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Ferdinando Fioretto
Syracuse University

AAAI-20 Tutorial on:

William Yeoh
Washington University in St. Louis



Schedule

• 2:00pm: Preliminaries 
• 2:20pm: DCOP Algorithms
• 3:00pm: DCOP Extensions
• 3:20pm: Applications
• 3:35pm: Challenges and Open Questions
• 3:45pm: Coffee!!
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Lil’ Bit of Shameless Promotion  :)

• Tutorial materials are based on our recent JAIR survey paper: 
 
Ferdinando Fioretto, Enrico Pontelli, and William Yeoh.  
Distributed Constraint Optimization Problems and Applications: A Survey. 
Journal of Artificial Intelligence Research (JAIR). 2018. 

• Includes more models, algorithms, and applications. 
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Preliminaries

AAAI-20 Tutorial on  
Multi-Agent Distributed Constrained Optimization



MOTIVATING  DOMAIN:  
SENSOR NETWORK
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CSP
CONSTRAINT SATISFACTION

12

• Variables
• Domains
• Constraints 

where a constraint     
denotes the possible valid joint assignments for the 
variables                          it involves 

• GOAL: Find an assignment to all variables that satisfi es 
all the constraints 

ci ✓ Di1 ⇥Di2 ⇥ . . .⇥Din

X = {x1, . . . , xn}

C = {c1, . . . , cm}

xi1 , xi2 , . . . , xin

D = {D1, . . . , Dn}
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CSP
CONSTRAINT SATISFACTION
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Max-CSP
MAX CONSTRAINT SATISFACTION
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Max-CSP
MAX CONSTRAINT SATISFACTION
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• Variables
• Domains
• Constraints 

where a constraint     
denotes the possible valid joint assignments for the 
variables                          it involves 

• GOAL: Find an assignment to all variables that satisfi es 
a maximum number of constraints 

ci ✓ Di1 ⇥Di2 ⇥ . . .⇥Din

X = {x1, . . . , xn}

C = {c1, . . . , cm}

xi1 , xi2 , . . . , xin

D = {D1, . . . , Dn}
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Max-CSP
MAX CONSTRAINT SATISFACTION
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WCSP (COP)
CONSTRAINT OPTIMIZATION
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WCSP (COP)
CONSTRAINT OPTIMIZATION
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• Variables
• Domains
• Constraints 

where a constraint     
expresses the degree of constraint violation 

• GOAL: Find an assignment that minimizes the sum of 
the costs of all the constraints

X = {x1, . . . , xn}

C = {c1, . . . , cm}
D = {D1, . . . , Dn}

ci : Di1 ⇥ . . .⇥Din ! R+ [ {1}

AAAI-20 Tutorials                                                                                                                                                                               Fioretto & Yeoh



WCSP (COP)
CONSTRAINT OPTIMIZATION
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CSP Max-
CSP

• Objective: maximize 
#constraints satisfied



WCSP (COP)
CONSTRAINT OPTIMIZATION
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CSP Max-
CSP

• Hard constraints to  
Soft constraints

• Objective: minimize cost
COP

• Objective: maximize 
#constraints satisfied



WCSP (COP)
CONSTRAINT OPTIMIZATION
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Imagine that each 
sensor is an 

autonomous agent.

How should this problem 
be modeled and solved 

in a decentralized 
manner?



Multi-Agent Systems
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• Agent: An entity that behaves autonomously in the pursuit of goals
• Multi-agent system: A system of multiple interacting agents

• An agent is:
• Autonomous: Is of full control of itself
• Interactive: May communicate with other agents 
• Reactive: Responds to changes in the 

environment or requests by other agents
• Proactive: Takes initiatives to achieve its goals 

a2

a1

a2

a4

? ?



Multi-Agent Systems
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Constraint	
Programming

Game	
Theory

Decision	
Theory

DCOP

Auctions;
GamesDec-MDP;

Dec-POMDP



DCOP
DISTRIBUTED CONSTRAINT OPTIMIZATION
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DCOP
DISTRIBUTED CONSTRAINT OPTIMIZATION
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DCOP
DISTRIBUTED CONSTRAINT OPTIMIZATION
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• Agents
• Variables
• Domains
• Constraints
• Mapping of variables to agents 

• GOAL: Find an assignment that minimizes the sum of 
the costs of all the constraints

X = {x1, . . . , xn}

C = {c1, . . . , cm}
D = {D1, . . . , Dn}

A = {ai, . . . , an}
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• Hard constraints to  
Soft constraints

• Objective: minimize cost

DCOP
DISTRIBUTED CONSTRAINT OPTIMIZATION
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CSP Max-
CSP

COP

• Objective: maximize 
#constraints satisfied



DCOP
DISTRIBUTED CONSTRAINT OPTIMIZATION
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CSP Max-
CSP

COP

• Variables are controlled 
by agents

• Communication model
• Local agents’ knowledge

DCOP



DCOP
DISTRIBUTED CONSTRAINT OPTIMIZATION

• Why distributed models?
• Natural mapping for multi-agent systems
• Potentially faster by exploiting parallelism
• Potentially more robust: no single point of failure, no single 

network bottleneck
• Maintains more private information
• ...
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DCOP Algorithms

AAAI-20 Tutorial on  
Multi-Agent Distributed Constrained Optimization
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DCOP Algorithms

Complete

Incomplete

Partially	
Decentralized

Fully
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Fully
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Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous
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DCOP Algorithms

• Important Metrics: 

• Agent complexity
• Network loads
• Message size
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Incomplete
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DCOP Algorithms

• Important Metrics: 

• Agent complexity
• Network loads
• Message size 

 

• Anytime
• Quality guarantees
• Execution time vs.  

solution quality

Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous
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DCOP Algorithms

• Systematic process, divided in 
steps.

• Each agent waits for 
particular messages before 
acting

• Consistent view of the 
search process

• Typically, increases idle-time

Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous
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DCOP Algorithms

• Decision based on agents’ 
local state

• Agents’ actions do not 
depend on sequence of 
received messages

• Minimizes idle-time
• No guarantees on validity of 

local views

Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous
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DCOP Algorithms

Synchronous Branch and 
Bound (SBB)

Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous



SBB
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C

A

B

D

xi xj
Cost 
(A,B)

Cost 
(A,C)

Cost 
(B,C)

Cost 
(B,D)

5 5 5 3

8 10 4 8

20 20 3 10

3 3 3 3

{      }

{      }
{      }

{      }

Katsutoshi Hirayama, Makoto Yokoo: Distributed Partial Constraint Satisfaction Problem. CP 1997: 222-236



SBB
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C

A

B

D

xi xj
Cost 
(A,B)

Cost 
(A,C)

Cost 
(B,C)

Cost 
(B,D)

5 5 5 3

8 10 4 8

20 20 3 10

3 3 3 3

{      }

{      }
{      }

{      }

How do we solve this distributedly?



SBB
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A

C

B

Complete Ordering

D

{      }

{      }

{      }

{      }

• Agents operate on a 
complete ordering 

• Agents exchange CPA 
messages containing partial 
assignments.

• When a solution is found, its 
solution cost as an UB is 
broadcasted to all agents.

• The UB is used for branch 
pruning.



