Pontelli, William Yeoh, Rina Dechter. "Accelerating Exact and Approximate Inference for (Distributed) Discrete Optimization with

GPUs". In Constraints, 2018.

x1 x2 x3 x4 x5 U
0 0 3 2 5 21

x2

x1

x3

x4

x5

MVA-Table

Agent a1

8/ 12

Introduction and Motivation Progress To Date Proposed Plan for the Future Conclusion

Exploiting Structure form Problem Modeling and Problem
Solving

Efficient Problem Decompositions and GPU Parallelization (AAMAS 2014)

• Agents subproblems are solved using Sampling algorithms.
• We use GPGPUs to parallelize the sampling operations.

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DYNAMIC ENVIRONMENT

• Interaction in a dynamic environment is required to be robust to
several changes

127

• R. Mailler, H. Zheng, and A. Ridgway. 2017. Dynamic, distributed constraint solving and thermodynamic theory. Auton Agent Multi-Agent Syst (2017).

• Zhang, C., & Lesser, V. (2013). Coordinating multi-agent reinforcement learning with limited communication. In Proceedings of the International Conference

on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1101–1108.

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

DYNAMIC ENVIRONMENT

• Interaction in a dynamic environment is required to be robust to
several changes

• How do agents respond to dynamic changes?

• Can we study adaptive algorithms so that the MAS interaction is

resilient and adaptive to changes in the communication layer, the
underlying constraint graph, etc.?

128

• R. Mailler, H. Zheng, and A. Ridgway. 2017. Dynamic, distributed constraint solving and thermodynamic theory. Auton Agent Multi-Agent Syst (2017).

• Zhang, C., & Lesser, V. (2013). Coordinating multi-agent reinforcement learning with limited communication. In Proceedings of the International Conference

on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1101–1108.

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

AGENT PREFERENCES

• How to model, learn, and update agent preferences?

129

AAAI-18 Tutorials Fioretto, Yeoh, Zivan

AGENT PREFERENCES

• How to model, learn, and update agent preferences?

• Agent’s preferences are assumed to be available. This is not

always feasible. How to efficiently elicit agents’ preferences?

• When full elicitation is not possible, how to adaptively learn the

preference of an agent?

130

• Atena M. Tabakhi, Tiep Le, Ferdinando Fioretto, and William Yeoh. “Preference Elicitation for DCOPs.” In Proceedings of the International Conference on
Principles and Practice of Constraint Programming (CP), pages 278-296, 2017

THANK YOU!
Ferdinando Fioretto, William Yeoh, Roie Zivan

Preliminaries DCOP Algorithms

DCOP Extensions DCOP Applications