SBB
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SBB
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UB = infinity

A

B

C

D



SBB

43
AAAI-20 Tutorials                                                                                                                                                                               Fioretto & Yeoh

0

0

5

UB = infinity

A

B

C

D



SBB

44
AAAI-20 Tutorials                                                                                                                                                                               Fioretto & Yeoh

0

0

5

15

UB = infinity

A

B

C

D



SBB

45
AAAI-20 Tutorials                                                                                                                                                                               Fioretto & Yeoh

0

0

5

15

18

UB = 18

A

B

C

D



SBB

46
AAAI-20 Tutorials                                                                                                                                                                               Fioretto & Yeoh

0

0

5

15

18 23

UB = 18

A

B

C

D



SBB

47
AAAI-20 Tutorials                                                                                                                                                                               Fioretto & Yeoh

0

0

5

15

18 23

UB = 18

A

B

C

D



SBB

48
AAAI-20 Tutorials                                                                                                                                                                               Fioretto & Yeoh

0

0

5

15

18 23

19

UB = 18

A

B

C

D



SBB
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SBB
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16

26

UB = 18
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SBB
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SBB
Correct 

the solution it finds is optimal
Yes

Complete
it terminates

Yes
Message Complexity

max size of a message 
O(d)

Network Load
max number of messages 

O(bd)

Runtime O(bd)

branching factor = b
num variables = d



SBB
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5

15

18 23

19

22 27

8

16

26 19

21

31 24

0

20

43

46 51

27

30 35

A

B

C

D

Can we speed this up by parallelizing some 
computations?

Hint: Are there independent or  
conditionally independent subproblems?



SBB
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0
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0

0

5

10

3 8

14

3 8

8

8

10 3

13

10 3

0

20

25

3 8

7

3 8

These computations are the 
same; independent of C!

A

B

C

D



Pseudo-Tree
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C

A

B

D

{      }

{      }
{      }

{      }
C

B

A

D

{      }

{      }

{      } {      }
Definition: A spanning tree of the constraint 
graph such that no two nodes in sibling subtrees 
share a constraint in the constraint graph 
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DCOP Algorithms

Distributed Pseudotree 
Optimization Procedure 

(DPOP)
Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous
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DPOP

• Extension of the Bucket 
Elimination (BE)

• Agents operate on a pseudo-
tree ordering

• UTIL phase: Leaves to root
• VALUE phase: Root to leaves

VALUE

UTIL
C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering

Adrian Petcu, Boi Faltings: A Scalable Method for Multiagent Constraint Optimization. IJCAI 2005: 266-271
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DPOP

UTIL
C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering

B D (B,D)
r r 3
r g 8
g r 10
g g 3
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DPOP

UTIL
C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering

B D (B,D)
r r 3
r g 8
g r 10
g g 3

B cost
r 3
g 3

MSG to B

min{3, 8} = 3

min{10, 3} = 3



AAAI-20 Tutorials                                                                                                                                                                               Fioretto & Yeoh

DPOP

UTIL
C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering
A B C (B,C) (A,C)

r r r 5 5 10
r r g 4 8 12
r g r 3 5 8
r g g 3 8 11
g r r 5 10 15
g r g 4 3 7
g g r 3 10 13
g g g 3 3 6
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DPOP

UTIL
C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering
A B C (B,C) (A,C)

r r r 5 5 10
r r g 4 8 12
r g r 3 5 8
r g g 3 8 11
g r r 5 10 15
g r g 4 3 7
g g r 3 10 13
g g g 3 3 6

A B
r r 10
r g 8
g r 7
g g 6

MSG to B
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DPOP

UTIL
C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering

A B (A,B) Util 
C

Util 
D

r r 5 10 3 18

r g 8 8 3 19

g r 20 7 3 30

g g 3 6 3 12
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DPOP

UTIL
C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering

A B (A,B) Util 
C

Util 
D

r r 5 10 3 18

r g 8 8 3 19

g r 20 7 3 30

g g 3 6 3 12

A cost
r 18
g 12

MSG to A
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DPOP

UTIL
C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering

A cost
r 18
g 12

optimal cost = 12
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DPOP

C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering

A cost
r 18
g 12

VALUE

•Select value for A = ‘g’
•Send MSG A = ‘g’ to  
agents B and C
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DPOP

C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering

A B (A,B) Util 
C

Util 
D

r r 5 10 3 18

r g 8 8 3 19

g r 20 7 3 30

g g 3 6 3 12

VALUE

•Select value for B = ‘g’
•Send MSG B = ‘g’ to  
agents C and D
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DPOP

C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree OrderingA B C (B,C) (A,C)

r r r 5 5 10
r r g 4 8 12
r g r 3 5 8
r g g 3 8 11
g r r 5 10 15
g r g 4 3 7
g g r 3 10 13
g g g 3 3 6

VALUE

•Select value for C = ‘g’



AAAI-20 Tutorials                                                                                                                                                                               Fioretto & Yeoh

DPOP

C

B

A

D

{      }

{      }

{      } {      }

Pseudo-tree Ordering

VALUE
B D (B,D)
r r 3
r g 8
g r 10
g g 3

•Select value for D = ‘g’



DPOP
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SBB DPOP
Correct 

the solution it finds is optimal
Yes Yes

Complete
it terminates

Yes Yes
Message Complexity

max size of a message 
O(d) O(bd)

Network Load
max number of messages 

O(bd) O(d)
Runtime O(bd) O(bd)

branching factor = b
num variables = d



AAAI-20 Tutorials                                                                                                                                                                               Fioretto & Yeoh

Critical Overview

Search Algorithms Inference Algorithms

increasing memory
polynomial exponential

decreasing network load

polynomialexponential

75
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DCOP Algorithms

Distributed Local Search

Complete

Incomplete

Partially	
Decentralized

Fully
Decentralized

Fully
Decentralized

Asynchronous

Asynchronous

Synchronous

Synchronous

Search

Search

Search

Search

Inference

Sampling

Inference

Inference
Synchronous

76



Local Search Algorithms
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BA C

xi xj
Utility 
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Local Search Algorithms

• DSA: Distributed Stochastic Algorithm 
• MGM: Maximum Gain Messages Algorithm

• Every agent individually decides whether to change its value or not
• Decision involves 

• knowing neighbors’ values
• calculation of utility gain by changing values
• probabilities
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DSA Algorithm

• All agents execute the following
• Randomly choose a value
• while (termination is not met)

• if (a new value is assigned)
• send the new value to neighbors

• collect neighbors’ new values if any
• select and assign the next value based on assignment rule
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DSA Algorithm
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DSA Algorithm
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DSA Algorithm
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DSA Algorithm
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DSA Algorithm
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DSA Algorithm
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MGM Algorithm

• All agents execute the following
• Randomly choose a value
• while (termination is not met)

• if (a new value is assigned)
• send the new value to neighbors

• collect neighbors’ new values if any
• calculate gain and send it to neighbors
• collect neighbors’ gains
• if (it has the highest gain among all neighbors)

• change value to the value that maximizes gain
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MGM Algorithm

• All agents execute the following
• Randomly choose a value
• while (termination is not met)

• if (a new value is assigned)
• send the new value to neighbors

• collect neighbors’ new values if any
• calculate gain and send it to neighbors
• collect neighbors’ gains
• if (it has the highest gain among all neighbors)

• change value to the value that maximizes gain
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Figure 1: Sample Trajectories of MGM and DSA for a
High-Stakes Scenario

5 Algorithms with Coordination

When applying algorithms without coordination, the
evolution of the assignments will terminate at a Nash equi-
librium point within the set XNE described earlier. One
method to improve the solution quality is for agents to co-
ordinate actions with their neighbors. This allows the evo-
lution to follow a richer space of trajectories and alters the
set of terminal assignments. In this section we introduce
two 2-coordinated algorithms, where agents can coordi-
nate actions with one other agent. Let us refer to the set
of terminal states of the class of 2-coordinated algorithms
as X2E , i.e. neither a unilateral nor a bilateral modifica-
tion of values will increase sum of all constraint utilities
connected to the acting agent(s) if x 2 X2E . Clearly the
terminal states of a coordinated algorithm will depend on
what metric the coordinating agents will use to determine
if a particular joint action is acceptable or not. In a team
setting (and in our analysis), a joint action that increases
the sum of the utilities of the acting agents is considered
acceptable, even if a single agent may see a loss in utility.
This would be true in a purely selfish environment as well,
if agents could compensate each other for possible losses
in utility. An alternative choice would be to make a joint
action acceptable only if both agents see utility gains. We
consider the former notion of an acceptable joint action and
define the terminal states as follows:

X2E =
⇢
x̂ : (x̂i, x̂ j) = arg max

(xi,x j)

�
ui(xi; µ�i(x j, x̂�i j))

+u j(x j; µ� j(xi, x̂� ji))
 
, 8i, j 2 N , i , j

�

where x�i j is a tuple consisting of all values of variables ex-
cept the i-th and j-th variable, and µ�i(x j, x� ji) is a function
that converts its arguments into an appropriate vector of the
form of x�i described earlier, i.e. µ�i takes values from the
variables indexed by { j}[ �N \{i[ j} to a vector composed
of the variables indexed by N�i.

Proposition 3 For a given DCOP (X, E,U) and its equiv-
alent game (X, E, u), we have X2E ✓ XNE.

Proof. We show this by proving the contrapositive.
Suppose x < XNE . Then, there exists a variable i such
that ui(x̂i; x�i) > ui(xi; x�i) for some x̂i , xi. This further
implies that there exists some variable j 2 Ni, for which
Ui j(x̂i, x j) > Ui j(xi, x j). We then have ui(x̂i; µ�i(x j, x�i j)) >
ui(xi; µ�i(x j, x�i j)) and u j(x j; µ� j(x̂i, x� ji)) >
u j(x j; µ� j(xi, x�i j)) which implies that x < X2E . ⌅
Essentially, we are saying that a unilateral move which

improves the utility of a single agent must improve the con-
straint utility of at least one link which further implies that
the local utility of another agent must also increase given
that the rest of its context remains the same. The interest-
ing phenomenon is that our definition of X2E above is suf-
ficient to capture unilateral and bilateral deviations within
the context of bilateral deviations. This is due to the under-
lying DCOP structure and not true for a general game.
It has been proposed that coordinated actions be

achieved by forming coalitions among variables. In [2],
each coalition was represented by a manager who made
the assignment decisions for all variables within the coali-
tion. These methods inherently undermine the distributed
nature of the decision-making by essentially replacing mul-
tiple variables with a single variable in the graph. It is not
possible in all situations for this to occur because utility
function information and the ability to communicate with
the necessary neighbors may not be transferable (due to
infeasibility or preference). We introduce two algorithms
that allow for coordination while maintaining the underly-
ing distributed decision making process and the same con-
straint graph: MGM-2 (Maximum Gain Message-2) and
SCA-2 (Stochastic Coordination Algorithm-2).
Both MGM-2 and SCA-2 begin a round with agents

broadcasting their current values. The first step in both al-
gorithms is to decide which subset of agents are allowed to
make o↵ers. We resolve this by randomization, as each
agent generates a random number uniformly from [0, 1]
and becomes an o↵erer if the random number is below a
threshold q. If an agent is an o↵erer, it cannot accept of-
fers from other agents. All agents who are not o↵erers are
receivers. Each o↵erer will choose a neighbor at random
(uniformly) and send it an o↵er message consisting of all
coordinated moves between the o↵erer and receiver that
will yield a gain in local utility to the o↵erer under the cur-
rent context. The o↵er message will contain both the sug-
gested values for each player and the o↵erer’s local utility
gain for each value pair. Each receiver will then calculate
the global utility gain for each value pair in the o↵er mes-
sage by adding the o↵erer’s local utility gain to its own
utility change under the new context and subtracting the
di↵erence in the link between the two so it is not counted
twice. If the maximum global gain over all o↵ered value
pairs is positive, the receiver will send an accept message

Great if you need an anytime algorithm

Rajiv Maheswaran, Jonathan Pearce, Milind Tambe: Distributed Algorithms for DCOP: A Graphical-Game-Based Approach. ISCA PDCS 2004: 432-439
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• Why dynamic DCOPs? 
• MAS commonly exhibit dynamic environments
• The capture scenarios with:

• Moving agents, change of constraints, change of preferences
• Additional information become available during problem 

solving
• Application domains: Sensor networks, cloud computing, 

smart home automation, …

Dynamic DCOP
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• A Dynamic DCOP is sequence P1, P2, …, Pk of k DCOPs
• The agent knowledge about the environment is confined within 

each time step
• Each DCOP is solved sequentially

Dynamic DCOP

90

t1 t2 t3 t4 …
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• Current proposals on Dynamic DCOPs have focused on  
balancing reactiveness vs. proactiveness
• Reactive algorithms: React to changes of the environment as 

soon as they are observed 
• Proactive algorithms: Use predictions about future events to 

better react to the changes in the environment

Dynamic DCOP

91
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• Solves problems in which variables domains are continuous
• Arbitrary constraints (e.g., non-convex)

Continuous DCOPs

92

•Continuous Maxsum (CMS)
Solve problems where constraints are linear piecewise functions

•Hybrid Continuous Maxsum (HCMS)
No restriction on form of the functions
Local optimization approach to improve quality

•C-DPOP (similar to DPOP but uses piecewise functions) 

Continuous DCOP algorithms
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Distributed Convex Optimization

• Decentralized data and constraints

• Continuous variables

• Can describe many problems in  
optimization and learning

• Consider a (centralized) problem of the form
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min
x2Rn

f(x)

s.t. gi(x)  0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p

<latexit sha1_base64="rOmiZEuEQntSVBFVYcNlf3t7/Qg="></latexit>

a subclass of the convex optimization problems and the the-
ory of convex optimization can be also applied to linear pro-
grams.

Figure 3 illustrates a convex function. The intuitive charac-
teristics of such functions is that if one connects two points,
the inner line segment always lies above the graph.

Figure 3: The convex function f(x, y) = x4 + y2.

3. THE LAGRANGE DUAL PROBLEM
Optimization problems can be transformed to their dual
problems, called Lagrange dual problems, which help to
solve the main problem. First, with the dual problem one
can determine lower bounds for the optimal value of the
original problem. Second, under certain conditions, the so-
lutions of both problems are equal. In this case the dual
problem often o↵ers an easier and analytical way to the so-
lution.

3.1 Lagrangian function
Let us take the general optimization problem of the standard
form, of which we do not know anything about the convexity
or linearity of the constraint or objective functions:

minimize f0(x)
subject to fi(x)  bi, i = 1, ...,m

hi(x) = 0, i = 1, ..., p

We define the Lagrangian L : Rn ⇥ Rm ⇥ Rp 7! R of the
problem as sum of the objective function and a weighted
sum of the constraint functions:

L(x,�, ⌫) = f0(x) +
mX

i=1

�ifi(x) +
pX

i=1

⌫ihi(x)

The domain of the dual problem is equal to the domain of
the primal problem times the domain of the parameters:

domL = D⇥ Rm
0,+ ⇥ Rp

�i is called the Lagrange multiplier of the i-th inequality
constraint fi(x)  0 and accordingly ⌫i is called the La-

grange multiplier of the i-th equality constraint hi(x) = 0.
The vectors � and ⌫ are referred to as the dual variables or
Lagrange multiplier vectors.

In addition to that, the Lagrange dual function (or just dual

function) g : Rm ⇥ Rp 7! R0,+ is the infimum of the La-
grangian over x (for all � 2 Rm,⌫ 2 Rp)

g(�, ⌫) = inf
x2D

L(x,�, ⌫)

If there is no lower bound of the Lagrangian, its dual func-
tion takes on the value �1. The main advantage of the
Lagrangian dual function is, that it is concave even if the
problem is not convex. The reason for this is that the dual
function is the pointwise infimum of a family of linear func-
tions of (�, ⌫) (see [5], p. 216).

The basic idea behind Lagrangian duality is to take the con-
straints and put them into the objective function. The most
intuitive way would be to rewrite the problem as the follow-
ing unconstrained problem:

minimize l(x) = f0(x) +
mX

i=1

I�(fi(x)) +
pX

i=1

I0(hi(x))

Here I� and I0 (R 7! R) are the indicator functions of non-
positive reals and 0 respectively:

I�(u) =

⇢
0 u  0
1 u > 0

I0(u) =

⇢
0 u = 0
1 u 6= 0

These indicator functions express our displeasure with pre-
viously infeasible points. If a point was previously infeasible,
that means at least one constraint was violated, then at least
one indicator function takes the value 1 and prohibits that
point from being a solution. However, this method is really
brutal and causes discontinuity at the edges of the feasible
set. This discontinuity is not desired as we want to use an-
alytical techniques to solve the problem. So it is advisable
to find another solution which o↵ers a smoother transition.

In Lagrangian duality, these indicator functions are replaced
by linear functions which approximate the hard indicator
functions. Concretely, I�(u) is replaced by �iu (�i � 0)
and I0(u) is replaced by ⌫iu (here the domain of ⌫i is not re-
stricted). When the inequality constraint fi(x) is 0 then our
displeasure is 0. However, when the inequality constraint is
greater than zero, our displeasure is finite, but depends on
“how” much the constraint is violated (remind �i � 0). On
the other side, our pleasure grows when the constraint is
“more” fulfilled, i.e. it has more margin.

Clearly this approximation is rather poor, but it is ensured
that the linear functions underestimate the indicator func-
tions since �iu  I�(u) and ⌫iu  I0(u) for all u 2 R. As
a result, the dual function is always a lower bound for the
optimal value of the original function, i.e. for any � ⌫ 0 and
any ⌫ holds:

g(�, ⌫)  p?

This can be easily proven. Let x̃ be a feasible point, then
fi(x̃)  0 and hi(x̃) = 0. Consequently:

mX

i=1

�ifi(x̃) +
pX

i=1

⌫ihi(x̃)  0

As a result the inequality follows:

g(�, ⌫) = inf
x2D

L(x,�, ⌫)  L(x̃,�, ⌫)  f0(x̃)

doi: 10.2313/NET-2011-07-2_20Seminar FI & IITM SS 2011,  
Network Architectures and Services, July 2011
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Dual Problem

• The Lagrangian function  is:L : ℝn × ℝm × ℝp → ℝ
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• Weighted sum of the constraint functions
Lagrangian Multipliers 

L(x, ⌫,�) = f(x) +
mX

i=1

⌫igi(x) +
pX

i=1

�ihi(x)

<latexit sha1_base64="psTTqURjV80OCzmVugcmkaJKnqU="></latexit>

• The Lagrangian dual function  isLD : ℝm × ℝp → ℝ≥0

• Main advantage: it is concave

LD(⌫,�) = inf
x2Rn

L(x, ⌫,�)

<latexit sha1_base64="A0Snq6XH/qjhVoq2bJYeHRq0YSw="></latexit>



Dual Problem

• Note that, for any feasible value  we havex̃
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• That is 
 
 
for any feasible x̃

mX

i=1

⌫gi(x̃) +
pX

i=1

�ihi(x̃)  0

<latexit sha1_base64="w8RzRPdk1LFhsG7tgowiAPnBalw="></latexit>

Figure 4: Illustration of the lower bound (from [5],
p. 217)

Figure 4 illustrates this. The solid curve represents the ob-
jective function f0 and the dashed curve shows the constraint
function f1. The feasible set is characterized by f1(x)  0
and here it is the interval [�0.46, 0.46], which is indicated by
the two dotted vertical lines. The circle shows the optimal
point (x?, p?) = (�0.46, 1, 54) and the dotted curves show
L(x,�) for � = 0.1, 0.2, ..., 1.0. As we see, L(x,�)  f0(x)
holds for the feasible set and � � 0. Consequently, each
minimum value of L(x,�) is less or equal to p?.

However, when g(�, ⌫) = �1 then the inequality is use-
less. The lower bound for p? only makes sense if � � 0 and
(�, ⌫) 2 dom g, which means g(�, ⌫) > �1 . We call such
a pair (�, ⌫) dual feasible.

The challenge is to find the best lower bound, which leads
to the following optimization problem, called the Lagrangian
dual problem (whereas the original problem is often referred
to as primal problem):

maximize g(�, ⌫)
subject to � ⌫ 0

We define (�?, ⌫?), which is one solution to this problem, as
dual optimal or optimal Lagrange multipliers. As the dual
objective function is concave (even if the original problem
is not) and the constraints are convex, one can solve the
problem by minimizing �g(�, ⌫), which is consequently con-
vex. Therefore the dual problem is equivalent to a convex
minimization problem.

3.2 Weak duality
After estimating the optimal value of the dual problem d?,
we have by definition, the best lower bound for the optimal
value of the primal problem p?, which can be found using
Lagrange duality:

d?  p?

This inequality also applies if the original problem is not
convex and is called weak duality.

It also holds when p? and d? are infinite. If the original prob-
lem is unbounded below, this means p? = �1, then the op-
timal value of the Lagrange dual problem d? is consequently
also �1 and the dual problem is infeasible. Whereas when
the dual problem is unbounded above, this means d? = 1,
then p? = 1 and the primal problem is infeasible.

The di↵erence p? � d? is an important value as it character-
izes the gap between the optimal value of the primal problem
and its best lower bound. Accordingly it is called the dual-

ity gap and as a result of the previous inequality it is always
non-negative.

Although the weak duality does not enable us to find the
exact solution of the primal problem, it is useful in practice.
The main advantage is that the dual problem is a concave
maximization problem and therefore one can e�ciently cal-
culate a lower bound, as it can be easily transformed to a
convex minimization problem. (see [5], p.226).

In [5] this is demonstrated by the two-way partitioning prob-
lem. Given a set of n elements, the task is to find a partition
which minimizes costs. The costs are specified by a matrix
W . If two elements i and j are in one partition, then they
cause the cost wi,j and, if they are in di↵erent partitions,
they cause the cost �wi,j .

The problem can be described as a non-convex problem:

minimize xTWx
subject to x2

i = 1 i = 1, ..., n

The components xi of the vector x 2 Rn are restricted to
�1 and +1 by the equality constraint and define whether
the object i is in partition 1 or 2. The matrix W 2 Rn⇥n

specifies the corresponding costs as stated before, and con-
sequently xTWx produces the total costs. This problem is
hard to solve, as the complexity rises exponentially with n.

Fortunately it can be transformed to a dual problem:

maximize �1T ⌫
subject to W + diag(⌫) ⌫ 0

diag creates a n ⇥ n matrix with the components of the
vector on the diagonal. For a more detailed description of
the derivation of the dual problem see [5], p. 219f.

This problem can be solved e�ciently by semidefinite pro-
gramming and delivers a useful lower bound for the hard
primal problem.

3.3 Strong duality
Strong duality is even more useful. By definition, strong

duality means that the duality gap is zero, i.e. that the
optimal value of the dual problem is equal to the optimal
value of the primal problem:

d? = p?

Whereas weak duality always holds, strong duality only holds

doi: 10.2313/NET-2011-07-2_20Seminar FI & IITM SS 2011,  
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f(x)

g(x) ≤ 0

Feasible region

x*

Each minimum value of  
is less then or equal to 

L(x, ν)
f(x)

LD(⌫⇤,�⇤)  L(x̃, ⌫,�)  f(x̃)

<latexit sha1_base64="O0XAf11vYf3WrIe2z/4TNjqWBC8=">AAACL3icbVDLSgMxFM3UV62vqks3wSJUkTIjBcVVQREXXVSwKnRqyWTu2NBMZkwyYhn6R278lW5EFHHrX5jWwfeBwOGcc7m5x4s5U9q2H63cxOTU9Ex+tjA3v7C4VFxeOVNRIik0acQjeeERBZwJaGqmOVzEEkjocTj3egcj//wGpGKRONX9GNohuRIsYJRoI3WKR/XDsiuSy61t7HIz5pPLrU1D4RrXy65m3If0dmBMkXwmMj/48jc7xZJdscfAf4mTkRLK0OgUh64f0SQEoSknSrUcO9btlEjNKIdBwU0UxIT2yBW0DBUkBNVOx/cO8IZRfBxE0jyh8Vj9PpGSUKl+6JlkSHRX/fZG4n9eK9HBXjtlIk40CPqxKEg41hEelYd9JoFq3jeEUMnMXzHtEkmoNhUXTAnO75P/krOdilOtVE+qpdp+VkceraF1VEYO2kU1dIwaqIkoukND9ISerXvrwXqxXj+iOSubWUU/YL29A4uYpv8=</latexit>

L(x, ν)



Dual Problem

• How to find the best lower bound?

• Lagrangian dual problem:
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• Optimal Lagrangian multipliers: (ν*, λ*)

• Assuming strong duality: x⇤ = argmin
x

L(x, ⌫⇤,�⇤)

<latexit sha1_base64="f2yISBj4bHwe8HgqgBwJ/H64m3o=">AAACEHicbVDLSgMxFM3UV62vUZdugkWsRcqMFBRBKLhx4aKCfUBnWjJp2oYmmSHJSEvpJ7jxV9y4UMStS3f+jWk7C209EHI4596b3BNEjCrtON9Waml5ZXUtvZ7Z2Nza3rF396oqjCUmFRyyUNYDpAijglQ01YzUI0kQDxipBf3riV97IFLRUNzrYUR8jrqCdihG2kgt+3jQzMMr6CHZ9TgVrQG8zQ1OoSfiZt5czExqo2b+pGVnnYIzBVwkbkKyIEG5ZX957RDHnAiNGVKq4TqR9kdIaooZGWe8WJEI4T7qkoahAnGi/NF0oTE8MkobdkJpjtBwqv7uGCGu1JAHppIj3VPz3kT8z2vEunPhj6iIYk0Enj3UiRnUIZykA9tUEqzZ0BCEJTV/hbiHJMLaZJgxIbjzKy+S6lnBLRaKd8Vs6TKJIw0OwCHIARecgxK4AWVQARg8gmfwCt6sJ+vFerc+ZqUpK+nZB39gff4A3oyakw==</latexit>

max
⌫,�

LD(⌫,�)

s.t. ⌫ � 0
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Dual Ascent

• (Consider only equality constraints for ease of notation)
• We solve the dual problem using gradient ascent
• Assuming LD is differentiable, the gradient  can be 

evaluated as: 
1. Find  
2. Compute 

∇LD(λ)
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x+ = argmin
x

L(x,�)

<latexit sha1_base64="TwbPVHqaUQH8S2FMcdnGXuSx0vI=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQUUoiBUUQCm5cuKhgH9DEMJlM26GTSZiZSEvozo2/4saFIm79BXf+jdM2C209cOFwzr0z9x4/ZlQqy/o2cguLS8sr+dXC2vrG5pa5vdOQUSIwqeOIRaLlI0kY5aSuqGKkFQuCQp+Rpt+/GvvNByIkjfidGsbEDVGX0w7FSGnJM/cH98fwEjpIdJ2Qcm8Ab0qDE+gw/USAjjyzaJWtCeA8sTNSBBlqnvnlBBFOQsIVZkjKtm3Fyk2RUBQzMio4iSQxwn3UJW1NOQqJdNPJHSN4qJUAdiKhiys4UX9PpCiUchj6ujNEqidnvbH4n9dOVOfcTSmPE0U4nn7USRhUERyHAgMqCFZsqAnCgupdIe4hgbDS0RV0CPbsyfOkcVq2K+XKbaVYvcjiyIM9cABKwAZnoAquQQ3UAQaP4Bm8gjfjyXgx3o2PaWvOyGZ2wR8Ynz88u5ef</latexit>

rLD(�) = h(x+) = Ax+ � b

<latexit sha1_base64="CRAU7JyxM/ysbJkQL1cPvsxPZCs=">AAACD3icbVDLSgMxFM3UV62vqks3waJUxDIjBUUQKrpw4aKCfUBnLHfStA3NZIYkI5ahf+DGX3HjQhG3bt35N6aPhVoPhBzOuYfkHj/iTGnb/rJSM7Nz8wvpxczS8srqWnZ9o6rCWBJaISEPZd0HRTkTtKKZ5rQeSQqBz2nN750P/dodlYqF4kb3I+oF0BGszQhoIzWzu64AnwO+usi73MRasIdPcTd/f7s/JGfmxgfYb2ZzdsEeAU8TZ0JyaIJyM/vptkISB1RowkGphmNH2ktAakY4HWTcWNEISA86tGGogIAqLxntM8A7RmnhdijNERqP1J+JBAKl+oFvJgPQXfXXG4r/eY1Yt4+9hIko1lSQ8UPtmGMd4mE5uMUkJZr3DQEimfkrJl2QQLSpMGNKcP6uPE2qhwWnWCheF3Olk0kdabSFtlEeOegIldAlKqMKIugBPaEX9Go9Ws/Wm/U+Hk1Zk8wm+gXr4xtZIJkD</latexit>

the residual for the  
(equality) constraint

Dual Ascent:

Step size > 0

xk+1 = argmin
x

L(x,�k)

�k+1 = �k + sk (Axk+1 � b)

<latexit sha1_base64="k50faxBvz+rnAR/5HojRPLe+fd8="></latexit>



Dual Ascent

• (Consider only equality constraints for ease of notation)
• We solve the dual problem using gradient ascent
• Assuming LD is differentiable, the gradient  can be 

evaluated as: 
1. Find  
2. Compute 

∇LD(λ)

98
AAAI-20 Tutorials                                                                                                                                                                               Fioretto & Yeoh

x+ = argmin
x

L(x,�)

<latexit sha1_base64="TwbPVHqaUQH8S2FMcdnGXuSx0vI=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQUUoiBUUQCm5cuKhgH9DEMJlM26GTSZiZSEvozo2/4saFIm79BXf+jdM2C209cOFwzr0z9x4/ZlQqy/o2cguLS8sr+dXC2vrG5pa5vdOQUSIwqeOIRaLlI0kY5aSuqGKkFQuCQp+Rpt+/GvvNByIkjfidGsbEDVGX0w7FSGnJM/cH98fwEjpIdJ2Qcm8Ab0qDE+gw/USAjjyzaJWtCeA8sTNSBBlqnvnlBBFOQsIVZkjKtm3Fyk2RUBQzMio4iSQxwn3UJW1NOQqJdNPJHSN4qJUAdiKhiys4UX9PpCiUchj6ujNEqidnvbH4n9dOVOfcTSmPE0U4nn7USRhUERyHAgMqCFZsqAnCgupdIe4hgbDS0RV0CPbsyfOkcVq2K+XKbaVYvcjiyIM9cABKwAZnoAquQQ3UAQaP4Bm8gjfjyXgx3o2PaWvOyGZ2wR8Ynz88u5ef</latexit>

rLD(�) = h(x+) = Ax+ � b

<latexit sha1_base64="CRAU7JyxM/ysbJkQL1cPvsxPZCs=">AAACD3icbVDLSgMxFM3UV62vqks3waJUxDIjBUUQKrpw4aKCfUBnLHfStA3NZIYkI5ahf+DGX3HjQhG3bt35N6aPhVoPhBzOuYfkHj/iTGnb/rJSM7Nz8wvpxczS8srqWnZ9o6rCWBJaISEPZd0HRTkTtKKZ5rQeSQqBz2nN750P/dodlYqF4kb3I+oF0BGszQhoIzWzu64AnwO+usi73MRasIdPcTd/f7s/JGfmxgfYb2ZzdsEeAU8TZ0JyaIJyM/vptkISB1RowkGphmNH2ktAakY4HWTcWNEISA86tGGogIAqLxntM8A7RmnhdijNERqP1J+JBAKl+oFvJgPQXfXXG4r/eY1Yt4+9hIko1lSQ8UPtmGMd4mE5uMUkJZr3DQEimfkrJl2QQLSpMGNKcP6uPE2qhwWnWCheF3Olk0kdabSFtlEeOegIldAlKqMKIugBPaEX9Go9Ws/Wm/U+Hk1Zk8wm+gXr4xtZIJkD</latexit>

Dual Ascent:

x-minimization stepxk+1 = argmin
x

L(x,�k)

�k+1 = �k + sk (Axk+1 � b)

<latexit sha1_base64="k50faxBvz+rnAR/5HojRPLe+fd8="></latexit>



Dual Ascent

• (Consider only equality constraints for ease of notation)
• We solve the dual problem using gradient ascent
• Assuming LD is differentiable, the gradient  can be 

evaluated as: 
1. Find  
2. Compute 

∇LD(λ)
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x+ = argmin
x

L(x,�)

<latexit sha1_base64="TwbPVHqaUQH8S2FMcdnGXuSx0vI=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQUUoiBUUQCm5cuKhgH9DEMJlM26GTSZiZSEvozo2/4saFIm79BXf+jdM2C209cOFwzr0z9x4/ZlQqy/o2cguLS8sr+dXC2vrG5pa5vdOQUSIwqeOIRaLlI0kY5aSuqGKkFQuCQp+Rpt+/GvvNByIkjfidGsbEDVGX0w7FSGnJM/cH98fwEjpIdJ2Qcm8Ab0qDE+gw/USAjjyzaJWtCeA8sTNSBBlqnvnlBBFOQsIVZkjKtm3Fyk2RUBQzMio4iSQxwn3UJW1NOQqJdNPJHSN4qJUAdiKhiys4UX9PpCiUchj6ujNEqidnvbH4n9dOVOfcTSmPE0U4nn7USRhUERyHAgMqCFZsqAnCgupdIe4hgbDS0RV0CPbsyfOkcVq2K+XKbaVYvcjiyIM9cABKwAZnoAquQQ3UAQaP4Bm8gjfjyXgx3o2PaWvOyGZ2wR8Ynz88u5ef</latexit>

rLD(�) = h(x+) = Ax+ � b

<latexit sha1_base64="CRAU7JyxM/ysbJkQL1cPvsxPZCs=">AAACD3icbVDLSgMxFM3UV62vqks3waJUxDIjBUUQKrpw4aKCfUBnLHfStA3NZIYkI5ahf+DGX3HjQhG3bt35N6aPhVoPhBzOuYfkHj/iTGnb/rJSM7Nz8wvpxczS8srqWnZ9o6rCWBJaISEPZd0HRTkTtKKZ5rQeSQqBz2nN750P/dodlYqF4kb3I+oF0BGszQhoIzWzu64AnwO+usi73MRasIdPcTd/f7s/JGfmxgfYb2ZzdsEeAU8TZ0JyaIJyM/vptkISB1RowkGphmNH2ktAakY4HWTcWNEISA86tGGogIAqLxntM8A7RmnhdijNERqP1J+JBAKl+oFvJgPQXfXXG4r/eY1Yt4+9hIko1lSQ8UPtmGMd4mE5uMUkJZr3DQEimfkrJl2QQLSpMGNKcP6uPE2qhwWnWCheF3Olk0kdabSFtlEeOegIldAlKqMKIugBPaEX9Go9Ws/Wm/U+Hk1Zk8wm+gXr4xtZIJkD</latexit>

Dual Ascent:

Dual variable update

xk+1 = argmin
x

L(x,�k)

�k+1 = �k + sk (Axk+1 � b)

<latexit sha1_base64="k50faxBvz+rnAR/5HojRPLe+fd8="></latexit>



Dual Decomposition 

• Dual ascent can lead to a decentralized algorithm when f is 
separable (as in DCOPs)
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Dual Ascent:

• The Lagrangian can be written as:

xk+1 = argmin
x

L(x,�k)

�k+1 = �k + sk (Axk+1 � b)

<latexit sha1_base64="k50faxBvz+rnAR/5HojRPLe+fd8="></latexit>

nX

i=1

fi(xi) s.t. Aixi � b = 0 (i 2 [n])

<latexit sha1_base64="VKjZ3FfEY0Ja0xgeOc1eFn8dR2g="></latexit>

L(x,�) =
nX

i=1

Li(xi,�) =
nX

i=1

fi(xi) + �TAixi

<latexit sha1_base64="dtde1WlsPIEpH6og7yw/mP7EwAM="></latexit>

(     -b)



Dual Decomposition 

• Dual ascent can lead to a decentralized algorithm when f is 
separable (as in DCOPs)
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Dual Decomposition:
Decentralized

x-minimization step
(in parallel)

• The Lagrangian can be written as:

xk+1 = argmin
xi

Li(xi,�
k), i 2 [n]

�k+1 = �k + sk (
Pn

i=1 Aix
k+1
i � b)

<latexit sha1_base64="pV9QJGu2QT6SDyko6IobcXtwEG0="></latexit>

nX

i=1

fi(xi) s.t. Aixi � b = 0 (i 2 [n])

<latexit sha1_base64="VKjZ3FfEY0Ja0xgeOc1eFn8dR2g="></latexit>

L(x,�) =
nX

i=1

Li(xi,�) =
nX

i=1

fi(xi) + �TAixi

<latexit sha1_base64="dtde1WlsPIEpH6og7yw/mP7EwAM="></latexit>

(     -b)



Dual Decomposition 

• Dual ascent can lead to a decentralized algorithm when f is 
separable (as in DCOPs)
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Requires a “gather” step 
update and distribute  
the global ƛ variable

• The Lagrangian can be written as:

Dual Decomposition:

xk+1 = argmin
xi

Li(xi,�
k), i 2 [n]

�k+1 = �k + sk (
Pn

i=1 Aix
k+1
i � b)

<latexit sha1_base64="pV9QJGu2QT6SDyko6IobcXtwEG0="></latexit>

nX

i=1

fi(xi) s.t. Aixi � b = 0 (i 2 [n])

<latexit sha1_base64="VKjZ3FfEY0Ja0xgeOc1eFn8dR2g=">AAACM3icbVDLSsQwFE19O75GXbq5OAjjwtLKgKIIihtxpeCoMK0lzaQaTNOS3IpDmX9y44+4EMSFIm79BzPjLHzdEDg551xu7olzKQx63pMzNDwyOjY+MVmZmp6ZnavOL5yarNCMN1kmM30eU8OlULyJAiU/zzWnaSz5WXy939PPbrg2IlMn2Ml5mNJLJRLBKFoqqh4GpkijUuz43QsFSSTqt5FYhWDbHuS3WBoX3W7vCXuRACvCGsSwA17fA3UBgVDQUuFqVK15rtcv+Av8AaiRQR1F1YegnbEi5QqZpMa0fC/HsKQaBZO8WwkKw3PKruklb1moaMpNWPZ37sKKZdqQZNpehdBnv3eUNDWmk8bWmVK8Mr+1Hvmf1iow2QxLofICuWJfg5JCAmbQCxDaQnOGsmMBZVrYvwK7opoytDFXbAj+75X/gtN112+4jeNGbXdrEMcEWSLLpE58skF2yQE5Ik3CyB15JC/k1bl3np035/3LOuQMehbJj3I+PgHt9qa2</latexit>

L(x,�) =
nX

i=1

Li(xi,�) =
nX

i=1

fi(xi) + �TAixi

<latexit sha1_base64="dtde1WlsPIEpH6og7yw/mP7EwAM=">AAACRnicbVC7SwMxHP5dfddX1dElWIQWpdxJwS6C4uLQoYLVQns9cmmuDc3ljiQnlqN/nYuzm3+Ci4MirqYPQVs/CHx8D5J8fsyZ0rb9YmUWFpeWV1bXsusbm1vbuZ3dWxUlktA6iXgkGz5WlDNB65ppThuxpDj0Ob3z+5cj/+6eSsUicaMHMXVD3BUsYARrI3k5t1p4OEYtbhodXERnqKWS0EvZmTNsC1T1WOHBY78Cs4lgkiiio59M+wZdeAwZEWW9XN4u2WOgeeJMSR6mqHm551YnIklIhSYcK9V07Fi7KZaaEU6H2VaiaIxJH3dp01CBQ6rcdDzDEB0apYOCSJojNBqrvxspDpUahL5Jhlj31Kw3Ev/zmokOKm7KRJxoKsjkoiDhSEdotCnqMEmJ5gNDMJHMvBWRHpaYaLP8aARn9svz5Pak5JRL5ety/rwynWMV9uEACuDAKZzDFdSgDgQe4RXe4cN6st6sT+trEs1Y084e/EEGvgGgma0T</latexit>

(     -b)



Dual Decomposition

• If the step size is well chosen and other assumptions hold, then  
converges to an optimal point and  to an optimal dual point.

• However, these assumptions do not hold in many applications.

xk

λk
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Method of the Multipliers

• Used to robustly dual ascent

• Uses the Augmented Lagrangian.
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Quadratic penalty 
makes the objective 
strongly convex 

penalty 

• Problem unchanged: has same local minima 

• Advantage: The associated Lagrangian dual  
can be shown to be differentiable.

LD⇢(�)=inf
x

L⇢(x,�)

<latexit sha1_base64="eWntdNyR5K2S024GzHAKh2j3efs=">AAACIHicbVDLSsNAFJ3UV62vqks3o0WoICWRQt0Igi5cdKFgtdCEMJlM7NDJJMzcSEvop7jxV9y4UER3+jVOH4ivAwOHc+7hzj1BKrgG2363CjOzc/MLxcXS0vLK6lp5feNKJ5mirEUTkah2QDQTXLIWcBCsnSpG4kCw66B3MvKvb5nSPJGXMEiZF5MbySNOCRjJLzdcYH3Im6dD31XdpOoKkw3JHna3j9xt7HIZ+X3cnJj9/S/bL1fsmj0G/kucKamgKc798psbJjSLmQQqiNYdx07By4kCTgUbltxMs5TQHrlhHUMliZn28vGBQ7xrlBBHiTJPAh6r3xM5ibUexIGZjAl09W9vJP7ndTKIDr2cyzQDJulkUZQJDAketYVDrhgFMTCEUMXNXzHtEkUomE5LpgTn98l/ydVBzanX6hf1yvHhtI4i2kI7qIoc1EDH6Aydoxai6A49oCf0bN1bj9aL9ToZLVjTzCb6AevjEzWUobI=</latexit>

min
x2Rn

f(x)

s.t. Ax� b = 0

<latexit sha1_base64="SwnmC/gf6ao818108oYTdLRouRI="></latexit>

L⇢(x,�)=f(x)+�T (Ax�b) +
⇢

2
kAx� bk22

<latexit sha1_base64="E1karBAyNNAV4dmUiWCBJqXzPRU="></latexit>



Method of the Multipliers
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• Advantage: The associated Lagrangian dual  
can be shown to be differentiable.

LD⇢(�)=inf
x

L⇢(x,�)

<latexit sha1_base64="eWntdNyR5K2S024GzHAKh2j3efs=">AAACIHicbVDLSsNAFJ3UV62vqks3o0WoICWRQt0Igi5cdKFgtdCEMJlM7NDJJMzcSEvop7jxV9y4UER3+jVOH4ivAwOHc+7hzj1BKrgG2363CjOzc/MLxcXS0vLK6lp5feNKJ5mirEUTkah2QDQTXLIWcBCsnSpG4kCw66B3MvKvb5nSPJGXMEiZF5MbySNOCRjJLzdcYH3Im6dD31XdpOoKkw3JHna3j9xt7HIZ+X3cnJj9/S/bL1fsmj0G/kucKamgKc798psbJjSLmQQqiNYdx07By4kCTgUbltxMs5TQHrlhHUMliZn28vGBQ7xrlBBHiTJPAh6r3xM5ibUexIGZjAl09W9vJP7ndTKIDr2cyzQDJulkUZQJDAketYVDrhgFMTCEUMXNXzHtEkUomE5LpgTn98l/ydVBzanX6hf1yvHhtI4i2kI7qIoc1EDH6Aydoxai6A49oCf0bN1bj9aL9ToZLVjTzCb6AevjEzWUobI=</latexit>

Specific step size

• Compared to decomposition, converges under milder assumptions 
(f can be non-differentiable, take on  values)

• However, the quadratic penalty destroys the splitting of the  
x-update, so cannot be decomposed

+∞

xk+1 = argmin
x

L⇢(x,�
k)

yk+1 = �k + ⇢(Axk+1 � b)

<latexit sha1_base64="cSYE5/H7//d9S0QVa6xlwWTPRPw="></latexit>



Alternating Method of the Multipliers 
(ADMM)

• Support decomposition.

• Consider a problem of the form (f, g, convex)
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• Two sets of variables with separate objective

Lp(x, z,�) = f(x) + g(z) + �T (Ax+Bz � c) +
⇢

2
kAx+Bz � ck22

<latexit sha1_base64="gKNACz1GCAvX7NmB0dDweD5UxEg="></latexit>



Alternating Method of the Multipliers 
(ADMM)

• Support decomposition.

• Consider a problem of the form (f, g, convex)
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• Two sets of variables with separate objective

ADMM

Lp(x, z,�) = f(x) + g(z) + �T (Ax+Bz � c) +
⇢

2
kAx+Bz � ck22

<latexit sha1_base64="gKNACz1GCAvX7NmB0dDweD5UxEg="></latexit>

xk+1 = argmin
x

L⇢(x, z
k,�k)

zk+1 = argmin
z

L⇢(x
k+1, z,�k)

yk+1 = �k + ⇢(Axk+1 +Bzk+1 � c)

<latexit sha1_base64="hduMW192JTp6BRfjzVA0Y2XZ5cQ="></latexit>

x-minimization

z-minimization

dual update�k+1

<latexit sha1_base64="3/6mvBpBxzHsmnixWZLCWSgRPx0=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkUQhDIjBcVVwY3LCvYB7VgymUwbmsmMSaZQhn6HGxeKuPVj3Pk3pu0stPVA4HDOudyb4yeCa+M436iwtr6xuVXcLu3s7u0flA+PWjpOFWVNGotYdXyimeCSNQ03gnUSxUjkC9b2R7czvz1mSvNYPphJwryIDCQPOSXGSl5P2GhAHrPRhTvtlytO1ZkDrxI3JxXI0eiXv3pBTNOISUMF0brrOonxMqIMp4JNS71Us4TQERmwrqWSREx72fzoKT6zSoDDWNknDZ6rvycyEmk9iXybjIgZ6mVvJv7ndVMTXnsZl0lqmKSLRWEqsInxrAEccMWoERNLCFXc3orpkChCje2pZEtwl7+8SlqXVbdWrd3XKvWbvI4inMApnIMLV1CHO2hAEyg8wTO8whsaoxf0jj4W0QLKZ47hD9DnD2SJkdU=</latexit>



Alternating Method of the Multipliers 
(ADMM)

• If we minimized over x and z jointly, reduces to method of the 
multipliers. 

• We can decompose because we minimize over x with fixed z, 
and vice-versa. 
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ADMM x-minimization

z-minimization

dual update

xk+1 = argmin
x

L⇢(x, z
k,�k)

zk+1 = argmin
z

L⇢(x
k+1, z,�k)

yk+1 = �k + ⇢(Axk+1 +Bzk+1 � c)

<latexit sha1_base64="hduMW192JTp6BRfjzVA0Y2XZ5cQ="></latexit>

�k+1

<latexit sha1_base64="3/6mvBpBxzHsmnixWZLCWSgRPx0=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkUQhDIjBcVVwY3LCvYB7VgymUwbmsmMSaZQhn6HGxeKuPVj3Pk3pu0stPVA4HDOudyb4yeCa+M436iwtr6xuVXcLu3s7u0flA+PWjpOFWVNGotYdXyimeCSNQ03gnUSxUjkC9b2R7czvz1mSvNYPphJwryIDCQPOSXGSl5P2GhAHrPRhTvtlytO1ZkDrxI3JxXI0eiXv3pBTNOISUMF0brrOonxMqIMp4JNS71Us4TQERmwrqWSREx72fzoKT6zSoDDWNknDZ6rvycyEmk9iXybjIgZ6mVvJv7ndVMTXnsZl0lqmKSLRWEqsInxrAEccMWoERNLCFXc3orpkChCje2pZEtwl7+8SlqXVbdWrd3XKvWbvI4inMApnIMLV1CHO2hAEyg8wTO8whsaoxf0jj4W0QLKZ47hD9DnD2SJkdU=</latexit>



Convergence
(ADMM)

• Mild assumptions
• f, g, convex, closed, proper
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• Then ADMM converges: 
• Iterates approach feasibility 
• Objective approaches optimal value: 

Axk + Bzk − c → 0
f(xk) + g(zk) → OPT



Applications

AAAI-20 Tutorial on  
Multi-Agent Distributed Constrained Optimization



DCOP APPLICATIONS

• Scheduling Problems
• Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling. AAMAS 2004

• Radio Frequency Allocation Problems
• Improving DPOP with Branch Consistency for Solving Distributed Constraint Optimization Problems. CP 2014

• Sensor Networks
• Preprocessing techniques for accelerating the DCOP algorithm ADOPT. AAMAS 2005

• Home Automation
• A Multiagent System Approach to Scheduling Devices in Smart Homes. AAMAS 2017, IJCAI 2016

• Traffic Light Synchronization
• Evaluating the performance of DCOP algorithms in a real world, dynamic problem. AAMAS 2008

• Disaster Evacuation
• Disaster Evacuation Support. AAAI 2007; JAIR 2017

• Combinatorial Auction Winner Determination 
• H-DPOP: Using Hard Constraints for Search Space Pruning in DCOP.  AAAI 2008
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Meeting Scheduling
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Rajiv T. Maheswaran, Milind Tambe, Emma Bowring, Jonathan P. Pearce, Pradeep Varakantham: Taking DCOP to the Real World: Efficient Complete Solutions for 
Distributed Multi-Event Scheduling. AAMAS 2004: 310-317

• Values: time slots to 
hold the meetings

• All agents participating 
in a meeting must meet 
at the same time

• All meetings of an agent 
must occur at different 
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Edge Computing
• Agents: av  for each vertex v∈V 
• Variables: v(v, s, c) 

• Denotes amount of load to serve for service s by client c on 
vertex v

• Each controlled by agent a_v
• Domain: 0 ≤ D(v, s, c) ≤ cap(v)
• Constraints:

• ∑(s∈S,c∈C)  v(v, s, c) ≤ cap(v)
• ∑(v∈V s∈S,c∈C)  v(v, s, c) ≥ ∑(v∈V s∈S,c∈C) load(v,s,c)

• Maximize: ∑(v∈V s∈S,c∈C) v(v, s, c) / dist(v,c)
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Figure 1: Example DCOP

A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�
t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi

�
t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi

�
t
zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H

↵c · C
t
i + ↵u · U

t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:

1  szj  T � �zj 8hi 2 H, zj 2 Zi (5)
X

t2T

�
t
zj = �zj 8hi 2 H, zj 2 Zi (6)

X

hi2H

P
t
i  `

t
8t 2 T (7)
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Figure 1: Example DCOP

A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�
t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi

�
t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi

�
t
zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H

↵c · C
t
i + ↵u · U

t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:

1  szj  T � �zj 8hi 2 H, zj 2 Zi (5)
X

t2T

�
t
zj = �zj 8hi 2 H, zj 2 Zi (6)
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battery charge
sensor

cleanliness
sensor

thermostat

A smart home has:
• Smart devices (roomba, HVAC) 

that it can control
• Sensors (cleanliness, 

temperature) 
• A set of locations
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Figure 1: Example DCOP

A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�
t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi

�
t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi

�
t
zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X
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hi2H

↵c · C
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where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:
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A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all

variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2

X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its

interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where

Fi={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-

ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-

vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj and �zj to denote the start time and duration (expressed
in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �

t
zj to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�
t
zj =

⇢
1 if szj  t ^ szj + �zj � t

0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use C

t
i to denote the aggregated cost of the building

hi at time step t, expressed as:

C
t
i = P

t
i · ✓(t), (1)

where
P

t
i =

X

zj2Zi
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t
zj · ⇢zj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µ

t
zj 2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U
t
i =

X

zj2Zi
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zj · µzj (t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T
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t
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i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:
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MAS Coordination

• Decentralized coordination in a MAS is expensive
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MAS Coordination

• Decentralized coordination in a MAS is expensive
• Can we study various tradeoff (solution quality vs. runtime vs. 

communication time) to improve coordination?
• Can we use sampling methods to develop new, efficient, 

anytime, DCOP incomplete algorithms?
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Dynamic Environment

• Interaction in a dynamic environment is required to be robust to 
several changes 
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Dynamic Environment

• Interaction in a dynamic environment is required to be robust to 
several changes 
• How do agents respond to dynamic changes?
• Can we study adaptive algorithms so that the MAS interaction is 

resilient and adaptive to changes in the communication layer, the 
underlying constraint graph, etc.?
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• R. Mailler, H. Zheng, and A. Ridgway. 2017. Dynamic, distributed constraint solving and thermodynamic theory. Auton Agent Multi-Agent Syst (2017). 
• Zhang, C., & Lesser, V. (2013). Coordinating multi-agent reinforcement learning with limited communication. In Proceedings of the International Conference 

on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1101–1108. 



Agent Preferences

• How to model, learn, and update agent preferences?
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Agent Preferences

• How to model, learn, and update agent preferences?
• Agent’s preferences are assumed to be available. This is not 

always feasible. How to efficiently elicit agents’ preferences?
• When full elicitation is not possible, how to adaptively learn the 

preference of an agent?
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• Atena M. Tabakhi, Tiep Le, Ferdinando Fioretto, and William Yeoh. “Preference Elicitation for DCOPs.” In Proceedings of the International Conference on 
Principles and Practice of Constraint Programming (CP), pages 278-296, 2017



Thank  You!
Ferdinando Fioretto & William Yeoh

Preliminaries DCOP Algorithms

DCOP Extensions DCOP Applications


